1
|
Motiei M, Abu-Dawud R, Relógio A, Assaf C. Circadian rhythms in haematological malignancies: therapeutic potential and personalised interventions. EBioMedicine 2024; 110:105451. [PMID: 39566400 PMCID: PMC11617894 DOI: 10.1016/j.ebiom.2024.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
The circadian clock, a fundamental cellular mechanism, regulates the rhythmic expression of numerous genes and biological processes across various organs. Disruptions in this system, driven by genetic or environmental factors, have been reported to be involved in cancer progression. This review explores the role of the circadian clock in cancer hallmarks and its impact on cellular homeostasis within haematological malignancies. Drawing on findings from in vitro, in vivo, and clinical trials, this review highlights the potential of clock genes as diagnostic and prognostic biomarkers, and as therapeutic targets for optimising treatment timing. It discusses how circadian rhythms can enhance treatment efficacy through both pharmacological and non-pharmacological interventions, outlining strategies for optimising dosing schedules and implementing personalised chronobiological interventions, with a particular focus on haematological malignancies, including cutaneous lymphoma. Ongoing research holds promise for advancing personalised therapeutic approaches and ultimately improving cancer care standards.
Collapse
Affiliation(s)
- Marjan Motiei
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Raed Abu-Dawud
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine, and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Chalid Assaf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany; Department of Dermatology, HELIOS Klinikum Krefeld, Krefeld 47805, Germany.
| |
Collapse
|
2
|
Nassar A, Abdelhamid A, Ramsay G, Bekheit M. Chronomodulated Administration of Chemotherapy in Advanced Colorectal Cancer: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e36522. [PMID: 37090313 PMCID: PMC10120847 DOI: 10.7759/cureus.36522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
In this systematic review, the efficacy and safety of chronomodulated chemotherapy, defined as the delivery of chemotherapy timed according to the human circadian rhythm, were assessed and compared to continuous infusion chemotherapy for patients with advanced colorectal cancer. Electronic English-language studies published until October 2020 were searched. Randomised controlled trials (RCTs) comparing chronomodulated chemotherapy with non-chronomodulated (conventional) chemotherapy for the management of advanced colorectal cancer were included. The main outcomes were the objective response rate (ORR) and system-specific and overall toxicity related to chemotherapy. Electronic databases including Ovid Medline, Ovid Embase, Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Review were searched. In total, seven RCTs including 1,137 patients were analysed. Males represented 684 (60%) of the study population. The median age was 60.5 (range = 47.2-64) years. There was no significant difference between chronomodulated and conventional chemotherapy in ORR (risk ratio (RR) = 1.15; 95% confidence interval (CI) = 0.87-1.53). Similarly, there was no significant difference in gastrointestinal toxicity under the random effect model (RR = 1.02; 95% CI = 0.68-1.51). No significant difference was found regarding neurological and skin toxicities (RR = 0.64, 95% CI = 0.32-1.270 and RR = 2.11, 95% CI = 0.33-13.32, respectively). However, patients who received chronomodulated chemotherapy had less haematological toxicity (RR = 0.36, 95% CI = 0.27-0.48). In conclusion, there was no overall difference in ORR or haematologic toxicity between chronomodulated and non-chronomodulated chemotherapy used for patients with advanced colorectal cancer. Chronomodulated chemotherapy can be considered in patients at high risk of haematological toxicities.
