1
|
Zhou X, Kedia S, Meng R, Gerstein M. Deep learning analysis of fMRI data for predicting Alzheimer's Disease: A focus on convolutional neural networks and model interpretability. PLoS One 2024; 19:e0312848. [PMID: 39630834 PMCID: PMC11616848 DOI: 10.1371/journal.pone.0312848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
The early detection of Alzheimer's Disease (AD) is thought to be important for effective intervention and management. Here, we explore deep learning methods for the early detection of AD. We consider both genetic risk factors and functional magnetic resonance imaging (fMRI) data. However, we found that the genetic factors do not notably enhance the AD prediction by imaging. Thus, we focus on building an effective imaging-only model. In particular, we utilize data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), employing a 3D Convolutional Neural Network (CNN) to analyze fMRI scans. Despite the limitations posed by our dataset (small size and imbalanced nature), our CNN model demonstrates accuracy levels reaching 92.8% and an ROC of 0.95. Our research highlights the complexities inherent in integrating multimodal medical datasets. It also demonstrates the potential of deep learning in medical imaging for AD prediction.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States of America
| | - Sanchita Kedia
- Department of Computer Science, Yale University, New Haven, CT, United States of America
| | - Ran Meng
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States of America
| | - Mark Gerstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States of America
- Department of Computer Science, Yale University, New Haven, CT, United States of America
- Department of Statistics & Data Science, Yale University, New Haven, CT, United States of America
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT, United States of America
| |
Collapse
|
2
|
Zinati Z, Nazari L, Niazi A. Uncovering waterlogging-responsive genes in cucumber through machine learning and differential gene correlation analysis. BOTANICAL STUDIES 2024; 65:25. [PMID: 39141059 PMCID: PMC11324642 DOI: 10.1186/s40529-024-00433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
As climate change intensifies, the frequency and severity of waterlogging are expected to increase, necessitating a deeper understanding of the cucumber response to this stress. In this study, three public RNA-seq datasets (PRJNA799460, PRJNA844418, and PRJNA678740) comprising 36 samples were analyzed. Various feature selection algorithms including Uncertainty, Relief, SVM (Support Vector Machine), Correlation, and logistic least absolute shrinkage, and selection operator (LASSO) were performed to identify the most significant genes related to the waterlogging stress response. These feature selection techniques, which have different characteristics, were used to reduce the complexity of the data and thereby identify the most significant genes related to the waterlogging stress response. Uncertainty, Relief, SVM, Correlation, and LASSO identified 4, 4, 10, 21, and 13 genes, respectively. Differential gene correlation analysis (DGCA) focusing on the 36 selected genes identified changes in correlation patterns between the selected genes under waterlogged versus control conditions, providing deeper insights into the regulatory networks and interactions among the selected genes. DGCA revealed significant changes in the correlation of 13 genes between control and waterlogging conditions. Finally, we validated 13 genes using the Random Forest (RF) classifier, which achieved 100% accuracy and a 1.0 Area Under the Curve (AUC) score. The SHapley Additive exPlanations (SHAP) values clearly showed the significant impact of LOC101209599, LOC101217277, and LOC101216320 on the model's predictive power. In addition, we employed the Boruta as a wrapper feature selection method to further validate our gene selection strategy. Eight of the 13 genes were common across the four feature weighting algorithms, LASSO, DGCA, and Boruta, underscoring the robustness and reliability of our gene selection strategy. Notably, the genes LOC101209599, LOC101217277, and LOC101216320 were among genes identified by multiple feature selection methods from different categories (filtering, wrapper, and embedded). Pathways associated with these specific genes play a pivotal role in regulating stress tolerance, root development, nutrient absorption, sugar metabolism, gene expression, protein degradation, and calcium signaling. These intricate regulatory mechanisms are crucial for cucumbers to adapt effectively to waterlogging conditions. These findings provide valuable insights for uncovering targets in breeding new cucumber varieties with enhanced stress tolerance.
