1
|
Yin H, Zhang M, Zhang Y, Zhang X, Zhang X, Zhang B. Liquid biopsies in cancer. MOLECULAR BIOMEDICINE 2025; 6:18. [PMID: 40108089 PMCID: PMC11923355 DOI: 10.1186/s43556-025-00257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025] Open
Abstract
Cancer ranks among the most lethal diseases worldwide. Tissue biopsy is currently the primary method for the diagnosis and biological analysis of various solid tumors. However, this method has some disadvantages related to insufficient tissue specimen collection and intratumoral heterogeneity. Liquid biopsy is a noninvasive approach for identifying cancer-related biomarkers in peripheral blood, which allows for repetitive sampling across multiple time points. In the field of liquid biopsy, representative biomarkers include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. Many studies have evaluated the prognostic and predictive roles of CTCs and ctDNA in various solid tumors. Although these studies have limitations, the results of most studies appear to consistently demonstrate the correlations of high CTC counts and ctDNA mutations with lower survival rates in cancer patients. Similarly, a reduction in CTC counts throughout therapy may be a potential prognostic indicator related to treatment response in advanced cancer patients. Moreover, the biochemical characteristics of CTCs and ctDNA can provide information about tumor biology as well as resistance mechanisms against targeted therapy. This review discusses the current clinical applications of liquid biopsy in cancer patients, emphasizing its possible utility in outcome prediction and treatment decision-making.
Collapse
Affiliation(s)
- Hang Yin
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Manjie Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yu Zhang
- Dalian Medical University, Dalian, 116000, China
| | - Xuebing Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Xia Zhang
- Dalian Fifth People's Hospital, Dalian, 116000, China.
| | - Bin Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
2
|
Wang Q, Yu B, Yang B, Zhang X, Yu G, Wang Z, Qin H, Ma Y. Precision Fabrication and Optimization of Nanostructures for Exosome Detection via Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:266. [PMID: 39997829 PMCID: PMC11858208 DOI: 10.3390/nano15040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Exosome detection is crucial for biomedical research and clinical diagnostics due to their unique characteristics. Surface-enhanced Raman spectroscopy (SERS) based on nanostructure substrates with local field enhancement capability is a promising detection approach. However, the random distribution of nanostructures leads to uneven "hotspots" distribution, which limits their application in SERS detection. Here, we systematically investigated the impact of experimental parameters on nanostructure morphology and analyzed their formation mechanism, achieving controllable nanocone fabrication. Subsequent experiments confirmed the reliability and effectiveness of the fabricated nanocone in exosome SERS detection. This work not only realized flexible control of nanostructures but also expanded their application prospects in the field of exosome analysis.
Collapse
Affiliation(s)
- Qingyi Wang
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Bowen Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China;
| | - Xuanhe Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Guoxu Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Zeyu Wang
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Hua Qin
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Yuan Ma
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| |
Collapse
|
3
|
Miao Q, Li S, Lyu W, Zhang J, Han Y. Exosomes in Oral Diseases: Mechanisms and Therapeutic Applications. Drug Des Devel Ther 2025; 19:457-469. [PMID: 39867866 PMCID: PMC11766710 DOI: 10.2147/dddt.s505355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration. In OSCC tumor-derived exosomes promote cancer progression through cell proliferation, migration, invasion, and angiogenesis, and serve as potential biomarkers for early diagnosis and prognosis. Additionally, engineered exosomes constructed specifically based on exosome properties hold great promise for targeted drug delivery and regenerative therapies such as bone regeneration in orthodontics and periodontal healing. With continued research, exosomes hold great potential for improving diagnosis and treatment in oral diseases, advancing personalized and regenerative therapies.
Collapse
Affiliation(s)
- Qiandai Miao
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Shaoqing Li
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Weijia Lyu
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Jianxia Zhang
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Yan Han
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| |
Collapse
|
4
|
Isogai T, Hirosawa KM, Suzuki KGN. Recent Advancements in Imaging Techniques for Individual Extracellular Vesicles. Molecules 2024; 29:5828. [PMID: 39769916 PMCID: PMC11728280 DOI: 10.3390/molecules29245828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Extracellular vesicles (EVs), secreted from most cells, are small lipid membranes of vesicles of 30 to 1000 nm in diameter and contain nucleic acids, proteins, and intracellular organelles originating from donor cells. EVs play pivotal roles in intercellular communication, particularly in forming niches for cancer cell metastasis. However, EVs derived from donor cells exhibit significant heterogeneity, complicating the investigation of EV subtypes using ensemble averaging methods. In this context, we highlight recent studies that characterize individual EVs using advanced techniques, including single-fluorescent-particle tracking, single-metal-nanoparticle tracking, single-non-label-particle tracking, super-resolution microscopy, and atomic force microscopy. These techniques have facilitated high-throughput analyses of the properties of individual EV particles such as their sizes, compositions, and physical properties. Finally, we address the challenges that need to be resolved via single-particle (-molecule) imaging and super-resolution microscopy in future research.