Collapse
Affiliation(s)
- Ahmed Nassar
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Aberdeen Royal Infirmary, National Health Service (NHS) Grampian, Aberdeen, GBR
| | - Amir Abdelhamid
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Aberdeen Royal Infirmary, National Health Service (NHS) Grampian, Aberdeen, GBR
| | - George Ramsay
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
| | - Mohamed Bekheit
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Dr Gray's Hospital, National Health Service (NHS) Grampian, Aberdeen, GBR
- HPB Centre, Elite Integrated Centres of Excellence, Alexandria, EGY
| |
Collapse
|
3
|
Amiama-Roig A, Verdugo-Sivianes EM, Carnero A, Blanco JR. Chronotherapy: Circadian Rhythms and Their Influence in Cancer Therapy. Cancers (Basel) 2022; 14:5071. [PMID: 36291855 PMCID: PMC9599830 DOI: 10.3390/cancers14205071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 08/19/2023] Open
Abstract
Living organisms present rhythmic fluctuations every 24 h in their behavior and metabolism to anticipate changes in the environment. These fluctuations are controlled by a very complex molecular mechanism, the circadian clock, that regulates the expression of multiple genes to ensure the right functioning of the body. An individual's circadian system is altered during aging, and this is related to numerous age-associated pathologies and other alterations that could contribute to the development of cancer. Nowadays, there is an increasing interest in understanding how circadian rhythms could be used in the treatment of cancer. Chronotherapy aims to understand the impact that biological rhythms have on the response to a therapy to optimize its action, maximize health benefits and minimize possible adverse effects. Clinical trials so far have confirmed that optimal timing of treatment with chemo or immunotherapies could decrease drug toxicity and increase efficacy. Instead, chronoradiotherapy seems to minimize treatment-related symptoms rather than tumor progression or patient survival. In addition, potential therapeutic targets within the molecular clock have also been identified. Therefore, results of the application of chronotherapy in cancer therapy until now are challenging, feasible, and could be applied to clinical practice to improve cancer treatment without additional costs. However, different limitations and variables such as age, sex, or chronotypes, among others, should be overcome before chronotherapy can really be put into clinical practice.
Collapse
Grants
- RTI2018-097455-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- RED2018-102723-T Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- CB16/12/00275 Centro de Investigación Biomédica en Red de Cáncer
- PI-0397-2017 Consejería de Salud y Familias
- P18-RT-2501 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
- No. CTEICU/PAIDI 2020 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Ramón Blanco
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
4
|
Salazar Leon LE, Sillitoe RV. Potential Interactions Between Cerebellar Dysfunction and Sleep Disturbances in Dystonia. DYSTONIA 2022; 1. [PMID: 37065094 PMCID: PMC10099477 DOI: 10.3389/dyst.2022.10691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Dystonia is the third most common movement disorder. It causes debilitating twisting postures that are accompanied by repetitive and sometimes intermittent co- or over-contractions of agonist and antagonist muscles. Historically diagnosed as a basal ganglia disorder, dystonia is increasingly considered a network disorder involving various brain regions including the cerebellum. In certain etiologies of dystonia, aberrant motor activity is generated in the cerebellum and the abnormal signals then propagate through a “dystonia circuit” that includes the thalamus, basal ganglia, and cerebral cortex. Importantly, it has been reported that non-motor defects can accompany the motor symptoms; while their severity is not always correlated, it is hypothesized that common pathways may nevertheless be disrupted. In particular, circadian dysfunction and disordered sleep are common non-motor patient complaints in dystonia. Given recent evidence suggesting that the cerebellum contains a circadian oscillator, displays sleep-stage-specific neuronal activity, and sends robust long-range projections to several subcortical regions involved in circadian rhythm regulation, disordered sleep in dystonia may result from cerebellum-mediated dysfunction of the dystonia circuit. Here, we review the evidence linking dystonia, cerebellar network dysfunction, and cerebellar involvement in sleep. Together, these ideas may form the basis for the development of improved pharmacological and surgical interventions that could take advantage of cerebellar circuitry to restore normal motor function as well as non-motor (sleep) behaviors in dystonia.
Collapse
Affiliation(s)
- Luis E. Salazar Leon
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
- Address correspondence to: Dr. Roy V. Sillitoe, Tel: 832-824-8913, Fax: 832-825-1251,
| |
Collapse
|
5
|
Dysregulation of Circadian Clock Genes Associated with Tumor Immunity and Prognosis in Patients with Colon Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4957996. [PMID: 35880088 PMCID: PMC9308515 DOI: 10.1155/2022/4957996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
Early research shows that disrupting the circadian rhythm increases the risk of various cancers. However, the roles of circadian clock genes in colorectal cancer, which is becoming more common and lethal in China, remained to be unclear. In conclusion, the present study has demonstrated that multiple CCGs were dysregulated and frequently mutated in CRC samples by analyzing the TCGA database. The higher expression levels of REV1, ADCYAP1, CSNK1D, NR1D1, CSNK1E, and CRY2 had a strong link with shorter DFS time in CRC patients, demonstrating that CCGs had an important regulatory role in CRC development. Moreover, 513 CRC tumor samples were divided into 3 categories, namely, cluster1 (n = 428), cluster2 (n = 83), and cluster 3 (n = 109), based on the expression levels of the CCGs. Clinical significance analysis showed that the overall survival and disease-free survival of cluster 2 and cluster 3 were significantly shorter than those of cluster 1. The stemness scores in cluster 1 and cluster 2 were significantly higher than those of cluster 3 CRC samples. Clinically, we found that the C3 subtype had significantly higher percentage of T3/T4, N1/N2, and grades III and IV than groups C1 or C2. In addition, we reported that different CRC clusters had significantly different tumor-infiltrating immune cell signatures. Finally, pancancer analysis showed that higher expression of CSNK1D was correlated with shorter DFS time in multiple cancer types, such as COAD and LIHC, and was dysregulated in various cancers. In conclusion, we effectively developed a CCG-related predictive model and opened up new avenues for research into immune regulatory mechanisms and the development of immunotherapy for CRC.
