1
|
Sallam A, El-Defrawy MMH, Dawood MFA, Hashem M. Screening Wheat Genotypes for Specific Genes Linked to Drought Tolerance. Genes (Basel) 2024; 15:1119. [PMID: 39336710 PMCID: PMC11431628 DOI: 10.3390/genes15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
Drought stress, which significantly affects growth and reduces grain yield, is one of the main problems for wheat crops. Producing promising drought-tolerant wheat cultivars with high yields is one of the main targets for wheat breeders. In this study, a total of seven drought-tolerant wheat genotypes were screened for the presence of 19 specific drought tolerance genes. The genotypes were tested under normal and drought conditions for two growing seasons. Four spike traits, namely, spike length (SPL), grain number per spike (GNPS), number of spikelets per spike (NSPS), and grain yield per spike (GYPS), were scored. The results revealed that drought stress decreased the SPL, GNPS, NSPS, and GYPS, with ranges ranging from 2.14 (NSPS) to 13.92% (GNPS) and from 2.40 (NSPS) to 11.09% (GYPS) in the first and second seasons, respectively. ANOVA revealed high genetic variation among the genotypes for each trait under each treatment. According to the drought tolerance indices, Omara 007 presented the highest level of drought tolerance (average of sum ranks = 3), whereas both Giza-36 genotypes presented the lowest level of drought tolerance (average of sum ranks = 4.8) among the genotypes tested. Among the 19 genes tested, 11 were polymorphic among the selected genotypes. Omara 007 and Omara 002 presented the greatest number of specific drought tolerance genes (nine) tested in this study, whereas Sohag-5, Giza-36, and PI469072 presented the lowest number of drought tolerance genes (four). The number of different genes between each pair of genotypes was calculated. Seven different genes were found between Omara 007 and Giza-36, Omara 007 and Sohag-5, and Omara 002 and PI469072. The results of this study may help to identify the best genotypes for crossing candidate genotypes, and not merely to genetically improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Ahmed Sallam
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt; (M.M.H.E.-D.); (M.H.)
| | - Mohamed M. H. El-Defrawy
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt; (M.M.H.E.-D.); (M.H.)
| | - Mona F. A. Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Mostafa Hashem
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt; (M.M.H.E.-D.); (M.H.)
| |
Collapse
|
2
|
Xia P, Zhang Y, Zhang X. The Potential Relevance of PnDREBs to Panax notoginseng Nitrogen Sensitiveness. Biochem Genet 2024; 62:2631-2651. [PMID: 37999875 DOI: 10.1007/s10528-023-10567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
The dehydration response element-binding (DREB) transcription factor is a subfamily of AP2/ERF. It actively responds to various abiotic stresses in plants. As one of the representative plants, Panax notoginseng is sensitive to Nitrogen (N). Here, bioinformatics analysis, the identification, chromosomal location, phylogeny, structure, cis-acting elements, and collinearity of PnDREBs were analyzed. In addition, the expression levels of PnDREBs were analyzed by quantitative reverse transcription PCR. In this study, 54 PnDREBs were identified and defined as PnDREB1 to PnDREB54. They were divided into 6 subfamilies (A1-A6). And 44 PnDREBs were irregularly distributed on 10 of 12 chromosomes. Each group showed specific motifs and exon-intron structures. By predicting cis-acting elements, the PnDREBs may participate in biotic stress, abiotic stress, and hormone induction. Collinear analysis showed that fragment duplication events were beneficial to the amplification and evolution of PnDREB members. The expression of PnDREBs showed obvious tissue specificity in its roots, flowers, and leaves. In addition, under the action of ammonium nitrogen and nitrate nitrogen at the 15 mM level, the level of PnDREB genes expression in roots varied to different degrees. In this study, we identified and characterized PnDREBs for the first time, and analyzed that PnDREBs may be related to the response of P. Notoginseng to N sensitiveness. The results of this study lay a foundation for further research on the function of PnDREBs in P. Notoginseng.