Collapse
Affiliation(s)
- Tatsuki Isogai
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan;
| | - Kenichi G. N. Suzuki
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan;
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
6
|
Ho KHW, Lai H, Zhang R, Chen H, Yin W, Yan X, Xiao S, Lam CYK, Gu Y, Yan J, Hu K, Shi J, Yang M. SERS-Based Droplet Microfluidic Platform for Sensitive and High-Throughput Detection of Cancer Exosomes. ACS Sens 2024; 9:4860-4869. [PMID: 39233482 DOI: 10.1021/acssensors.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Exosomes, nanosized extracellular vesicles containing biomolecular cargo, are increasingly recognized as promising noninvasive biomarkers for cancer diagnosis, particularly for their role in carrying tumor-specific molecular information. Traditional methods for exosome detection face challenges such as complexity, time consumption, and the need for sophisticated equipment. This study addresses these challenges by introducing a novel droplet microfluidic platform integrated with a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the rapid and sensitive detection of HER2-positive exosomes from breast cancer cells. Our approach utilized an on-chip salt-induced gold nanoparticles (GNPs) aggregation process in the presence of HER2 aptamers and HER2-positive exosomes, enhancing the hot spot-based SERS signal amplification. This platform achieved a limit of detection of 4.5 log10 particles/mL with a sample-to-result time of 5 min per sample. Moreover, this platform has been successfully applied for HER2 status testing in clinical samples to distinguish HER2-positive breast cancer patients from HER2-negative breast cancer patients. High sensitivity, specificity, and the potential for high-throughput screening of specific tumor exosomes make this SERS-based droplet system a potential liquid biopsy technology for early cancer diagnosis.
Collapse
Affiliation(s)
- Kwun Hei Willis Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Huang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou 510630, China
| | - Wen Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Xijing Yan
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shu Xiao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yutian Gu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - JiaXiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Kunpeng Hu
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
7
|
Pham CV, Chowdhury R, Patel S, Jaysawal SK, Hou Y, Xu H, Jia L, Zhang Y, Wang X, Duan W, Xiang D. An aptamer-guided fluorescence polarisation platform for extracellular vesicle liquid biopsy. J Extracell Vesicles 2024; 13:e12502. [PMID: 39221546 PMCID: PMC11367152 DOI: 10.1002/jev2.12502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The translation of discoveries on extracellular vesicle (EV) based cancer biomarkers to personalised precision oncology requires the development of robust, sensitive and specific assays that are amenable to adoption in the clinical laboratory. Whilst a variety of elegant approaches for EV liquid biopsy have been developed, most of them remain as research prototypes due to the requirement of a high level of microfabrication and/or sophisticated instruments. Hence, this study is set to develop a simple DNA aptamer-enabled and fluorescence polarisation-based homogenous assay that eliminates the need to separate unbound detection ligands from the bound species for EV detection. High specificity is achieved by immobilising EVs with one set of antibodies and subsequently detecting them with a DNA aptamer targeting a distinct EV biomarker. This two-pronged strategy ensures the removal of most, if not all, non-EV substances in the input biofluids, including soluble proteins, protein aggregates or non-vesicular particles, prior to quantifying biomarker-positive EVs. A limit of detection of 5.0 × 106 EVs/mL was achieved with a linear quantification range of 5.0 × 108 to 2.0 × 1010 EVs/mL. Facilitated by a multiple parametric analysis strategy, this aptamer-guided fluorescence polarisation assay was capable of distinguishing EVs from three different types of solid cancer cells based on quantitative differences in the levels of the same sets of biomarkers on EVs. Given the simplicity of the method and its ease of implementation in automated clinical biochemistry analysers, this assay could be exploited for future EV-based continuous and real-time monitoring of the emergence of new macro- or micro-metastasis, cancer progression as well as the response to treatment throughout different stages of cancer management in the clinic.
