1
|
Kruszka P, Tekendo-Ngongang C. Application of facial analysis Technology in Clinical Genetics: Considerations for diverse populations. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32059. [PMID: 37534870 DOI: 10.1002/ajmg.c.32059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
Facial analysis technology in rare diseases has the potential to shorten the diagnostic odyssey by providing physicians with a valuable diagnostic tool. Given that most clinical genetic resources focus on populations of European descent, we compare craniofacial features in genetic syndromes across different populations and review how machine learning algorithms perform on diagnosing genetic syndromes in geographically and ethnically diverse populations. We also discuss the value of populations from ancestrally diverse backgrounds in the training set of machine learning algorithms. Finally, this review demonstrates that across diverse population groups, machine learning models have outstanding accuracy as supported by the area under the curve values greater than 0.9. Artificial intelligence is only in its infancy in the diagnosis of rare disease in diverse populations and will become more accurate as larger and more diverse training sets, including a wider spectrum of ages, particularly infants, are studied.
Collapse
|
2
|
Baine-Savanhu F, Macaulay S, Louw N, Bollweg A, Flynn K, Molatoli M, Nevondwe P, Seymour H, Carstens N, Krause A, Lombard Z. Identifying the genetic causes of developmental disorders and intellectual disability in Africa: a systematic literature review. Front Genet 2023; 14:1137922. [PMID: 37234869 PMCID: PMC10208355 DOI: 10.3389/fgene.2023.1137922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Objective: Genetic variants cause a significant portion of developmental disorders and intellectual disabilities (DD/ID), but clinical and genetic heterogeneity makes identification challenging. Compounding the issue is a lack of ethnic diversity in studies into the genetic aetiology of DD/ID, with a dearth of data from Africa. This systematic review aimed to comprehensively describe the current knowledge from the African continent on this topic. Method: Applicable literature published up until July 2021 was retrieved from PubMed, Scopus and Web of Science databases, following PRISMA guidelines, focusing on original research reports on DD/ID where African patients were the focus of the study. The quality of the dataset was assessed using appraisal tools from the Joanna Briggs Institute, whereafter metadata was extracted for analysis. Results: A total of 3,803 publications were extracted and screened. After duplicate removal, title, abstract and full paper screening, 287 publications were deemed appropriate for inclusion. Of the papers analysed, a large disparity was seen between work emanating from North Africa compared to sub-Saharan Africa, with North Africa dominating the publications. Representation of African scientists on publications was poorly balanced, with most research being led by international researchers. There are very few systematic cohort studies, particularly using newer technologies, such as chromosomal microarray and next-generation sequencing. Most of the reports on new technology data were generated outside Africa. Conclusion: This review highlights how the molecular epidemiology of DD/ID in Africa is hampered by significant knowledge gaps. Efforts are needed to produce systematically obtained high quality data that can be used to inform appropriate strategies to implement genomic medicine for DD/ID on the African continent, and to successfully bridge healthcare inequalities.
Collapse
Affiliation(s)
- Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shelley Macaulay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadja Louw
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alanna Bollweg
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kaitlyn Flynn
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mhlekazi Molatoli
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patracia Nevondwe
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Seymour
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Sudi SM, Kabbashi S, Roomaney IA, Aborass M, Chetty M. The genetic determinants of oral diseases in Africa: The gaps should be filled. FRONTIERS IN ORAL HEALTH 2022; 3:1017276. [PMID: 36304994 PMCID: PMC9593064 DOI: 10.3389/froh.2022.1017276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Oral diseases are a major health concern and are among the most prevalent diseases globally. This problem is becoming more prominent in the rapidly growing populations of Africa. It is well documented that Africa exhibits the most diverse genetic make-up in the world. However, little work has been conducted to understand the genetic basis of oral diseases in Africans. Oral health is often neglected and receives low prioritisation from funders and governments. The genetic determinants of highly prevalent oral diseases such as dental caries and periodontal disease, and regionally prevalent conditions such as oral cancer and NOMA, are largely under-researched areas despite numerous articles alluding to a high burden of these diseases in African populations. Therefore, this review aims to shed light on the significant gaps in research on the genetic and genomic aspects of oral diseases in African populations and highlights the urgent need for evidence-based dentistry, in tandem with the development of the dentist/scientist workforce.