Collapse
Affiliation(s)
- Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Yan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xuemin Zhang
- Tianjin TASLY Modern Chinese Medicine Resources Co., Ltd., Tianjin, 300402, People's Republic of China
| |
Collapse
|
3
|
Wang D, Zeng Y, Yang X, Nie S. Characterization of DREB family genes in Lotus japonicus and LjDREB2B overexpression increased drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2024; 24:497. [PMID: 39075356 PMCID: PMC11285619 DOI: 10.1186/s12870-024-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/30/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Drought stress affects plant growth and development. DREB proteins play important roles in modulating plant growth, development, and stress responses, particularly under drought stress. To study the function of DREB transcription factors (TFs), we screened key DREB-regulating TFs for drought in Lotus japonicus. RESULTS Forty-two DREB TFs were identified, and phylogenetic analysis of proteins from L. japonicus classified them into five subfamilies (A1, A2, A4, A5, A6). The gene motif composition of the proteins is conserved within the same subfamily. Based on the cis-acting regulatory element analysis, we identified many growth-, hormone-, and stress-responsive elements within the promoter regions of DREB. We further analyzed the expression pattern of four genes in the A2 subfamily in response to drought stress. We found that the expression of most of the LjDREB A2 subfamily genes, especially LjDREB2B, was induced by drought stress. We further generated LjDREB2B overexpression transgenic Arabidopsis plants. Under drought stress, the growth of wild-type (WT) and overexpressing LjDREB2B (OE) Arabidopsis lines was inhibited; however, OE plants showed better growth. The malondialdehyde content of LjDREB2B overexpressing lines was lower than that of the WT plants, whereas the proline content and antioxidant enzyme activities in the OE lines were significantly higher than those in the WT plants. Furthermore, after drought stress, the expression levels of AtP5CS1, AtP5CS2, AtRD29A, and AtRD29B in the OE lines were significantly higher than those in the WT plants. CONCLUSIONS Our results facilitate further functional analysis of L. japonicus DREB. LjDREB2B overexpression improves drought tolerance in transgenic Arabidopsis. These results indicate that DREB holds great potential for the genetic improvement of drought tolerance in L. japonicus.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Yuanyuan Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Xiuxiu Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Shuming Nie
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
4
|
Li ZY, Ma N, Zhang FJ, Li LZ, Li HJ, Wang XF, Zhang Z, You CX. Functions of Phytochrome Interacting Factors (PIFs) in Adapting Plants to Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:2198. [PMID: 38396875 PMCID: PMC10888771 DOI: 10.3390/ijms25042198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Plants possess the remarkable ability to sense detrimental environmental stimuli and launch sophisticated signal cascades that culminate in tailored responses to facilitate their survival, and transcription factors (TFs) are closely involved in these processes. Phytochrome interacting factors (PIFs) are among these TFs and belong to the basic helix-loop-helix family. PIFs are initially identified and have now been well established as core regulators of phytochrome-associated pathways in response to the light signal in plants. However, a growing body of evidence has unraveled that PIFs also play a crucial role in adapting plants to various biological and environmental pressures. In this review, we summarize and highlight that PIFs function as a signal hub that integrates multiple environmental cues, including abiotic (i.e., drought, temperature, and salinity) and biotic stresses to optimize plant growth and development. PIFs not only function as transcription factors to reprogram the expression of related genes, but also interact with various factors to adapt plants to harsh environments. This review will contribute to understanding the multifaceted functions of PIFs in response to different stress conditions, which will shed light on efforts to further dissect the novel functions of PIFs, especially in adaption to detrimental environments for a better survival of plants.