Collapse
|
6
|
Mihelakis M, Ndikung J, Oelgeschläger M, Ertych N. The 4th dimension of in vitro systems - Time to level up. ENVIRONMENT INTERNATIONAL 2022; 164:107256. [PMID: 35472563 DOI: 10.1016/j.envint.2022.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Various in vitro model systems have been established over the last decades to understand physiological processes, the causalities of diseases and the response of humans to environmental and industrial chemicals or therapeutic drugs. Common to all is a limited biological significance due to the impairment of functionality, for instance by the lack of physiological 3D tissue architecture or the loss of fundamental regulatory mechanisms including the circadian rhythm. The circadian rhythm is an adaption of living organisms to rhythmic environmental changes of the day-night cycle and coordinates behavior as well as various crucial physiological processes in a 24-hour pattern. Here, we discuss the impact of integrating circadian regulation in experimental approaches and toxicological assessments to improve the biological relevance of the obtained results. In particular, it is known for some time that an ongoing disruption of the circadian rhythmicity is associated with an increased risk for cardiovascular disease, metabolic dysfunction or cancer. In the context of health recovery, the importance of circadian control mechanism is recognized by chronopharmacological concepts to increase the efficiency of pharmacological treatment strategies. Despite the undeniable circadian dependency and the biological relevance of manifold cellular and molecular processes, the impact of circadian regulation is hardly considered in a wide range of biomedical and toxicological research areas. Reactivating the circadian regulation holds the promise to enhance the biological relevance and reliability of in vitro approaches. In the context of human health protection the implementation of a circadian regulation will subsequently generate advanced physiologically relevant in vitro approaches and allows an improved toxicological assessment of health risks. In addition, the establishment of circadian disruption as a novel toxicological endpoint will provide a better understanding of toxicological mode of actions of environmental and industrial chemicals or drugs and enlarge the knowledge of disease development.
Collapse
Affiliation(s)
- Melina Mihelakis
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Johanna Ndikung
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Norman Ertych
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany.
| |
Collapse
|
7
|
Ungefroren H, Thürling I, Färber B, Kowalke T, Fischer T, De Assis LVM, Braun R, Castven D, Oster H, Konukiewitz B, Wellner UF, Lehnert H, Marquardt JU. The Quasimesenchymal Pancreatic Ductal Epithelial Cell Line PANC-1-A Useful Model to Study Clonal Heterogeneity and EMT Subtype Shifting. Cancers (Basel) 2022; 14:cancers14092057. [PMID: 35565186 PMCID: PMC9101310 DOI: 10.3390/cancers14092057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Malignant tumors often escape therapy due to clonal propagation of a subfraction of drug-resistant cancer cells. The underlying phenomenon of intratumoral heterogeneity is driven by epithelial–mesenchymal plasticity (EMP) involving the developmental programs, epithelial–mesenchymal transition (EMT), in which epithelial cells are converted to invasive mesenchymal cells, and the reverse process, mesenchymal–epithelial transition (MET), which allows for metastatic outgrowth at distant sites. For therapeutic targeting of EMP, a better understanding of this process is required; however, cellular models with which to study EMP in pancreatic ductal adenocarcinoma (PDAC) are scarce. Using single-cell clonal analysis, we have found the PDAC cell line, PANC-1, to consist of cells with different E/M phenotypes and functional attributes. Parental PANC-1 cultures could be induced in vitro to shift towards either a more mesenchymal or a more epithelial phenotype, and this bidirectional shift was controlled by the small GTPases RAC1 and RAC1b, together identifying PANC-1 cells as a useful model with which to study EMP. Abstract Intratumoral heterogeneity (ITH) is an intrinsic feature of malignant tumors that eventually allows a subfraction of resistant cancer cells to clonally evolve and cause therapy failure or relapse. ITH, cellular plasticity and tumor progression are driven by epithelial–mesenchymal transition (EMT) and the reverse process, MET. During these developmental programs, epithelial (E) cells are successively converted to invasive mesenchymal (M) cells, or back to E cells, by passing through a series of intermediate E/M states, a phenomenon termed E–M plasticity (EMP). The induction of MET has clinical potential as it can block the initial EMT stages