Collapse
Affiliation(s)
| | - Salma Kabbashi
- Craniofacial Biology, University of the Western Cape, Cape Town, South Africa
| | | | | | | |
Collapse
|
4
|
Molecular and clinical profile of patients referred as Noonan or Noonan-like syndrome in Greece: a cohort of 86 patients. Eur J Pediatr 2022; 181:3691-3700. [PMID: 35904599 DOI: 10.1007/s00431-022-04574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
UNLABELLED Noonan syndrome (NS) is an autosomal dominant disorder characterized by clinical and genetic heterogeneity. It belongs to a wider group of pathologies, known as Rasopathies, due to the implication of genes encoding components of the Ras/MAPK signalling pathway. Recording the genetic alterations across populations helps assessing specific features to specific genes which is essential for better disease's recognition, prognosis and monitoring. Herein, we report the clinical and molecular data of a Greek cohort comprising of 86 NS or NS-like patients admitted at a single tertiary Centre in Athens, Greece. The analysis was performed using Sanger and next-generation sequencing, comprising 14 different genes. The mutational rates of the confirmed NS-associated genes in the Greek NS population are as follows: PTPN11 32.5%; RIT1 5.8%; SOS1 4.7%; BRAF 1.2%; CBL 1.2%; KRAS 1.2%; MAP2K1 1.2%; RAF1 1.2%; SHOC2 1.2%, corresponding to 50% of positivity in total NS population. The genotype-phenotype analysis showed statistically significant differences in craniofacial dysmorphisms (p = 0.005) and pulmonary valve stenosis (PS) (p < 0.001) frequencies between patients harbouring a pathogenic variant and patients without pathogenic variant in any of the tested genes. Patients with at least a pathogenic variant had 6.71 times greater odds to develop PS compared to pathogenic variant-negative patients (OR = 6.71, 95%; CI = (2.61, 17.27)). PTPN11 positive patients showed higher frequency of epicanthal folds (p = 0.004), ptosis (p = 0.001) and coarseness (p = 0.001) and lower frequency of neurological findings (p = 0.006), compared to patients carrying pathogenic variants in other genes. CONCLUSION Craniofacial dysmorphism and PS prevail among pathogenic variant positive compared to pathogenic variant negative NS and NS-like patients while neurological defects are less common in PTPN11-affected NS patients compared to patients harbouring pathogenic variants in other genes. The significant prevalence of the Ras/MAPK pathogenic variants (17.4%), other than PTPN11, in Greek NS patients, highlights the necessity of a wider spectrum of molecular diagnosis. WHAT IS KNOWN • Noonan syndrome (NS) has been associated with pathogenic variants in molecules-components of the Ras/MAPK pathway. • Clinical and genetic description of NS patients worldwide helps establishing personalized monitoring. WHAT IS NEW • NS and NS-like mutational rate in Greece reaches 50% with pathogenic variants identified mostly in PTPN11 (32.5%), RIT1 (6%) and SOS1 (4.7%) genes. • The risk for pulmonary stenosis increases 6.71-fold in NS patients with a pathogenic variant compared to patients without genetic alterations.
Collapse
|
5
|
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells 2022; 11:cells11193099. [PMID: 36231062 PMCID: PMC9563972 DOI: 10.3390/cells11193099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) and related Noonan syndrome with multiple lentigines (NSML) contribute to the pathogenesis of human diseases in the RASopathy family. This family of genetic disorders constitute one of the largest groups of developmental disorders with variable penetrance and severity, associated with distinctive congenital disabilities, including facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was first clinically described decades ago, and several genes have since been identified, providing a molecular foundation to understand their physiopathology and identify targets for therapeutic strategies. These genes encode proteins that participate in, or regulate, RAS/MAPK signalling. The RAS pathway regulates cellular metabolism by controlling mitochondrial homeostasis, dynamics, and energy production; however, little is known about the role of mitochondrial metabolism in NS and NSML. This manuscript comprehensively reviews the most frequently mutated genes responsible for NS and NSML, covering their role in the current knowledge of cellular signalling pathways, and focuses on the pathophysiological outcomes on mitochondria and energy metabolism.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| |
Collapse
|
6
|
Abstract
BACKGROUND Cardiovascular disease is one of the most important problems in long-term follow-up for Noonan syndrome. We examined cardiovascular issues and clinical manifestations, with a focus on the cardiovascular disease and prognosis of patients with Noonan syndrome. METHODS This single-centre study evaluated patients who were clinically and genetically diagnosed with Noonan syndrome. RESULTS Forty-three patients diagnosed with Noonan syndrome were analysed. The most prevalent responsible mutation was found in PTPN11 (25/43). The second and third most prevalent causative genes were SOS1 (6/43) and RIT1 (5/43), respectively, and 67.4% of genetically diagnosed patients with Noonan syndrome had structural cardiovascular abnormalities. Pulmonary valve stenosis was prevalent in patients with mutations in PTPN11 (8/25), SOS1 (4/6), and RIT1 (4/5). Hypertrophic cardiomyopathy was found in two of three patients with mutations in RAF1. There was no difference in the cardiovascular events or cardiovascular disease prevalence in patients with or without PTPN11 mutations. The proportion of RIT1 mutation-positive patients who underwent intervention due to cardiovascular disease was significantly higher than that of patients with PTPN11 mutations. Patients who underwent any intervention for pulmonary valve stenosis exhibited significantly higher pulmonary flow velocity than patients who did not undergo intervention, when they visited our hospital for the first time. All patients who underwent intervention for pulmonary valve stenosis had a pulmonary flow velocity of more than 3.0 m/s at first visit. CONCLUSIONS These findings suggest that genetic information can provide a clinical prognosis for cardiovascular disease and may be part of genotype-based follow-up in Noonan syndrome.
