1
|
Singh HC, Tiwari V, Meena B, Tiwari A, Rana TS. Exploration of Genetic Variation and Population Structure in Bergenia ciliata for its Conservation Implications. Biochem Genet 2024:10.1007/s10528-024-10908-0. [PMID: 39223334 DOI: 10.1007/s10528-024-10908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Bergenia ciliata (Haw.) Sternb. is a perennial medicinal herb distributed in Indian Himalayan Region (IHR). A total of eight populations of B. ciliata were collected from diverse locales of IHR, and 17 EST-SSR markers were used in this study. The present study revealed moderate genetic diversity at the locus level with the mean number of alleles (Na = 7.823), mean number effective of alleles (Ne = 3.375), mean expected heterozygosity (He = 0.570), and mean Shannon's diversity index (I = 1.264). The MSR (He = 0.543, I = 1.067) and DRJ populations (He = 0.309, I = 0.519) revealed the highest and lowest genetic diversity at the population level, respectively. AMOVA analysis showed that 81.76% of genetic variation was within populations, 10.55% was among populations, and 7.69% was among the regions. In addition, a moderate to high level of differentiation was found among the populations (FST = 0.182), which could be indicative of low to moderate gene flow (Nm = 0.669) in the B. ciliata populations. UPGMA and PCoA analysis revealed that eight populations could be differentiated into two groups, while the structure analysis of the 96 individuals differentiated into three groups. The Mantel test showed a positive relationship between genetic and geographical distance. The findings of this study will provide the development of conservation and germplasm management strategies for this valuable medicinal species.
Collapse
Affiliation(s)
- Harish Chandra Singh
- Molecular Systematics Laboratory, Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001, India
- School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Vandana Tiwari
- Molecular Systematics Laboratory, Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Baleshwar Meena
- CSIR-Traditional Knowledge Digital Library, Ground Floor, 14, Satsang Vihar Marg, New Delhi, 110067, India
| | - Avinash Tiwari
- School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Tikam Singh Rana
- Molecular Systematics Laboratory, Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001, India.
- CSIR-Human Resource Development Centre, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
vonHoldt BM, Stahler DR, Brzeski KE, Musiani M, Peterson R, Phillips M, Stephenson J, Laudon K, Meredith E, Vucetich JA, Leonard JA, Wayne RK. Demographic history shapes North American gray wolf genomic diversity and informs species' conservation. Mol Ecol 2024; 33:e17231. [PMID: 38054561 DOI: 10.1111/mec.17231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between Ne ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2-9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, Wyoming, USA
| | - Kristin E Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Marco Musiani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Bologna, Italy
| | - Rolf Peterson
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | | | | | - Kent Laudon
- California Department of Fish and Wildlife, Northern Region, Redding, California, USA
| | - Erin Meredith
- California Department of Fish and Wildlife, Wildlife Forensic Laboratory, Sacramento, California, USA
| | - John A Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Santos WB, Pereira CB, Maiorano AM, Arce CDS, Baldassini WA, Pereira GL, Chardulo LAL, Neto ORM, Oliveira HN, Curi RA. Genomic inbreeding estimation, runs of homozygosity, and heterozygosity-enriched regions uncover signals of selection in the Quarter Horse racing line. J Anim Breed Genet 2023; 140:583-595. [PMID: 37282810 DOI: 10.1111/jbg.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/30/2023] [Accepted: 05/28/2023] [Indexed: 06/08/2023]
Abstract
With the advent of genomics, significant progress has been made in the genetic improvement of livestock species, particularly through increased accuracy in predicting breeding values for selecting superior animals and the possibility of performing a high-resolution genetic scan throughout the genome of an individual. The main objectives of this study were to estimate the individual genomic inbreeding coefficient based on runs of homozygosity (FROH ), to identify and characterize runs of homozygosity and heterozygosity (ROH and ROHet, respectively; length and distribution) throughout the genome, and to map selection signatures in relevant chromosomal regions in the Quarter Horse racing line. A total of 336 animals registered with the Brazilian Association of Quarter Horse Breeders (ABQM) were genotyped. One hundred and twelve animals were genotyped using the Equine SNP50 BeadChip (Illumina, USA), with 54,602 single nucleotide polymorphisms (SNPs; 54K). The remaining 224 samples were genotyped using the Equine SNP70 BeadChip (Illumina, USA) with 65,157 SNPs (65K). To ensure data quality, we excluded animals with a call rate below 0.9. We also excluded SNPs located on non-autosomal chromosomes, as well as those with a call rate below 0.9 or a p-value below 1 × 10-5 for Hardy-Weinberg equilibrium. The results indicate moderate to high genomic inbreeding, with 46,594 ROH and 16,101 ROHet detected. In total, 30 and 14 candidate genes overlap with ROH and ROHet regions, respectively. The ROH islands showed genes linked to crucial biological processes, such as cell differentiation (CTBP1, WNT5B, and TMEM120B), regulation of glucose metabolic process (MAEA and NKX1-1), heme transport (PGRMC2), and negative regulation of calcium ion import (VDAC1). In ROHet, the islands showed genes related to respiratory capacity (OR7D19, OR7D4G, OR7D4E, and OR7D4J) and muscle repair (EGFR and BCL9). These findings could aid in selecting animals with greater regenerative capacity and developing treatments for muscle disorders in the QH breed. This study serves as a foundation for future research on equine breeds. It can contribute to developing reproductive strategies in animal breeding programs to improve and preserve the Quarter Horse breed.