Collapse
Affiliation(s)
- Zhao-Yang Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Ning Ma
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Lian-Zhen Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Hao-Jian Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| |
Collapse
|
5
|
Jan R, Kim N, Asaf S, Lubna, Asif S, Du XX, Kim EG, Jang YH, Kim KM. OsCM regulates rice defence system in response to UV light supplemented with drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:902-914. [PMID: 37641387 DOI: 10.1111/plb.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023]
Abstract
Studies on plant responses to combined abiotic stresses are very limited, especially in major crop plants. The current study evaluated the response of chorismate mutase overexpressor (OxCM) rice line to combined UV light and drought stress. The experiments were conducted in pots in a growth chamber, and data were assessed for gene expression, antioxidant and hormone regulation, flavonoid accumulation, phenotypic variation, and amino acid accumulation. Wild-type (WT) rice had reduced the growth and vigour, while transgenic rice maintained growth and vigour under combined UV light and drought stress. ROS and lipid peroxidation analysis revealed that chorismate mutase (OsCM) reduced oxidative stress mediated by ROS scavenging and reduced lipid peroxidation. The combined stresses reduced biosynthesis of total flavonoids, kaempferol and quercetin in WT plants, but increased significantly in plants with OxCM. Phytohormone analysis showed that SA was reduced by 50% in WT and 73% in transgenic plants, while ABA was reduced by 22% in WT plants but increased to 129% in transgenic plants. Expression of chorismate mutase regulates phenylalanine biosynthesis, UV light and drought stress-responsive genes, e.g., phenylalanine ammonia lyase (OsPAL), dehydrin (OsDHN), dehydration-responsive element-binding (OsDREB), ras-related protein 7 (OsRab7), ultraviolet-B resistance 8 (OsUVR8), WRKY transcription factor 89 (OsWRKY89) and tryptophan synthase alpha chain (OsTSA). Moreover, OsCM also increases accumulation of free amino acids (aspartic acid, glutamic acid, leucine, tyrosine, phenylalanine and proline) and sodium (Na), potassium (K), and calcium (Ca) ions in response to the combined stresses. Together, these results suggest that chorismate mutase expression induces physiological, biochemical and molecular changes that enhance rice tolerance to combined UV light and drought stresses.
Collapse
Affiliation(s)
- R Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| | - N Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - S Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - S Asif
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - X-X Du
- Biosafty Division, National Academy of Agriculture Science, Rural Development, Administration, Jeonju, South Korea
| | - E-G Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Y-H Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - K-M Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Ran Z, Chen X, Li R, Duan W, Zhang Y, Fang L, Guo L, Zhou J. Transcriptomics and metabolomics reveal the changes induced by arbuscular mycorrhizal fungi in Panax quinquefolius L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4919-4933. [PMID: 36942522 DOI: 10.1002/jsfa.12563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Panax quinquefolius L. is one of the most important foods and herbs because of its high nutritional value and medicinal potential. In our previous study we found that the ginsenoside content in P. quinquefolius was improved by arbuscular mycorrhizal fungi (AMFs). However, little research has been conducted on the molecular mechanisms in P. quinquefolius roots induced by AMFs colonization. To identify the metabolomic and transcriptomic mechanisms of P. quinquefolius induced by AMFs, non-mycorrhized (control) and mycorrhized (AMF) P. quinquefolius were used as experimental materials for comparative analysis of the transcriptome and metabolome. RESULTS Compared with the control, 182 metabolites and 545 genes were significantly changed at the metabolic and transcriptional levels in AMFs treatment. The metabolic pattern of AMFs was changed, and the contents of ginsenosides (Rb1, Rg2), threonine, and glutaric acid were significantly increased. There were significant differences in the expression of genes involved in plant hormone signal transduction, glutathione metabolism, and the plant-pathogen interaction pathway. In addition, several transcription factors from the NAC, WRKY, and basic helix-loop-helix families were identified in AMFs versus the control. Furthermore, the combined analysis of 'transcriptomics-metabolomics' analysis showed that 'Plant hormone signal transduction', 'Amino sugar and nucleotide sugar metabolism' and 'Glutathione metabolism' pathways were the important enriched pathways in response to AMFs colonization. CONCLUSION Overall, these results provide new insights into P. quinquefolius response to AMFs, which improve our understanding of the molecular mechanisms of P. quinquefolius induced by AMFs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhifang Ran
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaoli Chen
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Rui Li
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wanying Duan
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Yongqing Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
7
|
Izadi-Darbandi A, Alameldin H, Namjoo N, Ahmad K. Introducing sorghum DREB2 gene in maize (Zea mays L.) to improve drought and salinity tolerance. Biotechnol Appl Biochem 2023; 70:1480-1488. [PMID: 36916234 DOI: 10.1002/bab.2458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
Salinity and drought are significant abiotic stresses causing a considerable loss of seed and biomass yield in most commercial crops. Some of the most critical players in the abscisic acid pathway are drought responsive element binding (DREB) proteins that are a part of AP2/ethylene response factor transcription factors that bind to promoters of some family genes needed to be expressed under abiotic stresses. In this study, salt- and drought-tolerant maize plants were produced from immature maize embryos bombarded by the sorghum (Sorghum bicolor L.) DREB2 gene that is linked to hygromycin resistance (hpt) genes. The putative transgenic calli were transferred to an N6 medium containing 1 mg/L benzylaminopurine and 50 mg/L hygromycin. Regeneration was completed after 4 weeks on selective media under a 16/8 h light/dark condition at 25°C. Polymerase chain reaction (PCR) and reverse transcription-PCR approved the existence of upstream promoter (rd29a), hpt gene, and the expression of the DREB2 in transgenes up to the third generation (T2). It was found that the K+/Na+ ratio and the amount of proline as a screening indicator were higher in transgenic plants compared to their wild types. This result is a promising model to enhance maize tolerance to abiotic stressors.