that favor tumor cell dissemination, while its inhibition can curb metastatic outgrowth at distant sites. In pancreatic ductal adenocarcinoma (PDAC), cellular models with which to study EMP or MET induction are scarce. Here, we have generated single cell-derived clonal cultures of the quasimesenchymal PDAC-derived cell line, PANC-1, and found that these differ strongly with respect to cell morphology and EMT marker expression, allowing for their tentative classification as E, E/M or M. Interestingly, the different EMT phenotypes were found to segregate with differences in tumorigenic potential in vitro, as measured by colony forming and invasive activities, and in circadian clock function. Moreover, the individual clones the phenotypes of which remained stable upon prolonged culture also responded differently to treatment with transforming growth factor (TGF)β1 in regard to regulation of growth and individual TGFβ target genes, and to culture conditions that favour ductal-to-endocrine transdifferentiation as a more direct measure for cellular plasticity. Of note, stimulation with TGFβ1 induced a shift in parental PANC-1 cultures towards a more extreme M and invasive phenotype, while exposing the cells to a combination of the proinflammatory cytokines IFNγ, IL1β and TNFα (IIT) elicited a shift towards a more E and less invasive phenotype resembling a MET-like process. Finally, we show that the actions of TGFβ1 and IIT both converge on regulating the ratio of the small GTPase RAC1 and its splice isoform, RAC1b. Our data provide strong evidence for dynamic EMT–MET transitions and qualify this cell line as a useful model with which to study EMP.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
- Correspondence:
| | - Isabel Thürling
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Benedikt Färber
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | - Tanja Kowalke
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Tanja Fischer
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Leonardo Vinícius Monteiro De Assis
- Institute for Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (L.V.M.D.A.); (H.O.)
| | - Rüdiger Braun
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | - Darko Castven
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Henrik Oster
- Institute for Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (L.V.M.D.A.); (H.O.)
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
| | - Ulrich Friedrich Wellner
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| |
Collapse
|
8
|
Circadian and Immunity Cycle Talk in Cancer Destination: From Biological Aspects to In Silico Analysis. Cancers (Basel) 2022; 14:cancers14061578. [PMID: 35326729 PMCID: PMC8945968 DOI: 10.3390/cancers14061578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The circadian cycle is a natural cycle of the body repeated every 24 h, based on a day and night rhythm, and it affects many body processes. The present article reviews the importance and role of the circadian cycle in cancer and its association with the immune system and immunotherapy drugs at the cellular and molecular levels. It also examines the genes and cellular pathways involved in both circadian and immune systems. It offers possible computational solutions to increase the effectiveness of cancer treatment concerning the circadian cycle. Abstract Cancer is the leading cause of death and a major problem to increasing life expectancy worldwide. In recent years, various approaches such as surgery, chemotherapy, radiation, targeted therapies, and the newest pillar, immunotherapy, have been developed to treat cancer. Among key factors impacting the effectiveness of treatment, the administration of drugs based on the circadian rhythm in a person and within individuals can significantly elevate drug efficacy, reduce adverse effects, and prevent drug resistance. Circadian clocks also affect various physiological processes such as the sleep cycle, body temperature cycle, digestive and cardiovascular processes, and endocrine and immune systems. In recent years, to achieve precision patterns for drug administration using computational methods, the interaction of the effects of drugs and their cellular pathways has been considered more seriously. Integrated data-derived pathological images and genomics, transcriptomics, and proteomics analyses have provided an understanding of the molecular basis of cancer and dramatically revealed interactions between circadian and immunity cycles. Here, we describe crosstalk between the circadian cycle signaling pathway and immunity cycle in cancer and discuss how tumor microenvironment affects the influence on treatment process based on individuals’ genetic differences. Moreover, we highlight recent advances in computational modeling that pave the way for personalized immune chronotherapy.