Collapse
Affiliation(s)
- Cuong Viet Pham
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | | | - Shweta Patel
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | | | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Huo Xu
- College of Materials and Chemical EngineeringMinjiang UniversityFuzhouFujianChina
| | - Lee Jia
- College of Materials and Chemical EngineeringMinjiang UniversityFuzhouFujianChina
| | - Yu‐mei Zhang
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Cardiometabolic HealthUniversity of MelbourneVICAustralia
| | - Wei Duan
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteShanghai Jiaotong UniversityShanghaiChina
- Department of Biliary‐Pancreatic Surgerythe Renji Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Ghosh S, Rajendran RL, Mahajan AA, Chowdhury A, Bera A, Guha S, Chakraborty K, Chowdhury R, Paul A, Jha S, Dey A, Dubey A, Gorai S, Das P, Hong CM, Krishnan A, Gangadaran P, Ahn BC. Harnessing exosomes as cancer biomarkers in clinical oncology. Cancer Cell Int 2024; 24:278. [PMID: 39113040 PMCID: PMC11308730 DOI: 10.1186/s12935-024-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are extracellular vesicles well known for facilitating cell-to-cell communication by distributing essential macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung, gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting traditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer. Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential to enhance cancer detection and treatment in the upcoming years.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Atharva A Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Delhi, 110016, India
| | - Aishi Bera
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Sudeepta Guha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Kashmira Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Aritra Paul
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Shreya Jha
- Department of Biomedical Engineering, National Institute of Technology, Rourkela, Orissa, 769008, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, Office of the Dean, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, Free State, South Africa.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
9
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
10
|
Ghosh S, Mahajan AA, Dey A, Rajendran RL, Chowdhury A, Sen S, Paul S, Majhi S, Hong CM, Gangadaran P, Ahn BC, Krishnan A. Exosomes in Bone Cancer: Unveiling their Vital Role in Diagnosis, Prognosis, and Therapeutic Advancements. J Cancer 2024; 15:4128-4142. [PMID: 38947401 PMCID: PMC11212077 DOI: 10.7150/jca.95709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Bone cancer among adolescents and children exhibits varying survival outcomes based on disease state. While localized bone cancer cases have a survival rate exceeding 70%, metastatic, refractory, and recurrent forms are associated with significantly poorer prognoses. Initially believed to be mere vehicles for cellular waste disposal, exosomes are now recognized as extracellular vesicles facilitating intercellular communication. These vesicles influence cellular behaviors by transporting various biomolecules, such as proteins, DNA, RNA, and lipids, among cells. The role of exosomes in regulating the progression of bone cancer is increasingly evident, impacting critical processes like tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Current research underscores the substantial potential of exosomes in promoting the progression and development of bone cancer. This review delves into the complex process of exosome biogenesis, the variety of cell-derived exosome sources, and their applications in drug delivery and therapeutics. It also examines ongoing clinical trials focused on exosome cargo levels and discusses the challenges and future directions in exosome research. Unlike costly and invasive traditional diagnostic methods, exosomal biomarkers offer a non-invasive, cost-effective, and readily accessible routine screening through simple fluid collection that aims to inspire researchers to investigate the potential of exosomes for cancer theragnostic. Through comprehensive exploration of these areas, the review seeks to enhance understanding and foster innovative solutions to cancer biology in the near future.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Atharva Anand Mahajan
- Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra 410210, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Sushmita Sen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Subhobrata Paul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Sourav Majhi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
11
|
Omrani M, Beyrampour-Basmenj H, Jahanban-Esfahlan R, Talebi M, Raeisi M, Serej ZA, Akbar-Gharalari N, Khodakarimi S, Wu J, Ebrahimi-Kalan A. Global trend in exosome isolation and application: an update concept in management of diseases. Mol Cell Biochem 2024; 479:679-691. [PMID: 37166542 PMCID: PMC10173230 DOI: 10.1007/s11010-023-04756-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) secreted by various cells offer great potential for use in the diagnosis and treatment of disease. EVs are heterogeneous membranous vesicles. Exosomes are a subtype of EVs, 40-150 nm spherical vesicles with a lipid layer derived from endosomes. Exosomes, which are involved in signal transduction and maintain homeostasis, are released from almost all cells, tissues, and body fluids. Although several methods exist to isolate and characterize EVs and exosomes, each technique has significant drawbacks and limitations that prevent progress in the field. New approaches in the biology of EVs show great potential for isolating and characterizing EVs, which will help us better understand their biological function. The strengths and limitations of conventional strategies and novel methods (microfluidic) for EV isolation are outlined in this review. We also present various exosome isolation techniques and kits that are commercially available and assess the global market demand for exosome assays.