Collapse
Affiliation(s)
- Ali Izadi-Darbandi
- Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Tehran, Iran
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Hussien Alameldin
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Nima Namjoo
- Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Khalil Ahmad
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
8
|
Su J, Song S, Wang Y, Zeng Y, Dong T, Ge X, Duan H. Genome-wide identification and expression analysis of DREB family genes in cotton. BMC PLANT BIOLOGY 2023; 23:169. [PMID: 36997878 PMCID: PMC10061749 DOI: 10.1186/s12870-023-04180-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Dehydration responsive element-binding (DREB) transcription factors are widely present in plants, and involve in signalling transduction, plant growth and development, and stress response. DREB genes have been characterized in multiple species. However, only a few DREB genes have been studied in cotton, one of the most important fibre crops. Herein, the genome‑wide identification, phylogeny, and expression analysis of DREB family genes are performed in diploid and tetraploid cotton species. RESULTS In total, 193, 183, 80, and 79 putative genes containing the AP2 domain were identified using bioinformatics approaches in G. barbadense, G. hirsutum, G. arboretum, and G. raimondii, respectively. Phylogenetic analysis showed that based on the categorization of Arabidopsis DREB genes, 535 DREB genes were divided into six subgroups (A1-A6) by using MEGA 7.0. The identified DREB genes were distributed unevenly across 13/26 chromosomes of A and/or D genomes. Synteny and collinearity analysis confirmed that during the evolution, the whole genome duplications, segmental duplications, and/or tandem duplications occurred in cotton DREB genes, and then DREB gene family was further expanded. Further, the evolutionary trees with conserved motifs, cis-acting elements, and gene structure of cotton DREB gene family were predicted, and these results suggested that DREB genes might be involved in the hormone and abiotic stresses responses. The subcellular localization showed that in four cotton species, DREB proteins were predominantly located in the nucleus. Further, the analysis of DREB gene expression was carried out by real-time quantitative PCR, confirming that the identified DREB genes of cotton were involved in response to early salinity and osmotic stress. CONCLUSIONS Collectively, our results presented a comprehensive and systematic understanding in the evolution of cotton DREB genes, and demonstrated the potential roles of DREB family genes in stress and hormone response.
Collapse
Affiliation(s)
- Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shanglin Song
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yiting Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yunpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
9
|
Xu Y, Hu W, Song S, Ye X, Ding Z, Liu J, Wang Z, Li J, Hou X, Xu B, Jin Z. MaDREB1F confers cold and drought stress resistance through common regulation of hormone synthesis and protectant metabolite contents in banana. HORTICULTURE RESEARCH 2023; 10:uhac275. [PMID: 36789258 PMCID: PMC9923210 DOI: 10.1093/hr/uhac275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
Adverse environmental factors severely affect crop productivity. Improving crop resistance to multiple stressors is an important breeding goal. Although CBFs/DREB1s extensively participate in plant resistance to abiotic stress, the common mechanism underlying CBFs/DREB1s that mediate resistance to multiple stressors remains unclear. Here, we show the common mechanism for MaDREB1F conferring cold and drought stress resistance in banana. MaDREB1F encodes a dehydration-responsive element binding protein (DREB) transcription factor with nuclear localization and transcriptional activity. MaDREB1F expression is significantly induced after cold, osmotic, and salt treatments. MaDREB1F overexpression increases banana resistance to cold and drought stress by common modulation of the protectant metabolite levels of soluble sugar and proline, activating the antioxidant system, and promoting jasmonate and ethylene syntheses. Transcriptomic analysis shows that MaDREB1F activates or alleviates the repression of jasmonate and ethylene biosynthetic genes under cold and drought conditions. Moreover, MaDREB1F directly activates the promoter activities of MaAOC4 and MaACO20 for jasmonate and ethylene syntheses, respectively, under cold and drought conditions. MaDREB1F also targets the MaERF11 promoter to activate MaACO20 expression for ethylene synthesis under drought stress. Together, our findings offer new insight into the common mechanism underlying CBF/DREB1-mediated cold and drought stress resistance, which has substantial implications for engineering cold- and drought-tolerant crops.