Collapse
|
9
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
10
|
Almaida-Pagan PF, Torrente M, Campos M, Provencio M, Madrid JA, Franco F, Morilla BR, Cantos B, Sousa PA, Madrid MJM, Pimentao J, Rol MÁ. Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock. Curr Oncol Rep 2022; 24:135-149. [PMID: 35061192 PMCID: PMC8857092 DOI: 10.1007/s11912-021-01158-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 02/01/2023]
Abstract
Purpose of Review Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, inflammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may offer new options for increasing cancer treatment effectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings In recent years, there has been a significant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very first time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the state-of-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer research.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Torrente
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
- Medical Oncology Department, Puerta de Hierro-Majadahonda University Hospital, Calle Manuel de Falla, 1, 28222, Madrid, Spain.
- Faculty of Health Sciences, Francisco de Vitoria University, Madrid, Spain.
| | - Manuel Campos
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Juan Antonio Madrid
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fabio Franco
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Beatriz Rodríguez Morilla
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Blanca Cantos
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Pedro A Sousa
- Department of Electrical Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - María José Martínez Madrid
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Joao Pimentao
- Department of Electrical Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - María Ángeles Rol
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Németh V, Horváth S, Kinyó Á, Gyulai R, Lengyel Z. Expression Patterns of Clock Gene mRNAs and Clock Proteins in Human Psoriatic Skin Samples. Int J Mol Sci 2021; 23:121. [PMID: 35008548 PMCID: PMC8745255 DOI: 10.3390/ijms23010121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic inflammatory skin disorder that can be associated with sleep disturbance and negatively influence the daily rhythm. The link between the pathomechanism of psoriasis and the circadian rhythm has been suggested by several previous studies. However, there are insufficient data on altered clock mechanisms in psoriasis to prove these theories. Therefore, we investigated the expression of the core clock genes in human psoriatic lesional and non-lesional skin and in human adult low calcium temperature (HaCaT) keratinocytes after stimulation with pro-inflammatory cytokines. Furthermore, we examined the clock proteins in skin biopsies from psoriatic patients by immunohistochemistry. We found that the clock gene transcripts were elevated in psoriatic lesions, especially in non-lesional psoriatic areas, except for rev-erbα, which was consistently downregulated in the psoriatic samples. In addition, the REV-ERBα protein showed a different epidermal distribution in non-lesional skin than in healthy skin. In cytokine-treated HaCaT cells, changes in the amplitude of the bmal1, cry1, rev-erbα and per1 mRNA oscillation were observed, especially after TNFα stimulation. In conclusion, in our study a perturbation of clock gene transcripts was observed in uninvolved and lesional psoriatic areas compared to healthy skin. These alterations may serve as therapeutic targets and facilitate the development of chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
| | | | | | | | - Zsuzsanna Lengyel
- Department of Dermatology, Venereology and Oncodermatology, Medical School, University of Pécs, H-7632 Pecs, Hungary; (V.N.); (S.H.); (Á.K.); (R.G.)
| |
Collapse
|
12
|
Circadian clock and cell cycle: Cancer and chronotherapy. Acta Histochem 2021; 123:151816. [PMID: 34800857 DOI: 10.1016/j.acthis.2021.151816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
The circadian clock is an endogenous timing system that ensures that various physiological processes have nearly 24 h circadian rhythms, including cell metabolism, division, apoptosis, and tumor production. In addition, results from animal models and molecular studies underscore emerging links between the cell cycle and the circadian clock. Mutations in the core genes of the circadian clock' can disrupt the cell cycle, which in turn increases the possibility of tumors. At present, tumor chronotherapy, which relies on a circadian clock mechanism, is developing rapidly for optimizing the time of drug administration in tumor treatment to improve drug efficacy and safety. However, the relationship between the circadian clock and the cell cycle is extremely complicated. This review summarizes the possible connection between the circadian clock and the cell cycle. In addition, the review provides evidence of the influence of the circadian clock on senescence and cancer.