Collapse
Affiliation(s)
- Mohammadhassan Omrani
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Akbar-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Khodakarimi
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy. Front Mol Biosci 2024; 11:1356780. [PMID: 38449696 PMCID: PMC10916008 DOI: 10.3389/fmolb.2024.1356780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular microRNAs (miRNAs) can be detected in body fluids and hold great potential as cancer biomarkers. Extracellular miRNAs are protected from degradation by binding various proteins and through their packaging into extracellular vesicles (EVs). There is evidence that the diagnostic performance of cancer-associated extracellular miRNAs can be improved by assaying EV-miRNA instead of total cell-free miRNA, but several challenges have hampered the advancement of EV-miRNA in liquid biopsy. Because almost all types of cells release EVs, cancer cell-derived EVs might constitute only a minor fraction of EVs in body fluids of cancer patients with low volume disease. Furthermore, a given cell type can release several subpopulations of EVs that vary in their cargo, and there is evidence that the majority of EVs contain low copy numbers of miRNAs. In this mini-review, we discuss the potential of several candidate EV membrane proteins such as CD147 to define cancer cell-derived EVs, and approaches by which subpopulations of miRNA-rich EVs in body fluids might be identified. By integrating these insights, we discuss strategies by which EVs that are both cancer cell-derived and miRNA-rich could be isolated to enhance the diagnostic performance of extracellular miRNAs.
Collapse
Affiliation(s)
| | | | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
13
|
Jung YK, Son MH. Polydiacetylene-based aptasensors for rapid and specific colorimetric detection of malignant exosomes. Talanta 2024; 268:125342. [PMID: 37918246 DOI: 10.1016/j.talanta.2023.125342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Exosomes (50-150 nm) play significant biological functions in intercellular communication and transportation of diverse biomolecules, including proteins and nucleic acids. In particular, malignant exosomes have received a great deal of attention as possible indicators for cancer detection and treatment. To swiftly and precisely identify malignant exosomes from normal exosomes in diverse bodily fluids, we developed polydiacetylene (PDA)-based aptasensors with distinct optical features exhibiting color shift in response to biological recognition. To identify epithelial cell adhesion molecules (EpCAM) overexpressed on the surface of malignant exosomes, anti-EpCAM aptamer-conjugated diacetylene monomer (TCDA-Apt) was synthesized and used to create anti-EpCAM aptamer-conjugated PDA (anti-EpCAM Apt-PDA) vesicles. In just 15 min following the reaction with malignant exosomes, the anti-EpCAM Apt-PDA vesicles underwent a visible color change from blue to purple. They showed high specificity to EpCAM-positive malignant exosomes over non-malignant exosomes, bovine serum albumin (BSA), and fibrinogen. Moreover, its effectiveness in the point-of-care (POC) detection of malignant exosomes was evaluated using human sera. Therefore, our PDA-based aptasensors have tremendous potential for on-site cancer diagnosis.
Collapse
Affiliation(s)
- Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea; School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| | - Min Hyeong Son
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| |
Collapse
|
14
|
Yu Y, Liang C, Wan QQ, Jin D, Liu X, Zhang Z, Sun ZY, Zhang GJ. Integrated FET sensing microsystem for specific detection of pancreatic cancer exosomal miRNA10b. Anal Chim Acta 2023; 1284:341995. [PMID: 37996166 DOI: 10.1016/j.aca.2023.341995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Tumor-derived exosome (TD-Ex) serves as a crucial early diagnostic biomarker of pancreatic cancer (PC). However, accurate identification of TD-Ex from PC is still a challenging work. In this paper, a detection microsystem that integrates magnetic separation and FET biosensor is developed, which is capable of selectively separating TD-Ex of PC from the plasma and detecting exosomal miRNA10b in a sensitive and specific manner. The magnetic beads were functionalized with dual antibody (GPC-1 antibody and EpCAM antibody), enabling selective recognition and capture of PC-derived exosomes. On the other hand, a peptide nucleic acid (PNA)- functionalized reduced graphene oxide field-effect transistor (RGO FET) biosensor was subsequently utilized to detect the exosomal miRNA10b, which is highly expressed in PC- derived exosomes. This system could achieve a low detection limit down to 78 fM, and selectively identify miRNA10b from single-base mismatched miRNA. In addition, 40 clinical plasma samples were tested with this microsystem, and the results indicate that it could effectively distinguish PC patients from healthy individuals. The assay combines specific capture and enrichment of PC-derived exosomes with sensitive and selective detection of exosomal miRNA, showing its potential to be used as an effective scheme for PC early diagnosis.