Collapse
|
7
|
Role of CBL Mutations in Cancer and Non-Malignant Phenotype. Cancers (Basel) 2022; 14:cancers14030839. [PMID: 35159106 PMCID: PMC8833995 DOI: 10.3390/cancers14030839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary CBL mutations are progressively being described as involved in different clinical manifestations. Somatic CBL mutations can be found in different type of cancer. The clinical spectrum of germline mutations configures the so-called CBL syndrome, a cancer-predisposing condition that includes multisystemic involvement characterized by variable phenotypic expression and expressivity. In this review we provide an up-to-date review of the clinical manifestation of CBL mutations and of the molecular mechanisms in which CBL exerts its pathogenic role. Abstract CBL plays a key role in different cell pathways, mainly related to cancer onset and progression, hematopoietic development and T cell receptor regulation. Somatic CBL mutations have been reported in a variety of malignancies, ranging from acute myeloid leukemia to lung cancer. Growing evidence have defined the clinical spectrum of germline CBL mutations configuring the so-called CBL syndrome; a cancer-predisposing condition that also includes multisystemic involvement characterized by variable phenotypic expression and expressivity. This review provides a comprehensive overview of the molecular mechanisms in which CBL exerts its function and describes the clinical manifestation of CBL mutations in humans.
Collapse
|
8
|
Demir S, Yaşar Köstek H, Sanrı A, Yıldırım R, Özgüç Çömlek F, Yalçıntepe S, Deveci M, Atlı Eİ, Atlı E, Eker D, Gürkan H, Tütüncüler Kökenli F. Comprehensive Genetic Analysis of RASopathy in the Era of Next-Generation Sequencing and Definition of a Novel Likely Pathogenic KRAS Variation. Mol Syndromol 2022; 13:88-98. [DOI: 10.1159/000520722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Abstract
<b><i>Introduction:</i></b> Germline pathogenic variations of the genes encoding the components of the Ras-MAPK pathway are found to be responsible for RASopathies, a clinically and genetically heterogeneous group of diseases. In this study, we aimed to present the results of patients genetically investigated for RASopathy-related mutations in our Genetic Diagnosis Center. <b><i>Methods:</i></b> The results of 51 unrelated probands with RASopathy and 4 affected relatives (31 male, 24 female; mean age: 9.327 ± 8.214) were included in this study. Mutation screening was performed on DNA samples from peripheral blood of the patients either by Sanger sequencing of <i>PTPN11</i> hotspot regions (10/51 probands), or by a targeted amplicon next-generation sequencing panel (41/51 probands) covering the exonic regions of <i>BRAF</i>, <i>CBL</i>, <i>HRAS</i>, <i>KRAS</i>, <i>LZTR1</i>, <i>MAP2K1</i>, <i>MAP2K2</i>, <i>NF1</i>, <i>NRAS</i>, <i>PTPN11</i>, <i>RAF1</i>, <i>RASA2</i>, <i>RIT1</i>, <i>SHOC2</i>, <i>SOS1</i>, <i>SOS2</i>, <i>SPRED1</i>, and <i>KAT6B</i> genes. <b><i>Results:</i></b> Pathogenic/likely pathogenic variations found in 22 out of 51 probands (43.13%) and their 4 affected family members were located in <i>PTPN11</i>, <i>BRAF</i>, <i>KRAS</i>, <i>NF1</i>, <i>RAF1</i>, <i>SOS1</i>, and <i>SHOC2</i> genes. The c.148A>C (p.Thr50Pro) variation in the <i>KRAS</i> gene was a novel variant detected in a sibling in our patient cohort. We found supportive evidence for the pathogenicity of the <i>NF1</i> gene c.5606G>T (p.Gly1869Val) variation which we defined in an affected boy who inherited the mutation from his affected father. <b><i>Conclusion:</i></b> Although <i>PTPN11</i> is the most frequently mutated gene in our patient cohort, as in most previous reports, different mutation distribution among the other genes studied motivates the use of a next-generation sequencing gene panel including the possible responsible genes.