Collapse
Affiliation(s)
- Wellington B Santos
- Department of Animal Science, São Paulo State University, Jaboticabal, Brazil
| | - Camila B Pereira
- Department of Breeding and Animal Nutrition, São Paulo State University, Botucatu, Brazil
| | - Amanda M Maiorano
- Department of Animal Science, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Welder A Baldassini
- Department of Breeding and Animal Nutrition, São Paulo State University, Botucatu, Brazil
| | - Guilherme L Pereira
- Department of Breeding and Animal Nutrition, São Paulo State University, Botucatu, Brazil
| | - Luis Artur L Chardulo
- Department of Breeding and Animal Nutrition, São Paulo State University, Botucatu, Brazil
| | - Otávio R M Neto
- Department of Breeding and Animal Nutrition, São Paulo State University, Botucatu, Brazil
| | - Henrique N Oliveira
- Department of Animal Science, São Paulo State University, Jaboticabal, Brazil
| | - Rogério A Curi
- Department of Breeding and Animal Nutrition, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
4
|
Zhang L, Zhang S, Zhan F, Song M, Shang P, Zhu F, Li J, Yang F, Li X, Qiao R, Han X, Li X, Liu G, Wang K. Population Genetic Analysis of Six Chinese Indigenous Pig Meta-Populations Based on Geographically Isolated Regions. Animals (Basel) 2023; 13:ani13081396. [PMID: 37106959 PMCID: PMC10135051 DOI: 10.3390/ani13081396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The diversification of indigenous pig breeds in China has resulted from multiple climate, topographic, and human cultural influences. The numerous indigenous pig breeds can be geographically divided into six meta-populations; however, their genetic relationships, contributions to genetic diversity, and genetic signatures remain unclear. Whole-genome SNP data for 613 indigenous pigs from the six Chinese meta-populations were obtained and analyzed. Population genetic analyses confirmed significant genetic differentiation and a moderate mixture among the Chinese indigenous pig meta-populations. The North China (NC) meta-population had the largest contribution to genetic and allelic diversity. Evidence from selective sweep signatures revealed that genes related to fat deposition and heat stress response (EPAS1, NFE2L2, VPS13A, SPRY1, PLA2G4A, and UBE3D) were potentially involved in adaptations to cold and heat. These findings from population genetic analyses provide a better understanding of indigenous pig characteristics in different environments and a theoretical basis for future work on the conservation and breeding of Chinese indigenous pigs.