Collapse
|
13
|
Nagariya N, Chaudhari K, Vasu VT. Circadian disruption in lung cancer. Chronobiol Int 2021; 38:1797-1808. [PMID: 34369216 DOI: 10.1080/07420528.2021.1963759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite major developments in lung cancer investigations and the progress of innovative oncology treatments in recent decades, lung cancer continues to be the predominant cause of cancer-related mortality globally, with over a million deaths each year. This highlights the urgent need to develop a deeper understanding of the current state of cancer care. At the environmental and cellular levels, circadian rhythms are closely associated with living organisms. In humans, the suprachiasmatic nucleus is the principal circadian pacemaker. Circadian gene feedback loops regulate the clock, connecting peripheral tissue metabolism, cell proliferation, DNA repair, and cell death to energy homeostasis, physical activity, and neurohormonal regulation at the organismal level. Endogenous circadian homeostasis has been frequently disturbed in modern civilizations, resulting in a higher risk of many disorders, including lung cancer. Despite major developments in lung cancer investigations and the progress of innovative oncology treatments in recent decades, lung cancer continues to be the predominant cause of cancer-related mortality globally, with over a million deaths each year. This highlights the urgent need to develop a deeper understanding of the current state of cancer care. At the environmental and cellular levels, circadian rhythms are closely associated with living organisms. In humans, the suprachiasmatic nucleus is the principal circadian pacemaker. Circadian gene feedback loops regulate the clock, connecting peripheral tissue metabolism, cell proliferation, DNA repair, and cell death to energy homeostasis, physical activity, and neurohormonal regulation at the organismal level. Endogenous circadian homeostasis has been frequently disturbed in modern civilizations, resulting in a higher risk of many disorders, including lung cancer. The mammalian circadian clock controls metabolism and cell division, and disruption of these processes may lead to cancer pathogenesis. Furthermore, circadian disturbance has recently been identified as a self-regulating cancer risk factor and is listed as a carcinogen. The theory that both somatic and systemic disturbances of circadian rhythms are related to a higher risk of lung cancer development and poor prognosis is addressed in this study. The chronotherapy principles hold much more promise for enhancing the lung cancer care options currently available. Developing a better understanding of the molecular interactions that control the physiological equilibrium between both the circadian rhythm and the cycle of cell division could significantly influence the development of novel treatments for lung cancer and other diseases.
Collapse
Affiliation(s)
- Nidhi Nagariya
- Genomics and Systems Biology Lab, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kaushal Chaudhari
- Genomics and Systems Biology Lab, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Vihas T Vasu
- Genomics and Systems Biology Lab, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India.,Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
14
|
Liu H, Gao Y, Hu S, Fan Z, Wang X, Li S. Bioinformatics Analysis of Differentially Expressed Rhythm Genes in Liver Hepatocellular Carcinoma. Front Genet 2021; 12:680528. [PMID: 34149816 PMCID: PMC8211427 DOI: 10.3389/fgene.2021.680528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
Liver Hepatocellular Carcinoma (LIHC), a malignant tumor with high incidence and mortality, is one of the most common cancers in the world. Multiple studies have found that the aberrant expression of rhythm genes is closely related to the occurrence of LIHC. This study aimed to use bioinformatics analysis to identify differentially expressed rhythm genes (DERGs) in LIHC. A total of 563 DERGs were found in LIHC, including 265 downregulated genes and 298 upregulated genes. KEGG pathway enrichment and GO analyses showed that DERGs were significantly enriched in rhythmic and metabolic processes. Survival analysis revealed that high expression levels of CNK1D, CSNK1E, and NPAS2 were significantly associated with the low survival rate in LIHC patients. Through cell experiment verification, the mRNA expression levels of CSNK1D, CSNK1E, and NPAS2 were found to be strongly upregulated, which was consistent with the bioinformatics analysis of LIHC patient samples. A total of 23 nodes and 135 edges were involved in the protein–protein interaction network of CSNK1D, CSNK1E, and NPAS2 genes. Clinical correlation analyses revealed that CSNK1D, CSNK1E, and NPAS2 expression levels were high-risk factors and independently connected with the overall survival rate in LIHC patients. In conclusion, the identification of these DERGs contributes to the exploration of the molecular mechanisms of LIHC occurrence and development and may be used as diagnostic and prognostic biomarkers and molecular targets for chronotherapy in LIHC patients in the future.