Collapse
Affiliation(s)
- Yi Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Chunzi Liang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | | | - Dan Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Xi Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, 100871, China.
| | - Zhong-Yue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| |
Collapse
|
15
|
Lee YJ, Chae S, Choi D. Monitoring of single extracellular vesicle heterogeneity in cancer progression and therapy. Front Oncol 2023; 13:1256585. [PMID: 37823055 PMCID: PMC10562638 DOI: 10.3389/fonc.2023.1256585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer cells actively release lipid bilayer extracellular vesicles (EVs) that affect their microenvironment, favoring their progression and response to extracellular stress. These EVs contain dynamically regulating molecular cargos (proteins and nucleic acids) selected from their parental cells, representing the active biological functionality for cancer progression. These EVs are heterogeneous according to their size and molecular composition and are usually defined based on their biogenetic mechanisms, such as exosomes and ectosomes. Recent single EV detection technologies, such as nano-flow cytometry, have revealed the dynamically regulated molecular diversity within bulk EVs, indicating complex EV heterogeneity beyond classical biogenetic-based EV subtypes. EVs can be changed by internal oncogenic transformation or external stress such as chemotherapy. Among the altered combinations of EV subtypes, only a specific set of EVs represents functional molecular cargo, enabling cancer progression and immune modulation in the tumor microenvironment through their altered targeting efficiency and specificity. This review covers the heterogeneity of EVs discovered by emerging single EV analysis technologies, which reveal the complex distribution of EVs affected by oncogenic transformation and chemotherapy. Encouragingly, these unique molecular signatures in individual EVs indicate the status of their parental cancer cells. Thus, precise molecular profiling of circulating single EVs would open new areas for in-depth monitoring of the cancer microenvironment and shed new light on non-invasive diagnostic approaches using liquid biopsy.
Collapse
Affiliation(s)
| | | | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, Republic of Korea
| |
Collapse
|
16
|
Wang L, Ma P, Chen H, Chang M, Lu P, Chen N, Zhang X, Li Y, Sui M. Rapid and ultrasensitive detection of acute kidney injury biomarkers CH3L1 and L-FABP using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122604. [PMID: 36947940 DOI: 10.1016/j.saa.2023.122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Chitinase 3-like 1 (CH3L1) and liver fatty acid binding protein (L-FABP) are promising biomarkers for the early diagnosis of acute kidney injury (AKI). Here, a highly sensitive method for the quantitative detection of CH3L1 and L-FABP by surface-enhanced Raman spectroscopy (SERS) based on graphene oxide/gold and silver core-shell nanoparticles (GO/Au@Ag NPs) was proposed. The results showed that such GO/Au@Ag substrate can achieve rapid sensing of CH3L1 and L-FABP with a wide response range (2 × 10-1 to 2 × 10-8 mg/mL and 1.2 × 10-1 to 1.2 × 10-8 mg/mL, respectively) and high sensitivity. The detection limits of CH3L1 and L-FABP were 1.21 × 10-8 mg/mL and 0.62 × 10-8 mg/mL, respectively. In addition, the simultaneous detection of the two biomarkers in serum was demonstrated, showing the feasibility of this method in the complex biological environment. The detection of CH3L1 and L-FABP will greatly improve the early diagnosis and intervention of AKI.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pei Ma
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hui Chen
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Chang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ping Lu
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Nan Chen
- School of Electrical Engineering, Nantong University, Nantong 226019, China
| | - Xuedian Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanhua Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Mingxing Sui
- Department of Organ Transplantation, Shanghai Changhai Hospital, Shanghai 200433, China.