Collapse
Affiliation(s)
- Lige Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Songyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Fangxian Zhu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jiang Li
- National Supercomputing Center in Zhengzhou, Zhengzhou 450001, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100193, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Gao C, Du W, Tian K, Wang K, Wang C, Sun G, Kang X, Li W. Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds. Animals (Basel) 2023; 13:ani13040599. [PMID: 36830386 PMCID: PMC9951684 DOI: 10.3390/ani13040599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
To achieve sustainable development of the poultry industry, the effective conservation of genetic resources has become increasingly important. In the present study, we systematically elucidated the population structure, conservation priority, and runs of homozygosity (ROH) patterns of Chinese native chicken breeds. We used a high-density genotyping dataset of 157 native chickens from eight breeds. The population structure showed different degrees of population stratification among the breeds. Chahua chicken was the most differentiated breed from the other breeds (Nei = 0.0813), and the Wannan three-yellow chicken (WanTy) showed the lowest degree of differentiation (Nei = 0.0438). On the basis of contribution priority, Xiaoshan chicken had the highest contribution to the total gene diversity (1.41%) and the maximum gene diversity of the synthetic population (31.1%). WanTy chicken showed the highest contribution to the total allelic diversity (1.31%) and the maximum allelic diversity of the syntenic population (17.0%). A total of 5242 ROH fragments and 5 ROH island regions were detected. The longest ROH fragment was 41.51 Mb. A comparison of the overlapping genomic regions between the ROH islands and QTLs in the quantitative trait loci (QTL) database showed that the annotated candidate genes were involved in crucial economic traits such as immunity, carcass weight, drumstick and leg muscle development, egg quality and egg production, abdominal fat precipitation, body weight, and feed intake. In conclusion, our findings revealed that Chahua, Xiaoshan, and WanTy should be the priority conservation breeds, which will help optimize the conservation and breeding programs for Chinese indigenous chicken breeds.
Collapse
Affiliation(s)
- Chaoqun Gao
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Wenping Du
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kaiyuan Tian
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kejun Wang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunxiu Wang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guirong Sun
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (X.K.); (W.L.)
| | - Wenting Li
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (X.K.); (W.L.)
| |
Collapse
|
6
|
Kreger J, Brown D, Komarova NL, Wodarz D, Pritchard J. The role of migration in mutant dynamics in fragmented populations. J Evol Biol 2023; 36:444-460. [PMID: 36514852 PMCID: PMC10108075 DOI: 10.1111/jeb.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022]
Abstract
Mutant dynamics in fragmented populations have been studied extensively in evolutionary biology. Yet, open questions remain, both experimentally and theoretically. Some of the fundamental properties predicted by models still need to be addressed experimentally. We contribute to this by using a combination of experiments and theory to investigate the role of migration in mutant distribution. In the case of neutral mutants, while the mean frequency of mutants is not influenced by migration, the probability distribution is. To address this empirically, we performed in vitro experiments, where mixtures of GFP-labelled ("mutant") and non-labelled ("wid-type") murine cells were grown in wells (demes), and migration was mimicked via cell transfer from well to well. In the presence of migration, we observed a change in the skewedness of the distribution of the mutant frequencies in the wells, consistent with previous and our own model predictions. In the presence of de novo mutant production, we used modelling to investigate the level at which disadvantageous mutants are predicted to exist, which has implications for the adaptive potential of the population in case of an environmental change. In panmictic populations, disadvantageous mutants can persist around a steady state, determined by the rate of mutant production and the selective disadvantage (selection-mutation balance). In a fragmented system that consists of demes connected by migration, a steady-state persistence of disadvantageous mutants is also observed, which, however, is fundamentally different from the mutation-selection balance and characterized by higher mutant levels. The increase in mutant frequencies above the selection-mutation balance can be maintained in small ( N < N c ) demes as long as the migration rate is sufficiently small. The migration rate above which the mutants approach the selection-mutation balance decays exponentially with N / N c . The observed increase in the mutant numbers is not explained by the change in the effective population size. Implications for evolutionary processes in diseases are discussed, where the pre-existence of disadvantageous drug-resistant mutant cells or pathogens drives the response of the disease to treatments.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA.,Department of Mathematics, University of California Irvine, Irvine, California, USA
| | - Donovan Brown
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.,The Huck Institute for the Life Sciences, University Park, Pennsylvania, USA
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, California, USA
| | - Dominik Wodarz
- Department of Mathematics, University of California Irvine, Irvine, California, USA.,Department of Population Health and Disease Prevention Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, California, USA