Collapse
Affiliation(s)
- Huaifeng Liu
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Yu Gao
- School of Life Sciences, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Shangshang Hu
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Zhengran Fan
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Xianggang Wang
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Shujing Li
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| |
Collapse
|
15
|
Patel SA, Kondratov RV. Clock at the Core of Cancer Development. BIOLOGY 2021; 10:150. [PMID: 33672910 PMCID: PMC7918730 DOI: 10.3390/biology10020150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/29/2022]
Abstract
To synchronize various biological processes with the day and night cycle, most organisms have developed circadian clocks. This evolutionarily conserved system is important in the temporal regulation of behavior, physiology and metabolism. Multiple pathological changes associated with circadian disruption support the importance of the clocks in mammals. Emerging links have revealed interplay between circadian clocks and signaling networks in cancer. Understanding the cross-talk between the circadian clock and tumorigenesis is imperative for its prevention, management and development of effective treatment options. In this review, we summarize the role of the circadian clock in regulation of one important metabolic pathway, insulin/IGF1/PI3K/mTOR signaling, and how dysregulation of this metabolic pathway could lead to uncontrolled cancer cell proliferation and growth. Targeting the circadian clock and rhythms either with recently discovered pharmaceutical agents or through environmental cues is a new direction in cancer chronotherapy. Combining the circadian approach with traditional methods, such as radiation, chemotherapy or the recently developed, immunotherapy, may improve tumor response, while simultaneously minimizing the adverse effects commonly associated with cancer therapies.
Collapse
Affiliation(s)
- Sonal A. Patel
- Fusion Pharmaceuticals Inc., Hamilton, ON L8P 0A6, Canada;
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Roman V. Kondratov
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
16
|
Tsuda M, Ishiguro H, Toriguchi N, Masuda N, Bando H, Ohgami M, Homma M, Morita S, Yamamoto N, Kuroi K, Yanagita Y, Takano T, Shimizu S, Toi M. Overnight fasting before lapatinib administration to breast cancer patients leads to reduced toxicity compared with nighttime dosing: a retrospective cohort study from a randomized clinical trial. Cancer Med 2020; 9:9246-9255. [PMID: 33094919 PMCID: PMC7774723 DOI: 10.1002/cam4.3528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 09/24/2020] [Indexed: 11/07/2022] Open
Abstract
Background The bioavailability of lapatinib is affected by food, even following the 1 hour fast recommended by the package insert. We hypothesized that overnight fasting would minimize food‐drug interactions. Here, we investigated if lapatinib administration timing is associated with its tolerability, efficacy, and pharmacokinetics. Methods This is a retrospective cohort study utilizing the medical records of patients enrolled in the JBCRG‐16/Neo‐LaTH randomized phase 2 trial for breast cancer patients treated with lapatinib. Lapatinib administration timing was divided into three groups: before breakfast (BB), between meals (BM), and at bedtime (AB). Side effects (SE), treatment discontinuation rate (TDR), relative dose intensity (RDI), pathological complete response (pCR) rate, and lapatinib serum trough concentration were compared between groups. Results About 140 patients were included in this study: BB 15, BM 51, and AB 74. A reduced risk of diarrhea {adjusted hazard ratio (HR), 0.51, 95% confidence interval (CI), 0.27‐0.89, p = 0.018}, and rash {adjusted HR, 0.37; 95% CI, 0.17‐0.70, p = 0.002} was seen in BB versus AB. Fewer patients with low RDI (< 0.85/<0.6) were in the BB group (BB 13% / 0%, BM 22% / 3.9%, AB 24% / 14%, p = 0.70 / 0.11). pCR was not diminished (p = 0.75). BB group had the lowest serum lapatinib concentration and variability (mean ±SD were 0.35 ± 0.15, 0.65 ± 0.32, 0.96 ± 0.43 µg/ml). Conclusions Compared to bedtime administration, lapatinib administration after overnight fasting reduces its toxicity without diminishing its therapeutic efficacy.
Collapse
Affiliation(s)
- Moe Tsuda
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ishiguro
- Breast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Naoko Toriguchi
- Oncology Products, Medicine Development Unit Japan, Eli Lilly Japan K.K, Kobe, Japan
| | - Norikazu Masuda
- Department of Surgery, Breast Oncology, NHO Osaka National Hospital, Osaka, Japan
| | - Hiroko Bando
- Breast and Endocrine Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Ohgami
- Department of Pharmacy, Ibaraki Prefectural Central Hospital, Kasama, Japan
| | - Masato Homma
- Department of Pharmaceutical Sciences, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics. Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Katsumasa Kuroi
- Department of Breast Surgery, Tokyo Metropolitan Health and Hospitals Corporation Ebara Hospital, Tokyo, Japan
| | - Yasuhiro Yanagita
- Department of Breast Oncology, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Toshimi Takano
- Breast Medical Oncology, Breast Oncology Center, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Satoru Shimizu
- Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|