| |
Collapse
|
17
|
Zhu Z, Hu E, Shen H, Tan J, Zeng S. The functional and clinical roles of liquid biopsy in patient-derived models. J Hematol Oncol 2023; 16:36. [PMID: 37031172 PMCID: PMC10082989 DOI: 10.1186/s13045-023-01433-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The liquid biopsy includes the detection of circulating tumor cells (CTCs) and CTC clusters in blood, as well as the detection of, cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) and extracellular vesicles (EVs) in the patient's body fluid. Liquid biopsy has important roles in translational research. But its clinical utility is still under investigation. Newly emerged patient-derived xenograft (PDX) and CTC-derived xenograft (CDX) faithfully recapitulate the genetic and morphological features of the donor patients' tumor and patient-derived organoid (PDO) can mostly mimic tumor growth, tumor microenvironment and its response to drugs. In this review, we describe how the development of these patient-derived models has assisted the studies of CTCs and CTC clusters in terms of tumor biological behavior exploration, genomic analysis, and drug testing, with the help of the latest technology. We then summarize the studies of EVs and cfDNA/ctDNA in PDX and PDO models in early cancer diagnosis, tumor burden monitoring, drug test and response monitoring, and molecular profiling. The challenges faced and future perspectives of research related to liquid biopsy using patient-derived models are also discussed.
Collapse
Affiliation(s)
- Ziqing Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Erya Hu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Zhao Q, Wang H, Jiang W, Gao H, Wen S, Feng X, Wu Q, He C, Zhu Y, Hu L, Zhao B, Song W. SERS Resolving of the Significance of Acetate on the Enhanced Catalytic Activity of Nanozymes. Anal Chem 2022; 94:17930-17938. [PMID: 36509488 DOI: 10.1021/acs.analchem.2c03992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the structure-activity correlation and reaction mechanism of the catalytic process in an acetic acid-sodium acetate (HAc-NaAc) buffer environment is crucial for the design of efficient nanozymes. Here, we first reported a lattice restructuration of Au-LaNiO3-δ nanofibers (NFs) after acidification with the HAc-NaAc buffer to show a significantly enhanced oxidase-like property. Surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) calculation confirm the direct evidence for the formation of specific enhanced intermediate O-O species after acidification, indicating that the insertion of the carboxyl group in the A-Au/LaNiO3-δ NFs plays crucial roles in both producing vacancies in HAc-NaAc solution from its dissociation during the catalytic process and the protection of the vacancies, which can be directly interacted with oxygen in the environment to produce O-O species, realizing the enhanced oxidation of substrate molecules. The insertion of the carboxyl group increased the oxidase-like catalytic activity by 2.38 times and the SERS activity by 5.27 times. This strategy offers a way to construct an efficient nanozyme-linked immunosorbent assay system for the diagnosis of cancer through the highly sensitive SERS identification of exosomes.
Collapse
Affiliation(s)
- Qingnan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hai Wang
- China Japan Union Hospital, Jilin University, 126 Xian Tai Street, Changchun 130033, P. R. China
| | - Wenji Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Huimin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xin Feng
- School of Life Sciences, Jilin University, Changchun 130012, P. R China
| | - Qiong Wu
- China Japan Union Hospital, Jilin University, 126 Xian Tai Street, Changchun 130033, P. R. China
| | - Chengyan He
- China Japan Union Hospital, Jilin University, 126 Xian Tai Street, Changchun 130033, P. R. China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Lianghai Hu
- School of Life Sciences, Jilin University, Changchun 130012, P. R China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
19
|
Li K, Tandurella JA, Gai J, Zhu Q, Lim SJ, Thomas DL, Xia T, Mo G, Mitchell JT, Montagne J, Lyman M, Danilova LV, Zimmerman JW, Kinny-Köster B, Zhang T, Chen L, Blair AB, Heumann T, Parkinson R, Durham JN, Narang AK, Anders RA, Wolfgang CL, Laheru DA, He J, Osipov A, Thompson ED, Wang H, Fertig EJ, Jaffee EM, Zheng L. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell 2022; 40:1374-1391.e7. [PMID: 36306792 PMCID: PMC9669212 DOI: 10.1016/j.ccell.2022.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy necessitates optimization and maintenance of activated effector T cells (Teff). We prospectively collected and applied multi-omic analyses to paired pre- and post-treatment PDAC specimens collected in a platform neoadjuvant study of granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDAC vaccine (GVAX) vaccine ± nivolumab (anti-programmed cell death protein 1 [PD-1]) to uncover sensitivity and resistance mechanisms. We show that GVAX-induced tertiary lymphoid aggregates become immune-regulatory sites in response to GVAX + nivolumab. Higher densities of tumor-associated neutrophils (TANs) following GVAX + nivolumab portend poorer overall survival (OS). Increased T cells expressing CD137 associated with cytotoxic Teff signatures and correlated with increased OS. Bulk and single-cell RNA sequencing found that nivolumab alters CD4+ T cell chemotaxis signaling in association with CD11b+ neutrophil degranulation, and CD8+ T cell expression of CD137 was required for optimal T cell activation. These findings provide insights into PD-1-regulated immune pathways in PDAC that should inform more effective therapeutic combinations that include TAN regulators and T cell activators.