| | - Justin Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.,The Huck Institute for the Life Sciences, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Wang H, Wang Q, Tan X, Wang J, Zhang J, Zheng M, Zhao G, Wen J. Estimation of genetic variability and identification of regions under selection based on runs of homozygosity in Beijing-You Chickens. Poult Sci 2022; 102:102342. [PMID: 36470032 PMCID: PMC9719870 DOI: 10.1016/j.psj.2022.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The genetic composition of populations is the result of a long-term process of selection and adaptation to specific environments and ecosystems. Runs of homozygosity (ROHs) are homozygous segments of the genome where the 2 haplotypes inherited from the parents are identical. The detection of ROH can be used to describe the genetic variability and quantify the level of inbreeding in an individual. Here, we investigated the occurrence and distribution of ROHs in 40 Beijing-You Chickens from the random breeding population (BJY_C) and 40 Beijing-You Chickens from the intramuscular fat (IMF) selection population (BJY_S). Principal component analysis (PCA) and maximum likelihood (ML) analyses showed that BJY_C was completely separated from the BJY_S. The nucleotide diversity of BJY_C was higher than that of BJY_S, and the decay rate of LD of BJY_C was faster. The ROHs were identified for a total of 7,101 in BJY_C and 9,273 in BJY_S, respectively. The ROH-based inbreeding estimate (FROH) of BJY_C was 0.079, which was significantly lower than that of BJY_S (FROH = 0.114). The results were the same as the estimates of the inbreeding coefficients calculated based on homozygosity (FHOM), the correlation between uniting gametes (FUNI), and the genomic relationship matrix (FGRM). Additionally, the distribution and number of ROH islands in chromosomes of BJY_C and BJY_S were significantly different. The ROH islands of BJY_S that included genes associated with lipid metabolism and fat deposition, such as CIDEA and S1PR1, were absent in BJY_C. However, GPR161 was detected in both populations, which is a candidate gene for the formation of the unique five-finger trait in Beijing-You chickens. Our findings contributed to the understanding of the genetic diversity of random or artificially selected populations, and allowed the accurate monitoring of population inbreeding using genomic information, as well as the detection of genomic regions that affect traits under selection.
Collapse
Affiliation(s)
- Hailong Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Qiao Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Xiaodong Tan
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jie Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jin Zhang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Maiqing Zheng
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Guiping Zhao
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jie Wen
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| |
Collapse
|
8
|
Wang X, Li G, Jiang Y, Tang J, Fan Y, Ren J. Genomic insights into the conservation and population genetics of two Chinese native goat breeds. J Anim Sci 2022; 100:skac274. [PMID: 35998083 PMCID: PMC9585554 DOI: 10.1093/jas/skac274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/20/2022] [Indexed: 11/14/2022] Open
Abstract
Chinese goats are an important group of goats worldwide. However, there are few studies on the conservation priority, genetic relationship, and potential gene flow between Chinese and global goat breeds. Here, we genotyped 239 goats from conservation populations of the Chinese Guangfeng and Ganxi breeds using the GoatSNP50 BeadChip. The conservation priority, population structure, selection signatures and introgression of these goats were analyzed in the context of 36 global goat breeds. First, we showed that Guangfeng and Ganxi goats had the largest effective population sizes across the global breeds 13 generations ago. Nevertheless, Ganxi goats have recently experienced a high degree of inbreeding, resulting in their conservation priority based on total gene and allelic diversities being lower than that of most other Chinese breeds (including Guangfeng goats). Population structure and admixture analyses showed that an average of 18% of Guangfeng genomic components were introgressed from Boer goats approximately 18-yr ago. Next, we reconstructed the subfamily structure of the core populations of Guangfeng and Ganxi goats, and proposed reasonable conservation strategies for inbreeding management. Moreover, a list of candidate genes under selection for fertility, immunity, growth, and meat quality were detected in Guangfeng and Ganxi goats. Finally, we identified some genes related to body development and reproduction, which were introgressed from Boer goats and may be beneficial for improving performance and productivity of Guangfeng goats. In conclusion, this study not only provides new insights into the conservation and utilization of Guangfeng and Ganxi goats but also enriches our understanding of artificial introgression from exotic goats into Chinese local goats.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Restoux G, Rognon X, Vieaud A, Guemene D, Petitjean F, Rouger R, Brard-Fudulea S, Lubac-Paye S, Chiron G, Tixier-Boichard M. Managing genetic diversity in breeding programs of small populations: the case of French local chicken breeds. Genet Sel Evol 2022; 54:56. [PMID: 35922745 PMCID: PMC9347113 DOI: 10.1186/s12711-022-00746-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background On-going climate change will drastically modify agriculture in the future, with a need for more sustainable systems, in particular regarding animal production. In this context, genetic diversity is a key factor for adaptation to new conditions: local breeds likely harbor unique adaptive features and represent a key component of diversity to reach resilience. However, local breeds often suffer from small population sizes, which puts these valuable resources at risk of extinction. In chickens, population management programs were initiated a few decades ago in France, relying on a particular niche market that aims at promoting and protecting local breeds. We conducted a unique comprehensive study of 22 French local breeds, along with four commercial lines, to evaluate their genetic conservation status and the efficiency of the population management programs. Results Using a 57K single nucleotide polymorphism (SNP) chip, we demonstrated that both the between- and within-breed genetic diversity levels are high in the French local chicken populations. Diversity is mainly structured according to the breeds’ selection and history. Nevertheless, we observed a prominent sub-structuring of breeds according to farmers’ practices in terms of exchange, leading to more or less isolated flocks. By analysing demographic parameters and molecular information, we showed that consistent management programs are efficient in conserving genetic diversity, since breeds that integrated such programs earlier had older inbreeding. Conclusions Management programs of French local chicken breeds have maintained their genetic diversity at a good level. We recommend that future programs sample as many individuals as possible, with emphasis on both males and females from the start, and focus on a quick and strong increase of population size while conserving as many families as possible. We also stress the usefulness of molecular tools to monitor small populations for which pedigrees are not always available. Finally, the breed appears to be an appropriate operational unit for the conservation of genetic diversity, even for local breeds, for which varieties, if present, could also be taken into account. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00746-2.