Collapse
Affiliation(s)
- Zahra Zinati
- Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, Iran
| | - Leyla Nazari
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
3
|
Cabrera-León Y, Báez PG, Fernández-López P, Suárez-Araujo CP. Neural Computation-Based Methods for the Early Diagnosis and Prognosis of Alzheimer's Disease Not Using Neuroimaging Biomarkers: A Systematic Review. J Alzheimers Dis 2024; 98:793-823. [PMID: 38489188 PMCID: PMC11091566 DOI: 10.3233/jad-231271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/17/2024]
Abstract
Background The growing number of older adults in recent decades has led to more prevalent geriatric diseases, such as strokes and dementia. Therefore, Alzheimer's disease (AD), as the most common type of dementia, has become more frequent too. Background Objective: The goals of this work are to present state-of-the-art studies focused on the automatic diagnosis and prognosis of AD and its early stages, mainly mild cognitive impairment, and predicting how the research on this topic may change in the future. Methods Articles found in the existing literature needed to fulfill several selection criteria. Among others, their classification methods were based on artificial neural networks (ANNs), including deep learning, and data not from brain signals or neuroimaging techniques were used. Considering our selection criteria, 42 articles published in the last decade were finally selected. Results The most medically significant results are shown. Similar quantities of articles based on shallow and deep ANNs were found. Recurrent neural networks and transformers were common with speech or in longitudinal studies. Convolutional neural networks (CNNs) were popular with gait or combined with others in modular approaches. Above one third of the cross-sectional studies utilized multimodal data. Non-public datasets were frequently used in cross-sectional studies, whereas the opposite in longitudinal ones. The most popular databases were indicated, which will be helpful for future researchers in this field. Conclusions The introduction of CNNs in the last decade and their superb results with neuroimaging data did not negatively affect the usage of other modalities. In fact, new ones emerged.
Collapse
Affiliation(s)
- Ylermi Cabrera-León
- Instituto Universitario de Cibernética, Empresa y Sociedad, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Patricio García Báez
- Departamento de Ingeniería Informática y de Sistemas, Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Pablo Fernández-López
- Instituto Universitario de Cibernética, Empresa y Sociedad, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Carmen Paz Suárez-Araujo
- Instituto Universitario de Cibernética, Empresa y Sociedad, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
4
|
Alatrany AS, Khan W, Hussain AJ, Mustafina J, Al-Jumeily D. Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2700-2711. [PMID: 37018274 DOI: 10.1109/tcbb.2022.3233869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.
Collapse
|
5
|
Alatrany AS, Khan W, Hussain A, Al-Jumeily D. Wide and deep learning based approaches for classification of Alzheimer's disease using genome-wide association studies. PLoS One 2023; 18:e0283712. [PMID: 37126509 PMCID: PMC10150974 DOI: 10.1371/journal.pone.0283712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
The increasing incidence of Alzheimer's disease (AD) has been leading towards a significant growth in socioeconomic challenges. A reliable prediction of AD might be useful to mitigate or at-least slow down its progression for which, identification of the factors affecting the AD and its accurate diagnoses, are vital. In this study, we use Genome-Wide Association Studies (GWAS) dataset which comprises significant genetic markers of complex diseases. The original dataset contains large number of attributes (620901) for which we propose a hybrid feature selection approach based on association test, principal component analysis, and the Boruta algorithm, to identify the most promising predictors of AD. The selected features are then forwarded to a wide and deep neural network models to classify the AD cases and healthy controls. The experimental outcomes indicate that our approach outperformed the existing methods when evaluated on standard dataset, producing an accuracy and f1-score of 99%. The outcomes from this study are impactful particularly, the identified features comprising AD-associated genes and a reliable classification model that might be useful for other chronic diseases.
Collapse
Affiliation(s)
- Abbas Saad Alatrany
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
- University of Information Technology and Communications, Baghdad, Iraq
- Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Wasiq Khan
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| | - Abir Hussain
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Electrical Engineering, University of Sharjah, Sharjah, UAE
| | - Dhiya Al-Jumeily
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| | | |
Collapse
|
6
|
Pan-cancer identification of the relationship of metabolism-related differentially expressed transcription regulation with non-differentially expressed target genes via a gated recurrent unit network. Comput Biol Med 2022; 148:105883. [PMID: 35878490 DOI: 10.1016/j.compbiomed.2022.105883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022]
Abstract
The transcriptome describes the expression of all genes in a sample. Most studies have investigated the differential patterns or discrimination powers of transcript expression levels. In this study, we hypothesized that the quantitative correlations between the expression levels of transcription factors (TFs) and their regulated target genes (mRNAs) serve as a novel view of healthy status, and a disease sample exhibits a differential landscape (mqTrans) of transcription regulations compared with healthy status. We formulated quantitative transcription regulation relationships of metabolism-related genes as a multi-input multi-output regression model via a gated recurrent unit (GRU) network. The GRU model was trained using healthy blood transcriptomes and the expression levels of mRNAs were predicted by those of the TFs. The mqTrans feature of a gene was defined as the difference between its predicted and actual expression levels. A pan-cancer investigation of the differentially expressed mqTrans features was conducted between the early- and late-stage cancers in 26 cancer types of The Cancer Genome Atlas database. This study focused on the differentially expressed mqTrans features, that did not show differential expression in the actual expression levels. These genes could not be detected by conventional differential analysis. Such dark biomarkers are worthy of further wet-lab investigation. The experimental data also showed that the proposed mqTrans investigation improved the classification between early- and late-stage samples for some cancer types. Thus, the mqTrans features serve as a complementary view to transcriptomes, an OMIC type with mature high-throughput production technologies, and abundant public resources.