Collapse
Affiliation(s)
- Keyu Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Joseph A Tandurella
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jessica Gai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Su Jin Lim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwayne L Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tao Xia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Guanglan Mo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacob T Mitchell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janelle Montagne
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Melissa Lyman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ludmila V Danilova
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacquelyn W Zimmerman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benedict Kinny-Köster
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tengyi Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Linda Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alex B Blair
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thatcher Heumann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rose Parkinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer N Durham
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amol K Narang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A Anders
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher L Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel A Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arsen Osipov
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth D Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Quantitative Sciences Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
20
|
Cui X, Fu Q, Wang X, Xia P, Cui X, Bai X, Lu Z. Molecular mechanisms and clinical applications of exosomes in prostate cancer. Biomark Res 2022; 10:56. [PMID: 35906674 PMCID: PMC9338661 DOI: 10.1186/s40364-022-00398-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PC) is a common tumor in men, and the incidence rate is high worldwide. Exosomes are nanosized vesicles released by all types of cells into multiple biological fluid types. These vesicles contribute to intercellular communication by delivering both nucleic acids and proteins to recipient cells. In recent years, many studies have explored the mechanisms by which exosomes mediate the epithelial-mesenchymal transition, angiogenesis, tumor microenvironment establishment, and drug resistance acquisition in PC, and the mechanisms that have been identified and the molecules involved have provided new perspectives for the possible discovery of novel diagnostic markers in PC. Furthermore, the excellent biophysical properties of exosomes, such as their high stability, high biocompatibility and ability to cross biological barriers, have made exosomes promising candidates for use in novel targeted drug delivery system development. In this review, we summarize the roles of exosomes in the growth and signal transmission in PC and show the promising future of exosome contributions to PC diagnostics and treatment.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xianglun Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaohui Bai
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
21
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
22
|
Chen Q, Li Y, Gao W, Chen L, Xu W, Zhu X. Exosome-Mediated Crosstalk Between Tumor and Tumor-Associated Macrophages. Front Mol Biosci 2021; 8:764222. [PMID: 34722637 PMCID: PMC8549832 DOI: 10.3389/fmolb.2021.764222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanosized vesicles, derived from the endolysosomal compartment of cells and can shuttle diverse biomolecules such as nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their origin cells. Delivery of these cargoes to recipient cells enables exosomes to influence diverse cellular functions. As one of the most abundant immune cells in the tumor microenvironment, tumor-associated macrophages (TAMs) are educated by the tumor milieu, which is rich in cancer cells and stroma components, to exert functions such as the promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Herein, we focus on exosomes-mediated intercellular communication between tumor cells and TAM in the tumor microenvironment, which may provide new targets for anti-tumor treatment. In this review, we highlight the most recent studies on the effect of tumor/macrophage-derived exosomes on macrophage/tumor function in different cancer types.
Collapse
Affiliation(s)
- Qi Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Wujiang Gao
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China.,Reproduction Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Amrollahi P, Zheng W, Monk C, Li CZ, Hu TY. Nanoplasmonic Sensor Approaches for Sensitive Detection of Disease-Associated Exosomes. ACS APPLIED BIO MATERIALS 2021; 4:6589-6603. [PMID: 35006963 PMCID: PMC9130051 DOI: 10.1021/acsabm.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exosomes are abundantly secreted by most cells that carry membrane and cytosolic factors that can reflect the physiologic state of their source cells and thus have strong potential to serve as biomarkers for early diagnosis, disease staging, and treatment monitoring. However, traditional diagnostic or prognostic applications that might use exosomes are hindered by the lack of rapid and sensitive assays that can exploit their biological information. An array of assay approaches have been developed to address this deficit, including those that integrate immunoassays with nanoplasmonic sensors to measure changes in optical refractive indexes in response to the binding of low concentrations of their targeted molecules. These sensors take advantage of enhanced and tunable interactions between the electron clouds of nanoplasmonic particles and structures and incident electromagnetic radiation to enable isolation-free and ultrasensitive quantification of disease-associated exosome biomarkers present in complex biological samples. These unique advantages make nanoplasmonic sensing one of the most competitive approaches available for clinical applications and point-of-care tests that evaluate exosome-based biomarkers. This review will briefly summarize the origin and clinical utility of exosomes and the limitations of current isolation and analysis approaches before reviewing the specific advantages and limitations of nanoplasmonic sensing devices and indicating what additional developments are necessary to allow the translation of these approaches into clinical applications.