Collapse
Affiliation(s)
- Gwendal Restoux
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - Xavier Rognon
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Agathe Vieaud
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Daniel Guemene
- Centre INRAE Val de Loire, UMR-BOA, SYSAAF, 37380, Nouzilly, France.,Centre INRAE Val de Loire, UMR-BOA (UR83), 37380, Nouzilly, France
| | - Florence Petitjean
- Centre de Sélection de Béchanne, Hameau de Béchanne, 01370, Saint-Etienne-Du-Bois, France
| | - Romuald Rouger
- Centre INRAE Val de Loire, UMR-BOA, SYSAAF, 37380, Nouzilly, France
| | | | | | | | | |
Collapse
|
10
|
Jørgensen DB, Ørsted M, Kristensen TN. Sustained positive consequences of genetic rescue of fitness and behavioural traits in inbred populations of Drosophila melanogaster. J Evol Biol 2022; 35:868-878. [PMID: 35532930 PMCID: PMC9325394 DOI: 10.1111/jeb.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
One solution to alleviate the detrimental genetic effects associated with reductions in population size and fragmentation is to introduce immigrants from other populations. While the effects of this genetic rescue on fitness traits are fairly well known, it is less clear to what extent inbreeding depression and subsequent genetic rescue affect behavioural traits. In this study, replicated crosses between inbred lines of Drosophila melanogaster were performed in order to investigate the effects of inbreeding and genetic rescue on egg-to-adult viability and negative geotaxis behaviour-a locomotor response used to measure, e.g. the effects of physiological ageing. Transgenerational effects of outcrossing were investigated by examining the fitness consequences in both the F1 and F4 generation. The majority of inbred lines showed evidence for inbreeding depression for both egg-to-adult viability and behavioural performance (95% and 66% of lines, respectively), with inbreeding depression being more pronounced for viability compared with the locomotor response. Subsequent outcrossing with immigrants led to an alleviation of the negative effects for both viability and geotaxis response resulting in inbred lines being similar to the outbred controls, with beneficial effects persisting from F1 to F4 . Overall, the results clearly show that genetic rescue can provide transgenerational rescue of small, inbred populations by rapidly improving population fitness components. Thus, we show that even the negative effects of inbreeding on behaviour, similar to that of neurodegeneration associated with physiological ageing, can be reversed by genetic rescue.
Collapse
Affiliation(s)
| | - Michael Ørsted
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark.,Department of Biology, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
11
|
New developments in the field of genomic technologies and their relevance to conservation management. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01415-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractRecent technological advances in the field of genomics offer conservation managers and practitioners new tools to explore for conservation applications. Many of these tools are well developed and used by other life science fields, while others are still in development. Considering these technological possibilities, choosing the right tool(s) from the toolbox is crucial and can pose a challenging task. With this in mind, we strive to inspire, inform and illuminate managers and practitioners on how conservation efforts can benefit from the current genomic and biotechnological revolution. With inspirational case studies we show how new technologies can help resolve some of the main conservation challenges, while also informing how implementable the different technologies are. We here focus specifically on small population management, highlight the potential for genetic rescue, and discuss the opportunities in the field of gene editing to help with adaptation to changing environments. In addition, we delineate potential applications of gene drives for controlling invasive species. We illuminate that the genomic toolbox offers added benefit to conservation efforts, but also comes with limitations for the use of these novel emerging techniques.