Collapse
|
7
|
Wang M, Song WM, Ming C, Wang Q, Zhou X, Xu P, Krek A, Yoon Y, Ho L, Orr ME, Yuan GC, Zhang B. Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease: review, recommendation, implementation and application. Mol Neurodegener 2022; 17:17. [PMID: 35236372 PMCID: PMC8889402 DOI: 10.1186/s13024-022-00517-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. Extensive clinical and genomic studies have revealed biomarkers, risk factors, pathways, and targets of AD in the past decade. However, the exact molecular basis of AD development and progression remains elusive. The emerging single-cell sequencing technology can potentially provide cell-level insights into the disease. Here we systematically review the state-of-the-art bioinformatics approaches to analyze single-cell sequencing data and their applications to AD in 14 major directions, including 1) quality control and normalization, 2) dimension reduction and feature extraction, 3) cell clustering analysis, 4) cell type inference and annotation, 5) differential expression, 6) trajectory inference, 7) copy number variation analysis, 8) integration of single-cell multi-omics, 9) epigenomic analysis, 10) gene network inference, 11) prioritization of cell subpopulations, 12) integrative analysis of human and mouse sc-RNA-seq data, 13) spatial transcriptomics, and 14) comparison of single cell AD mouse model studies and single cell human AD studies. We also address challenges in using human postmortem and mouse tissues and outline future developments in single cell sequencing data analysis. Importantly, we have implemented our recommended workflow for each major analytic direction and applied them to a large single nucleus RNA-sequencing (snRNA-seq) dataset in AD. Key analytic results are reported while the scripts and the data are shared with the research community through GitHub. In summary, this comprehensive review provides insights into various approaches to analyze single cell sequencing data and offers specific guidelines for study design and a variety of analytic directions. The review and the accompanied software tools will serve as a valuable resource for studying cellular and molecular mechanisms of AD, other diseases, or biological systems at the single cell level.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Yonejung Yoon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Miranda E. Orr
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| |
Collapse
|
8
|
A Mixed Statistical and Machine Learning Approach for the Analysis of Multimodal Trail Making Test Data. MATHEMATICS 2021. [DOI: 10.3390/math9243159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eye-tracking can offer a novel clinical practice and a non-invasive tool to detect neuropathological syndromes. In this paper, we show some analysis on data obtained from the visual sequential search test. Indeed, such a test can be used to evaluate the capacity of looking at objects in a specific order, and its successful execution requires the optimization of the perceptual resources of foveal and extrafoveal vision. The main objective of this work is to detect if some patterns can be found within the data, to discern among people with chronic pain, extrapyramidal patients and healthy controls. We employed statistical tests to evaluate differences among groups, considering three novel indicators: blinking rate, average blinking duration and maximum pupil size variation. Additionally, to divide the three patient groups based on scan-path images—which appear very noisy and all similar to each other—we applied deep learning techniques to embed them into a larger transformed space. We then applied a clustering approach to correctly detect and classify the three cohorts. Preliminary experiments show promising results.
Collapse
|
9
|
Abd El Hamid MM, Shaheen M, Mabrouk MS, Omar YMK. MACHINE LEARNING FOR DETECTING EPISTASIS INTERACTIONS AND ITS RELEVANCE TO PERSONALIZED MEDICINE IN ALZHEIMER’S DISEASE: SYSTEMATIC REVIEW. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2021; 33. [DOI: 10.4015/s1016237221500472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alzheimer’s disease (AD) is a progressive disease that attacks the brain’s neurons and causes problems in memory, thinking, and reasoning skills. Personalized Medicine (PM) needs a better and more accurate understanding of the relationship between human genetic data and complex diseases like AD. The goal of PM is to tailor the treatment of a case person to his individual properties. PM requires the prediction of a person’s disease from genetic data, and its success depends on the accurate detection of genetic biomarkers. Single Nucleotide polymorphisms (SNPs) are considered the most prevalent type of variation in the human genome. Epistasis has a biological relevance to complex diseases and has an important impact on PM. Detection of the most significant epistasis interactions associated with complex diseases is a big challenge. This paper reviews several machine learning techniques and algorithms to detect the most significant epistasis interactions in Alzheimer’s disease. We discuss many machine learning techniques that can be used for detecting SNPs’ combinations like Random Forests, Support Vector Machines, Multifactor Dimensionality Reduction, Neural Network, and Deep Learning. This review paper highlights the pros and cons of these techniques and explains how they can be applied in an efficient framework to apply knowledge discovery and data mining in AD disease.