Collapse
|
9
|
Manyisa N, Adadey SM, Wonkam-Tingang E, Yalcouye A, Wonkam A. Hearing Impairment in South Africa and the Lessons Learned for Planetary Health Genomics: A Systematic Review. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:2-18. [PMID: 35041532 PMCID: PMC8792495 DOI: 10.1089/omi.2021.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hearing impairment (HI) is a silent planetary health crisis that requires attention worldwide. The prevalence of HI in South Africa is estimated as 5.5 in 100 live births, which is about 5 times higher than the prevalence in high-income countries. This also offers opportunity to drive progressive science, technology and innovation policy, and health systems. We present here a systematic analysis and review on the prevalence, etiologies, clinical patterns, and genetics/genomics of HI in South Africa. We searched PubMed, Scopus, African Journals Online, AFROLIB, and African Index Medicus to identify the pertinent studies on HI in South Africa, published from inception to April 30, 2021, and the data were summarized narratively. We screened 944 records, of which 27 studies were included in the review. The age at diagnosis is ∼3 years of age and the most common factor associated with acquired HI was middle ear infections. There were numerous reports on medication toxicity, with kanamycin-induced ototoxicity requiring specific attention when considering the high burden of tuberculosis in South Africa. The Waardenburg Syndrome is the most common reported syndromic HI. The Usher Syndrome is the only syndrome with genetic investigations, whereby a founder mutation was identified among black South Africans (MYO7A-c.6377delC). GJB2 and GJB6 genes are not major contributors to nonsyndromic HI among Black South Africans. Furthermore, emerging data using targeted panel sequencing have shown a low resolution rate in Black South Africans in known HI genes. Importantly, mutations in known nonsyndromic HI genes are infrequent in South Africa. Therefore, whole-exome sequencing appears as the most effective way forward to identify variants associated with HI in South Africa. Taken together, this article contributes to the emerging field of planetary health genomics with a focus on HI and offers new insights and lessons learned for future roadmaps on genomics/multiomics and clinical studies of HI around the world.
Collapse
Affiliation(s)
- Noluthando Manyisa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samuel Mawuli Adadey
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abdoulaye Yalcouye
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Neurology, Point G Teaching Hospital, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Billar RJ, Manoubi W, Kant SG, Wijnen RMH, Demirdas S, Schnater JM. Association between pectus excavatum and congenital genetic disorders: A systematic review and practical guide for the treating physician. J Pediatr Surg 2021; 56:2239-2252. [PMID: 34039477 DOI: 10.1016/j.jpedsurg.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Pectus excavatum (PE) could be part of a genetic disorder, which then has implications regarding comorbidity, the surgical correction of PE, and reproductive choices. However, referral of a patient presenting with PE for genetic analysis is often delayed because additional crucial clinical signs may be subtle or even missed in syndromic patients. We reviewed the literature to inventory known genetic disorders associated with PE and create a standardized protocol for clinical evaluation. METHODS A systematic literature search was performed in electronic databases. Genetic disorders were considered associated with PE if studies reported at least five cases with PE. Characteristics of each genetic disorder were extracted from the literature and the OMIM database in order to create a practical guide for the clinician. RESULTS After removal of duplicates from the initial search, 1632 citations remained. Eventually, we included 119 full text articles, representing 20 different genetic disorders. Relevant characteristics and important clinical signs of each genetic disorder were summarized providing a standardized protocol in the form of a scoring list. The most important clinical sign was a positive family history for PE and/or congenital heart defect. CONCLUSIONS Twenty unique genetic disorders have been found associated with PE. We have created a scoring list for the clinician that systematically evaluates crucial clinical signs, thereby facilitating decision making for referral to a clinical geneticist.