Collapse
|
12
|
Genetic Diversity and Divergence among Bighorn Sheep from Reintroduced Herds in Washington and Idaho. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Roncallo PF, Larsen AO, Achilli AL, Pierre CS, Gallo CA, Dreisigacker S, Echenique V. Linkage disequilibrium patterns, population structure and diversity analysis in a worldwide durum wheat collection including Argentinian genotypes. BMC Genomics 2021; 22:233. [PMID: 33820546 PMCID: PMC8022437 DOI: 10.1186/s12864-021-07519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Background Durum wheat (Triticum turgidum L. ssp. durum Desf. Husn) is the main staple crop used to make pasta products worldwide. Under the current climate change scenarios, genetic variability within a crop plays a crucial role in the successful release of new varieties with high yields and wide crop adaptation. In this study we evaluated a durum wheat collection consisting of 197 genotypes that mainly comprised a historical set of Argentinian germplasm but also included worldwide accessions. Results We assessed the genetic diversity, population structure and linkage disequilibrium (LD) patterns in this collection using a 35 K SNP array. The level of polymorphism was considered, taking account of the frequent and rare allelic variants. A total of 1547 polymorphic SNPs was located within annotated genes. Genetic diversity in the germplasm collection increased slightly from 1915 to 2010. However, a reduction in genetic diversity using SNPs with rare allelic variants was observed after 1979. However, larger numbers of rare private alleles were observed in the 2000–2009 period, indicating that a high reservoir of rare alleles is still present among the recent germplasm in a very low frequency. The percentage of pairwise loci in LD in the durum genome was low (13.4%) in our collection. Overall LD and the high (r2 > 0.7) or complete (r2 = 1) LD presented different patterns in the chromosomes. The LD increased over three main breeding periods (1915–1979, 1980–1999 and 2000–2020). Conclusions Our results suggest that breeding and selection have impacted differently on the A and B genomes, particularly on chromosome 6A and 2A. The collection was structured in five sub-populations and modern Argentinian accessions (cluster Q4) which were clearly differentiated. Our study contributes to the understanding of the complexity of Argentinian durum wheat germplasm and to derive future breeding strategies enhancing the use of genetic diversity in a more efficient and targeted way. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07519-z.
Collapse
Affiliation(s)
- Pablo Federico Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Adelina Olga Larsen
- CEI Barrow, Instituto Nacional de Tecnología Agropecuaria (INTA), Tres Arroyos, Buenos Aires, Argentina
| | - Ana Laura Achilli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Edo. de México, Mexico
| | - Cristian Andrés Gallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Edo. de México, Mexico
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
14
|
Zhao QB, López-Cortegano E, Oyelami FO, Zhang Z, Ma PP, Wang QS, Pan YC. Conservation Priorities Analysis of Chinese Indigenous Pig Breeds in the Taihu Lake Region. Front Genet 2021; 12:558873. [PMID: 33747032 PMCID: PMC7966724 DOI: 10.3389/fgene.2021.558873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Most indigenous pig resources are known to originate from China. Thus, establishing conservation priorities for these local breeds is very essential, especially in the case of limited conservation funds. Therefore, in this study, we analyzed 445 individuals belonging to six indigenous breeds from the Taihu Lake Region, using a total of 131,300 SNPs. In order to determine the long-term guidelines for the management of these breeds, we analyzed the level of diversity in the metapopulation following a partition of diversity within and between breed subpopulations, using both measures of genic and allelic diversity. From the study, we found that the middle Meishan (MMS) pig population contributes the most (22%) to the total gene diversity while the Jiaxing black (JX) pig population contributes the most (27%) to the gene diversity between subpopulations. Most importantly, when we consider one breed is removed from the meta-population, the first two breeds prioritized should be JX pig breed and Fengjing pig breed followed by small Meishan (SMS), Mizhu (MI), and Erhualian (EH) if we pay more attention to the gene diversity between subpopulations. However, if the priority focus is on the total gene diversity, then the first breed to be prioritized would be the Shawutou (SW) pig breed followed by JX, MI, EH, and Fengjing (FJ). Furthermore, we noted that if conservation priority is to be based on the allelic diversity between subpopulations, then the MI breed should be the most prioritized breed followed by SW, Erhuanlian, and MMS. Summarily, our data show that different breeds have different contributions to the gene and allelic diversity within subpopulations as well as between subpopulations. Our study provides a basis for setting conservation priorities for indigenous pig breeds with a focus on different priority criteria.