Collapse
Affiliation(s)
- Marwa M. Abd El Hamid
- The Higher Institute of Computer Science & Information Technology, El-Shorouk Academy, El Shorouk City, Cairo, Egypt
- College of Computing and Information Technology AASTMT, Egypt
| | - Mohamed Shaheen
- College of Computing and Information Technology AASTMT, Egypt
| | - Mai S. Mabrouk
- Biomedical Engineering Department Misr University for Science and Technology 6th of October City, Egypt
| | | |
Collapse
|
10
|
Tan MS, Cheah PL, Chin AV, Looi LM, Chang SW. A review on omics-based biomarkers discovery for Alzheimer's disease from the bioinformatics perspectives: Statistical approach vs machine learning approach. Comput Biol Med 2021; 139:104947. [PMID: 34678481 DOI: 10.1016/j.compbiomed.2021.104947] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease that affects cognition and is the most common cause of dementia in the elderly. As the number of elderly individuals increases globally, the incidence and prevalence of AD are expected to increase. At present, AD is diagnosed clinically, according to accepted criteria. The essential elements in the diagnosis of AD include a patients history, a physical examination and neuropsychological testing, in addition to appropriate investigations such as neuroimaging. The omics-based approach is an emerging field of study that may not only aid in the diagnosis of AD but also facilitate the exploration of factors that influence the development of the disease. Omics techniques, including genomics, transcriptomics, proteomics and metabolomics, may reveal the pathways that lead to neuronal death and identify biomolecular markers associated with AD. This will further facilitate an understanding of AD neuropathology. In this review, omics-based approaches that were implemented in studies on AD were assessed from a bioinformatics perspective. Current state-of-the-art statistical and machine learning approaches used in the single omics analysis of AD were compared based on correlations of variants, differential expression, functional analysis and network analysis. This was followed by a review of the approaches used in the integration and analysis of multi-omics of AD. The strengths and limitations of multi-omics analysis methods were explored and the issues and challenges associated with omics studies of AD were highlighted. Lastly, future studies in this area of research were justified.
Collapse
Affiliation(s)
- Mei Sze Tan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Phaik-Leng Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ai-Vyrn Chin
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lai-Meng Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Lin E, Lin CH, Lane HY. Deep Learning with Neuroimaging and Genomics in Alzheimer's Disease. Int J Mol Sci 2021; 22:7911. [PMID: 34360676 PMCID: PMC8347529 DOI: 10.3390/ijms22157911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer's disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous deep learning models are being exploited to distinguish AD from normal controls and/or to distinguish AD from mild cognitive impairment in recent research studies. In this review, we focus on the latest developments for AD prediction using deep learning techniques in cooperation with the principles of neuroimaging and genomics. First, we narrate various investigations that make use of deep learning algorithms to establish AD prediction using genomics or neuroimaging data. Particularly, we delineate relevant integrative neuroimaging genomics investigations that leverage deep learning methods to forecast AD on the basis of incorporating both neuroimaging and genomics data. Moreover, we outline the limitations as regards to the recent AD investigations of deep learning with neuroimaging and genomics. Finally, we depict a discussion of challenges and directions for future research. The main novelty of this work is that we summarize the major points of these investigations and scrutinize the similarities and differences among these investigations.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 40447, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
12
|
Multilayer modelling of the human transcriptome and biological mechanisms of complex diseases and traits. NPJ Syst Biol Appl 2021; 7:24. [PMID: 34045472 PMCID: PMC8160250 DOI: 10.1038/s41540-021-00186-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 01/03/2023] Open
Abstract
Here, we performed a comprehensive intra-tissue and inter-tissue multilayer network analysis of the human transcriptome. We generated an atlas of communities in gene co-expression networks in 49 tissues (GTEx v8), evaluated their tissue specificity, and investigated their methodological implications. UMAP embeddings of gene expression from the communities (representing nearly 18% of all genes) robustly identified biologically-meaningful clusters. Notably, new gene expression data can be embedded into our algorithmically derived models to accelerate discoveries in high-dimensional molecular datasets and downstream diagnostic or prognostic applications. We demonstrate the generalisability of our approach through systematic testing in external genomic and transcriptomic datasets. Methodologically, prioritisation of the communities in a transcriptome-wide association study of the biomarker C-reactive protein (CRP) in 361,194 individuals in the UK Biobank identified genetically-determined expression changes associated with CRP and led to considerably improved performance. Furthermore, a deep learning framework applied to the communities in nearly 11,000 tumors profiled by The Cancer Genome Atlas across 33 different cancer types learned biologically-meaningful latent spaces, representing metastasis (p < 2.2 × 10−16) and stemness (p < 2.2 × 10−16). Our study provides a rich genomic resource to catalyse research into inter-tissue regulatory mechanisms, and their downstream consequences on human disease.