Collapse
Affiliation(s)
- Ryan J Billar
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands
| | - Wiem Manoubi
- Erasmus University Medical Centre, department of Neuroscience, Rotterdam, Netherlands
| | - Sarina G Kant
- Erasmus University Medical Centre, department of Clinical Genetics, Rotterdam, Netherlands
| | - René M H Wijnen
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands
| | - Serwet Demirdas
- Erasmus University Medical Centre, department of Clinical Genetics, Rotterdam, Netherlands
| | - Johannes M Schnater
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands.
| |
Collapse
|
11
|
Tekendo-Ngongang C, Kruszka P. Noonan syndrome on the African Continent. Birth Defects Res 2021; 112:718-724. [PMID: 32558383 DOI: 10.1002/bdr2.1675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Noonan syndrome is a common genetic syndrome caused by pathogenic variants in genes in the Ras/MAPK signaling pathway. The medical literature has an abundance of studies on Noonan syndrome, but few are from the African continent. METHODS The medical literature was searched for studies on Noonan syndrome from the African continent and these reports were added to our experience in Africa. Facial analysis was reviewed from two previous reports from our group using a support vector machine (SVM) algorithm and an analysis using the Face2Gene convolutional neural network technology. RESULTS Individuals with Noonan syndrome from reports in African populations have the classic phenotype characteristics including typical minor facial anomalies such as widely spaced eyes (31-100%), short stature (71-100%), and congenital heart disease with pulmonary stenosis found in 24-100% of patients. Similarly, the genotypes are similar with the majority of variants occurring in the gene PTPN11 (72%) and 36% of these variants occurred in the amino acid residue Asn308, which is most commonly found in other populations. The two separate facial analysis algorithms successfully discriminated Africans with NS from unaffected matched individuals with area under the curve (AUC) of the receiver operator characteristic of 0.94 (SVM) and 0.979 for the Face2Gene research methodology. CONCLUSION Few studies characterizing Noonan syndrome in Africans have been conducted, highlighting the need for more genetic and genomic research in African populations. Available clinical data, genotypes, and facial analysis technology data show that individuals of African descent with NS can be efficiently diagnosed using available standards.
Collapse
Affiliation(s)
- Cedrik Tekendo-Ngongang
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
12
|
Combined PTPN11 and MYBPC3 Gene Mutations in an Adult Patient with Noonan Syndrome and Hypertrophic Cardiomyopathy. Genes (Basel) 2020; 11:genes11080947. [PMID: 32824488 PMCID: PMC7463848 DOI: 10.3390/genes11080947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023] Open
Abstract
In this report, an atypical case of Noonan syndrome (NS) associated with sarcomeric hypertrophic cardiomyopathy (HCM) in a 33-year-old patient was described. Genetic testing revealed two different disease-causing mutations: a mutation in the PTPN11 gene, explaining NS, and a mutation in the MYBPC3 gene, known to be associated with HCM. This case exemplifies the challenge in achieving a definite etiological diagnosis in patients with HCM and the need to exclude other diseases mimicking this condition (genocopies or phenocopies). Compound heterozygous mutations are rare but possible in HCM patients. In conclusion, this study highlights the important role of genetic testing as a necessary diagnostic tool for performing a definitive etiological diagnosis of HCM.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Dysmorphic features result from errors in morphogenesis frequently associated with genetic syndromes. Recognizing patterns of dysmorphic features is a critical step in the diagnosis and management of human congenital anomalies and genetic syndromes. This review presents recent developments in genetic syndromes and their related dysmorphology in diverse populations. RECENT FINDINGS Clinical findings in patients with genetic syndromes differ in their heterogeneity across different population groups. Some genetic syndromes have variable features in different ethnicities, in part due to specific background exam characteristics such as flat facial profiles or nasal differences; however, other genetic syndromes are similar across different ethnicities. Facial analysis technology is accurate in diagnosing genetic syndromes in populations around the world and is a powerful adjunct to conventional clinical examination. This accuracy also reinforces the concept that genetic syndromes can and should be diagnosed in any ethnicity. SUMMARY The increasing amount of data from studies on genetic syndromes in diverse populations is significantly improving our knowledge and approach to dysmorphic patients from various ethnic backgrounds. Optimal management of genetic syndromes requires early diagnosis, including in developing countries.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|