Collapse
Affiliation(s)
- Qing-Bo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Eugenio López-Cortegano
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Favour Oluwapelumi Oyelami
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Pei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi-Shan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu-Chun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Sams AJ, Ford B, Gardner A, Boyko AR. Examination of the efficacy of small genetic panels in genomic conservation of companion animal populations. Evol Appl 2020; 13:2555-2565. [PMID: 33294008 PMCID: PMC7691451 DOI: 10.1111/eva.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 11/30/2022] Open
Abstract
In many ways, dogs are an ideal model for the study of genetic erosion and population recovery, problems of major concern in the field of conservation genetics. Genetic diversity in many dog breeds has been declining systematically since the beginning of the 1800s, when modern breeding practices came into fashion. As such, inbreeding in domestic dog breeds is substantial and widespread and has led to an increase in recessive deleterious mutations of high effect as well as general inbreeding depression. Pedigrees can in theory be used to guide breeding decisions, though are often incomplete and do not reflect the full history of inbreeding. Small microsatellite panels are also used in some cases to choose mating pairs to produce litters with low levels of inbreeding. However, the long-term impact of such practices has not been thoroughly evaluated. Here, we use forward simulation on a model of the dog genome to examine the impact of using limited marker panels to guide pairwise mating decisions on genome-wide population-level genetic diversity. Our results suggest that in unmanaged populations, where breeding decisions are made at the pairwise-rather than population-level, such panels can lead to accelerated loss of genetic diversity at genome regions unlinked to panel markers, compared to random mating. These results demonstrate the importance of genome-wide genetic panels for managing and conserving genetic diversity in dogs and other companion animals.
Collapse
Affiliation(s)
| | - Brett Ford
- Embark Veterinary, IncorporatedBostonMAUSA
| | | | - Adam R. Boyko
- Embark Veterinary, IncorporatedBostonMAUSA
- Department of Biomedical SciencesCollege of Veterinary MedicineCornell UniversityIthacaNYUSA
| |
Collapse
|
16
|
Genome-wide genetic diversity yields insights into genomic responses of candidate climate-selected loci in an Andean wetland plant. Sci Rep 2020; 10:16851. [PMID: 33033367 PMCID: PMC7546723 DOI: 10.1038/s41598-020-73976-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022] Open
Abstract
Assessing population evolutionary potential has become a central tenet of conservation biology. Since adaptive responses require allelic variation at functional genes, consensus has grown that genetic variation at genes under selection is a better surrogate for adaptive evolutionary potential than neutral genetic diversity. Although consistent with prevailing theory, this argument lacks empirical support and ignores recent theoretical advances questioning the very concept of neutral genetic diversity. In this study, we quantified genome-wide responses of single nucleotide polymorphism loci linked to climatic factors over a strong latitudinal gradient in natural populations of the high Andean wetland plant, Carex gayana, and then assessed whether genetic variation of candidate climate-selected loci better predicted their genome-wide responses than genetic variation of non-candidate loci. Contrary to this expectation, genomic responses of climate-linked loci only related significantly to environmental variables and genetic diversity of non-candidate loci. The effects of genome-wide genetic diversity detected in this study may be a result of either the combined influence of small effect variants or neutral and demographic factors altering the adaptive evolutionary potential of C. gayana populations. Regardless of the processes involved, our results redeem genome-wide genetic diversity as a potentially useful indicator of population adaptive evolutionary potential.
Collapse
|
17
|
White LC, Thomson VA, West R, Ruykys L, Ottewell K, Kanowski J, Moseby KE, Byrne M, Donnellan SC, Copley P, Austin JJ. Genetic monitoring of the greater stick-nest rat meta-population for strategic supplementation planning. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01299-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractTranslocation is an increasingly common component of species conservation efforts. However, translocated populations often suffer from loss of genetic diversity and increased inbreeding, and thus may require active management to establish gene flow across isolated populations. Assisted gene flow can be laborious and costly, so recipient and source populations should be carefully chosen to maximise genetic diversity outcomes. The greater stick-nest rat (GSNR, Leporillus conditor), a threatened Australian rodent, has been the focus of a translocation program since 1985, resulting in five extant translocated populations (St Peter Island, Reevesby Island, Arid Recovery, Salutation Island and Mt Gibson), all derived from a remnant wild population on the East and West Franklin Islands. We evaluated the genetic diversity in all extant GSNR populations using a large single nucleotide polymorphism dataset with the explicit purpose of informing future translocation planning. Our results show varying levels of genetic divergence, inbreeding and loss of genetic diversity in all translocated populations relative to the remnant source on the Franklin Islands. All translocated populations would benefit from supplementation to increase genetic diversity, but two—Salutation Island and Mt Gibson—are of highest priority. We recommend a targeted admixture approach, in which animals for supplementation are sourced from populations that have low relatedness to the recipient population. Subject to assessment of contemporary genetic diversity, St Peter Island and Arid Recovery are the most appropriate source populations for genetic supplementation. Our study demonstrates an effective use of genetic surveys for data-driven management of threatened species.