Collapse
Affiliation(s)
| | - Wei Hu
- Corresponding authors. E-mail: ; ;
| | | | - Xiaoxue Ye
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zehong Ding
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Juhua Liu
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zhuo Wang
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Jingyang Li
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Xiaowan Hou
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Guangdong, China
| | - Biyu Xu
- Corresponding authors. E-mail: ; ;
| | | |
Collapse
|
10
|
Sheng S, Guo X, Wu C, Xiang Y, Duan S, Yang W, Le W, Cao F, Liu L. Genome-wide identification and expression analysis of DREB genes in alfalfa ( Medicago sativa) in response to cold stress. PLANT SIGNALING & BEHAVIOR 2022; 17:2081420. [PMID: 35642507 PMCID: PMC9176237 DOI: 10.1080/15592324.2022.2081420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Dehydration-responsive element-binding proteins (DREBs) belong to members of the AP2/ERF transcription factor superfamily, which has been reported to involve various abiotic-stress responses and tolerance in plants. However, research on the DREB-family is still limited in alfalfa (Medicago sativa L.), a forage legume cultivated worldwide. The recent genome-sequence release of the alfalfa cultivar "XinJiangDaYe" allowed us to identify 172 DREBs by a multi-step homolog search. The phylogenetic analysis indicated that such MsDREBs could be classified into 5 groups, namely A-1 (56 members), A-2 (39), A-3 (3), A-4 (61) and 13 (A-5 (13), thus adding substantial new members to the DREB-family in alfalfa. Furthermore, a comprehensive survey in silico of conserved motif, gene structure, molecular weight, and isoelectric point (pI) as well as gene expression was conducted. The resulting data showed that, for cold-stress response, 33 differentially expressed MsDREBs were identified with a threshold of Log2-fold > 1, and most of which were transcriptionally upregulated within 48 h during a cold treatment(s). Moreover, the expression profiling of MsDREBs from two ecotypes of alfalfa subspecies i.e. M. sativa ssp. falcata (F56, from a colder region of Central Asia) and M. sativa ssp. sativa (B47, from Near East) revealed that most of the cold-stress responsive MsDREBs exhibited a significantly lower expression in F56, leading to a proposal of the existence of a distinct mechanism(s) for cold tolerance regulated by DREB-related action, which would have been evolved in alfalfa with a genotypic specificity. Additionally, by examining the transcriptome of a freezing-tolerance species (M. sativa cv. Zhaodong), eight DREBs were found to be implicated in a long-term freezing-stress adaptation with a great potential. Taken together, the current genome-wide identification in alfalfa points to the importance of some MsDREBs in the cold-stress response, providing some promising molecular targets to be functionally characterized for the improvement of cold tolerance in crops including alfalfa.