Collapse
|
13
|
Balea-Fernandez FJ, Martinez-Vega B, Ortega S, Fabelo H, Leon R, Callico GM, Bibao-Sieyro C. Analysis of Risk Factors in Dementia Through Machine Learning. J Alzheimers Dis 2021; 79:845-861. [DOI: 10.3233/jad-200955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Sociodemographic data indicate the progressive increase in life expectancy and the prevalence of Alzheimer’s disease (AD). AD is raised as one of the greatest public health problems. Its etiology is twofold: on the one hand, non-modifiable factors and on the other, modifiable. Objective: This study aims to develop a processing framework based on machine learning (ML) and optimization algorithms to study sociodemographic, clinical, and analytical variables, selecting the best combination among them for an accurate discrimination between controls and subjects with major neurocognitive disorder (MNCD). Methods: This research is based on an observational-analytical design. Two research groups were established: MNCD group (n = 46) and control group (n = 38). ML and optimization algorithms were employed to automatically diagnose MNCD. Results: Twelve out of 37 variables were identified in the validation set as the most relevant for MNCD diagnosis. Sensitivity of 100%and specificity of 71%were achieved using a Random Forest classifier. Conclusion: ML is a potential tool for automatic prediction of MNCD which can be applied to relatively small preclinical and clinical data sets. These results can be interpreted to support the influence of the environment on the development of AD.
Collapse
Affiliation(s)
| | - Beatriz Martinez-Vega
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Samuel Ortega
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Himar Fabelo
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Raquel Leon
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gustavo M. Callico
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cristina Bibao-Sieyro
- Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
14
|
Mishra R, Li B. The Application of Artificial Intelligence in the Genetic Study of Alzheimer's Disease. Aging Dis 2020; 11:1567-1584. [PMID: 33269107 PMCID: PMC7673858 DOI: 10.14336/ad.2020.0312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which genetic factors contribute approximately 70% of etiological effects. Studies have found many significant genetic and environmental factors, but the pathogenesis of AD is still unclear. With the application of microarray and next-generation sequencing technologies, research using genetic data has shown explosive growth. In addition to conventional statistical methods for the processing of these data, artificial intelligence (AI) technology shows obvious advantages in analyzing such complex projects. This article first briefly reviews the application of AI technology in medicine and the current status of genetic research in AD. Then, a comprehensive review is focused on the application of AI in the genetic research of AD, including the diagnosis and prognosis of AD based on genetic data, the analysis of genetic variation, gene expression profile, gene-gene interaction in AD, and genetic analysis of AD based on a knowledge base. Although many studies have yielded some meaningful results, they are still in a preliminary stage. The main shortcomings include the limitations of the databases, failing to take advantage of AI to conduct a systematic biology analysis of multilevel databases, and lack of a theoretical framework for the analysis results. Finally, we outlook the direction of future development. It is crucial to develop high quality, comprehensive, large sample size, data sharing resources; a multi-level system biology AI analysis strategy is one of the development directions, and computational creativity may play a role in theory model building, verification, and designing new intervention protocols for AD.
Collapse
Affiliation(s)
- Rohan Mishra
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Georgetown University Medical Center, Washington D.C. 20057, USA
| |
Collapse
|
15
|
Myszczynska MA, Ojamies PN, Lacoste AMB, Neil D, Saffari A, Mead R, Hautbergue GM, Holbrook JD, Ferraiuolo L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 2020; 16:440-456. [DOI: 10.1038/s41582-020-0377-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
|