Collapse
|
18
|
Shang P, Li W, Tan Z, Zhang J, Dong S, Wang K, Chamba Y. Population Genetic Analysis of Ten Geographically Isolated Tibetan Pig Populations. Animals (Basel) 2020; 10:ani10081297. [PMID: 32751240 PMCID: PMC7460208 DOI: 10.3390/ani10081297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Whole-genome re-sequencing data from 10 geographically isolated Tibetan pig populations were collected and analyzed in this study. Population genetic analyses, including Principal Component Analysis (PCA), phylogenic tree, genetic differentiation, deleterious variant, contribution to meta-population genetic diversity and selective sweep were performed. Limited genetic differentiation was identified among these Tibetan pig populations. Most deleterious variants were low-frequency mutations and population specific. Contribution to the meta-population was largest in the TT population, based on gene and allelic diversity. Genes under selection were involved in hypoxia adaptation, hard palate development, facial appearance, and perception of smell. Abstract Several geographically isolated populations of Tibetan pigs inhabit the high-altitude environment of the Tibetan Plateau. Their genetic relationships, contribution to the pool of genetic diversity, and their origin of domestication are unclear. In this study, whole-genome re-sequencing data from 10 geographically isolated Tibetan pig populations were collected and analyzed. Population genetic analyses revealed limited genetic differentiation among the Tibetan pig populations. Evidence from deleterious variant analysis indicated that population-specific deleterious variants were the major component of all mutational loci. Contribution to the meta-population was largest in the TT (Qinghai-Tibet Plateau) population, based on gene diversity or allelic diversity. Selective sweep analysis revealed numerous genes, including RXFP1, FZD1, OR1F1, TBX19, MSTN, ESR1, MC1R, HIF3A, and EGLN2 which are involved in lung development, hard palate development, coat color, hormone metabolism, facial appearance, and perception of smell. These findings increase our understanding of the origins and domestication of the Tibetan pig, and help optimize the strategy for their conservation.
Collapse
Affiliation(s)
- Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Z.T.); (J.Z.); (S.D.)
| | - Wenting Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450001, China;
| | - Zhankun Tan
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Z.T.); (J.Z.); (S.D.)
| | - Jian Zhang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Z.T.); (J.Z.); (S.D.)
| | - Shixiong Dong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Z.T.); (J.Z.); (S.D.)
| | - Kejun Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450001, China;
- Correspondence: or (K.W.); (Y.C.)
| | - Yangzom Chamba
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China; (P.S.); (Z.T.); (J.Z.); (S.D.)
- Correspondence: or (K.W.); (Y.C.)
| |
Collapse
|
19
|
Toro MA, Villanueva B, Fernández J. The concept of effective population size loses its meaning in the context of optimal management of diversity using molecular markers. J Anim Breed Genet 2019; 137:345-355. [PMID: 31713272 DOI: 10.1111/jbg.12455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 11/28/2022]
Abstract
Effective population size is a key parameter in conservation genetics. In the management of conservation programs using pedigree information, there is a consensus that the optimal method for maximizing effective population size is to calculate the contribution of each potential parent (the number of offspring that each individual leaves to the next generation) by minimizing the global pedigree-based coancestry between potential parents weighted by their contributions. When using molecular data, the optimal method for managing genetic diversity will remain the same but now the molecular coancestry calculated from markers will replace the pedigree-based coancestry. However, in this situation, the concept of effective population size loses its meaning because with optimal molecular management, genetic diversity increases in early generations and therefore effective population size takes negative values. Furthermore, in the long term, the molecular effective population size does not attain an asymptotic value but it shows an unpredictable behaviour.
Collapse
Affiliation(s)
- Miguel A Toro
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|