Collapse
Affiliation(s)
- Pouya Amrollahi
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Wenshu Zheng
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chandler Monk
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chen-Zhong Li
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
24
|
Luo R, Liu M, Yang Q, Cheng H, Yang H, Li M, Bai X, Wang Y, Zhang H, Wang S, Xie T, Tian Q. Emerging Diagnostic Potential of Tumor-derived Exosomes. J Cancer 2021; 12:5035-5045. [PMID: 34234872 PMCID: PMC8247367 DOI: 10.7150/jca.59391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes carry genetic information originating from their parental cells, raising their possibility as novel noninvasive biomarkers for cancer. Tumor-derived exosomes (TEXs) have a variety of endogenous cargos that reflect the pathophysiology status and information of tumor cells. TEXs are increasingly being recognized as potential biomarkers for cancer diagnosis prognosis, and monitoring. It is important to develop a variety of sensitive methods, including probes and biomaterials to isolate exosomes. A variety of approaches for detecting exosomes have been established. By combining exosome DNA and RNA sequencing tools, exosome proteomics analysis and immunoassay technology, it is expected that exosomes will gain widespread use in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruhua Luo
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengmeng Liu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qian Yang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huijuan Cheng
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huimin Yang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Minhui Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xue Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yue Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuling Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
25
|
Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, Shen XT, Zhu WW, Geng Y, Lu L, Jia HL, Qin LX, Dong QZ. Isolation and characterization of exosomes for cancer research. J Hematol Oncol 2020; 13:152. [PMID: 33168028 PMCID: PMC7652679 DOI: 10.1186/s13045-020-00987-y] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles that carry specific combinations of proteins, nucleic acids, metabolites, and lipids. Mounting evidence suggests that exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including cancer development. Exosomes are released by various cell types under both normal and pathological conditions, and they can be found in multiple bodily fluids. Moreover, exosomes carrying a wide variety of important macromolecules provide a window into altered cellular or tissue states. Their presence in biological fluids renders them an attractive, minimally invasive approach for liquid biopsies with potential biomarkers for cancer diagnosis, prediction, and surveillance. Due to their biocompatibility and low immunogenicity and cytotoxicity, exosomes have potential clinical applications in the development of innovative therapeutic approaches. Here, we summarize recent advances in various technologies for exosome isolation for cancer research. We outline the functions of exosomes in regulating tumor metastasis, drug resistance, and immune modulation in the context of cancer development. Finally, we discuss prospects and challenges for the clinical development of exosome-based liquid biopsies and therapeutics.
Collapse
Affiliation(s)
- Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Hao-Ting Sun
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Sheng-Lin Huang
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wei Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Tian-Tian Zou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiao-Tian Shen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Geng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Liskova A, Samec M, Koklesova L, Giordano FA, Kubatka P, Golubnitschaja O. Liquid Biopsy is Instrumental for 3PM Dimensional Solutions in Cancer Management. J Clin Med 2020; 9:E2749. [PMID: 32854390 PMCID: PMC7563444 DOI: 10.3390/jcm9092749] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
One in every four deaths is due to cancer in Europe. In view of its increasing incidence, cancer became the leading cause of death and disease burden in Denmark, France, the Netherlands, and the UK. Without essential improvements in cancer prevention, an additional 775,000 cases of annual incidence have been prognosed until 2040. Between 1995 and 2018, the direct costs of cancer doubled from EUR 52 billion to EUR 103 billion in Europe, and per capita health spending on cancer increased by 86% from EUR 105 to EUR 195 in general, whereby Austria, Germany, Switzerland, Benelux, and France spend the most on cancer care compared to other European countries. In view of the consequent severe socio-economic burden on society, the paradigm change from a reactive to a predictive, preventive, and personalized medical approach in the overall cancer management is essential. Concepts of predictive, preventive, and personalized medicine (3PM) demonstrate a great potential to revise the above presented trends and to implement cost-effective healthcare that benefits the patient and society as a whole. At any stage, application of early and predictive diagnostics, targeted prevention, and personalization of medical services are basic pillars making 3PM particularly attractive for the patients as well as ethical and cost-effective healthcare. Optimal 3PM approach requires novel instruments such as well-designed liquid biopsy application. This review article highlights current achievements and details liquid biopsy approaches specifically in cancer management. 3PM-relevant expert recommendations are provided.
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|