Collapse
Affiliation(s)
- Song Sheng
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Xinyu Guo
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Changzheng Wu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Yucheng Xiang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Shuhui Duan
- Hunan Tobacco Science Institute, Changsha, China
| | - Weiqin Yang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Wenrui Le
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Fengchun Cao
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Laihua Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Hashemi-Petroudi SH, Arab M, Dolatabadi B, Kuo YT, Baez MA, Himmelbach A, Nematzadeh G, Maibody SAMM, Schmutzer T, Mälzer M, Altmann T, Kuhlmann M. Initial Description of the Genome of Aeluropus littoralis, a Halophile Grass. FRONTIERS IN PLANT SCIENCE 2022; 13:906462. [PMID: 35898222 PMCID: PMC9310549 DOI: 10.3389/fpls.2022.906462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 06/01/2023]
Abstract
The use of wild plant species or their halophytic relatives has been considered in plant breeding programs to improve salt and drought tolerance in crop plants. Aeluropus littoralis serves as halophyte model for identification and isolation of novel stress adaptation genes. A. littoralis, a perennial monocot grass, grows in damp or arid areas, often salt-impregnated places and wasteland in cultivated areas, can survive periodically high water salinity, and tolerate high salt concentrations in the soil up to 1,100 mM sodium chloride. Therefore, it serves as valuable genetic resource to understand molecular mechanisms of stress-responses in monocots. The knowledge can potentially be used for improving tolerance to abiotic stresses in economically important crops. Several morphological, anatomical, ecological, and physiological traits of A. littoralis have been investigated so far. After watering with salt water the grass is able to excrete salt via its salt glands. Meanwhile, a number of ESTs (expressed sequence tag), genes and promoters induced by the salt and drought stresses were isolated, sequenced and annotated at a molecular level. Transfer of stress related genes to other species resulted in enhanced stress resistance. Here we describe the genome sequence and structure of A. littoralis analyzed by whole genome sequencing and histological analysis. The chromosome number was determined to be 20 (2n = 2x = 20). The genome size was calculated to be 354 Mb. This genomic information provided here, will support the functional investigation and application of novel genes improving salt stress resistance in crop plants. The utility of the sequence information is exemplified by the analysis of the DREB-transcription factor family.
Collapse
Affiliation(s)
- Seyyed Hamidreza Hashemi-Petroudi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
- RG Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Mozhdeh Arab
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Behnaz Dolatabadi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
- RG Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Yi-Tzu Kuo
- Research Group Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Mariana Alejandra Baez
- Research Group Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Axel Himmelbach
- Research Group Genomics of Genetic Resources Cereals Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ghorbanali Nematzadeh
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, RG Biometrics and Agroinformatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Mälzer
- RG Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Thomas Altmann
- RG Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Markus Kuhlmann
- RG Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
12
|
A Comprehensive Identification and Expression Analysis of VQ Motif-Containing Proteins in Sugarcane (Saccharum spontaneum L.) under Phytohormone Treatment and Cold Stress. Int J Mol Sci 2022; 23:ijms23116334. [PMID: 35683012 PMCID: PMC9181594 DOI: 10.3390/ijms23116334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
The VQ motif-containing proteins play a vital role in various processes such as growth, resistance to biotic and abiotic stresses and development. However, there is currently no report on the VQ genes in sugarcane (Saccharum spp.). Herein, 78 VQ genes in Saccharum spontaneum were identified and classified into nine subgroups (I-IX) by comparative genomic analyses. Each subgroup had a similar structural and conservative motif. These VQ genes expanded mainly through whole-genome segmental duplication. The cis-regulatory elements (CREs) of the VQ genes were widely involved in stress responses, phytohormone responses and physiological regulation. The RNA-seq data showed that SsVQ gene expression patterns in 10 different samples, including different developmental stages, revealed distinct temporal and spatial patterns. A total of 23 SsVQ genes were expressed in all tissues, whereas 13 SsVQ genes were not expressed in any tissues. Sequence Read Archive (SRA) data showed that the majority of SsVQs responded to cold and drought stress. In addition, quantitative real-time PCR analysis showed that the SsVQs were variously expressed under salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA) and cold treatment. This study conducted a full-scale analysis of the VQ gene family in sugarcane, which could be beneficial for the functional characterization of sugarcane VQ genes and provide candidate genes for molecular resistance breeding in cultivated sugarcane in the future.
Collapse
|
13
|
ain-Ali QU, Mushtaq N, Amir R, Gul A, Tahir M, Munir F. Genome-wide promoter analysis, homology modeling and protein interaction network of Dehydration Responsive Element Binding (DREB) gene family in Solanum tuberosum. PLoS One 2021; 16:e0261215. [PMID: 34914734 PMCID: PMC8675703 DOI: 10.1371/journal.pone.0261215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.
Collapse
Affiliation(s)
- Qurat-ul ain-Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nida Mushtaq
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Tahir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
14
|
Wani UM, Majeed ST, Raja V, Wani ZA, Jan N, Andrabi KI, John R. Ectopic expression of a novel cold-resistance protein 1 from Brassica oleracea promotes tolerance to chilling stress in transgenic tomato. Sci Rep 2021; 11:16574. [PMID: 34400729 PMCID: PMC8367951 DOI: 10.1038/s41598-021-96102-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cold stress is considered as one of the major environmental factors that adversely affects the plant growth and distribution. Therefore, there arises an immediate need to cultivate effective strategies aimed at developing stress-tolerant crops that would boost the production and minimise the risks associated with cold stress. In this study, a novel cold-responsive protein1 (BoCRP1) isolated from Brassica oleracea was ectopically expressed in a cold susceptible tomato genotype Shalimar 1 and its function was investigated in response to chilling stress. BoCRP1 was constitutively expressed in all the tissues of B. oleracea including leaf, root and stem. However, its expression was found to be significantly increased in response to cold stress. Moreover, transgenic tomato plants expressing BoCRP1 exhibited increased tolerance to chilling stress (4 °C) with an overall improved rate of seed germination, increased root length, reduced membrane damage and increased accumulation of osmoprotectants. Furthermore, we observed increased transcript levels of stress responsive genes and enhanced accumulation of reactive oxygen species scavenging enzymes in transgenic plants on exposure to chilling stress. Taken together, these results strongly suggest that BoCRP1 is a promising candidate gene to improve the cold stress tolerance in tomato.
Collapse
Affiliation(s)
- Umer Majeed Wani
- grid.412997.00000 0001 2294 5433Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir 190 006 India ,grid.412997.00000 0001 2294 5433Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Sheikh Tahir Majeed
- grid.412997.00000 0001 2294 5433Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Vaseem Raja
- grid.412997.00000 0001 2294 5433Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir 190 006 India
| | - Zubair Ahmad Wani
- grid.412997.00000 0001 2294 5433Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Nelofer Jan
- grid.412997.00000 0001 2294 5433Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir 190 006 India
| | - Khursid Iqbal Andrabi
- grid.412997.00000 0001 2294 5433Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Riffat John
- grid.412997.00000 0001 2294 5433Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir 190 006 India
| |
Collapse
|
15
|
Singh K, Chandra A. DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00840-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Mushtaq N, Munir F, Gul A, Amir R, Zafar Paracha R. Genome-wide analysis, identification, evolution and genomic organization of dehydration responsive element-binding (DREB) gene family in Solanum tuberosum. PeerJ 2021; 9:e11647. [PMID: 34221730 PMCID: PMC8236231 DOI: 10.7717/peerj.11647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023] Open
Abstract
Background The dehydration responsive element-binding (DREB) gene family plays a crucial role as transcription regulators and enhances plant tolerance to abiotic stresses. Although the DREB gene family has been identified and characterized in many plants, knowledge about it in Solanum tuberosum (Potato) is limited. Results In the present study, StDREB gene family was comprehensively analyzed using bioinformatics approaches. We identified 66 StDREB genes through genome wide screening of the Potato genome based on the AP2 domain architecture and amino acid conservation analysis (Valine at position 14th). Phylogenetic analysis divided them into six distinct subgroups (A1–A6). The categorization of StDREB genes into six subgroups was further supported by gene structure and conserved motif analysis. Potato DREB genes were found to be distributed unevenly across 12 chromosomes. Gene duplication proved that StDREB genes experienced tandem and segmental duplication events which led to the expansion of the gene family. The Ka/Ks ratios of the orthologous pairs also demonstrated the StDREB genes were under strong purification selection in the course of evolution. Interspecies synteny analysis revealed 45 and 36 StDREB genes were orthologous to Arabidopsis and Solanum lycopersicum, respectively. Moreover, subcellular localization indicated that StDREB genes were predominantly located within the nucleus and the StDREB family’s major function was DNA binding according to gene ontology (GO) annotation. Conclusions This study provides a comprehensive and systematic understanding of precise molecular mechanism and functional characterization of StDREB genes in abiotic stress responses and will lead to improvement in Solanum tuberosum.
Collapse
Affiliation(s)
- Nida Mushtaq
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modelling & Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
17
|
Li Z, Wang G, Liu X, Wang Z, Zhang M, Zhang J. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. BMC Genomics 2021; 22:456. [PMID: 34139993 PMCID: PMC8212459 DOI: 10.1186/s12864-021-07799-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background The dehydration-responsive element-binding proteins (DREBs) are important transcription factors that interact with a DRE/CRT (C-repeat) sequence and involve in response to multiple abiotic stresses in plants. Modern sugarcane are hybrids from the cross between Saccharum spontaneum and Saccharum officinarum, and the high sugar content is considered to the attribution of S. officinaurm, while the stress tolerance is attributed to S. spontaneum. To understand the molecular and evolutionary characterization and gene functions of the DREBs in sugarcane, based on the recent availability of the whole genome information, the present study performed a genome-wide in silico analysis of DREB genes and transcriptome analysis in the polyploidy S. spontaneum. Results Twelve DREB1 genes and six DREB2 genes were identified in S. spontaneum genome and all proteins contained a conserved AP2/ERF domain. Eleven SsDREB1 allele genes were assumed to be originated from tandem duplications, and two of them may be derived after the split of S. spontaneum and the proximal diploid species sorghum, suggesting tandem duplication contributed to the expansion of DREB1-type genes in sugarcane. Phylogenetic analysis revealed that one DREB2 gene was lost during the evolution of sugarcane. Expression profiling showed different SsDREB genes with variable expression levels in the different tissues, indicating seven SsDREB genes were likely involved in the development and photosynthesis of S. spontaneum. Furthermore, SsDREB1F, SsDREB1L, SsDREB2D, and SsDREB2F were up-regulated under drought and cold condition, suggesting that these four genes may be involved in both dehydration and cold response in sugarcane. Conclusions These findings demonstrated the important role of DREBs not only in the stress response, but also in the development and photosynthesis of S. spontaneum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07799-5.
Collapse
Affiliation(s)
- Zhen Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224051, China
| | - Xihui Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Jisen Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
18
|
Cao Z, Wu P, Gao H, Xia N, Jiang Y, Tang N, Liu G, Chen Z. Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence. Genes Genomics 2021; 44:219-235. [PMID: 34110609 DOI: 10.1007/s13258-021-01118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lonicera macranthoides is an important woody plant with high medicinal values widely cultivated in southern China. WRKY, one of the largest transcription factor families, participates in plant development, senescence, and stress responses. However, a comprehensive study of the WRKY family in L. macranthoides hasn't been reported previously. OBJECTIVE To establish an extensive overview of the WRKY family in L. macranthoides and identify senescence-responsive members of LmWRKYs. METHODS RNA-Seq and phylogenetic analysis were employed to identify the LmWRKYs and their evolutionary relationships. Quantitative real-time (qRT-PCR) and transgenic technology was utilized to investigate the roles of LmWRKYs in response to developmental-, cold-, and ethylene-induced senescence. RESULTS A total of 61 LmWRKY genes with a highly conserved motif WRKYGQK were identified. Phylogenetic analysis of LmWRKYs together with their orthologs from Arabidopsis classified them into three groups, with the number of 15, 39, and 7, respectively. 17 LmWRKYs were identified to be differentially expressed between young and aging leaves by RNA-Seq. Further qRT-PCR analysis showed 15 and 5 LmWRKY genes were significantly induced responding to tissue senescence in leaves and stems, respectively. What's more, five LmWRKYs, including LmWRKY4, LmWRKY5, LmWRKY6, LmWRKY11, and LmWRKY16 were dramatically upregulated under cold and ethylene treatment in both leaves and stems, indicating their involvements commonly in developmental- and stress-induced senescence. In addition, function analysis revealed LmWRKY16, a homolog of AtWRKY75, can accelerate plant senescence, as evidenced by leaf yellowing during reproductive growth in LmWRKY16-overexpressing tobaccos. CONCLUSION The results lay the foundation for molecular characterization of LmWRKYs in plant senescence.
Collapse
Affiliation(s)
- Zhengyan Cao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Peiyin Wu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Hongmei Gao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ying Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China. .,Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China. .,Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| | - Guohua Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China. .,Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China. .,Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| |
Collapse
|
19
|
Aono AH, Pimenta RJG, Garcia ALB, Correr FH, Hosaka GK, Carrasco MM, Cardoso-Silva CB, Mancini MC, Sforça DA, dos Santos LB, Nagai JS, Pinto LR, Landell MGDA, Carneiro MS, Balsalobre TW, Quiles MG, Pereira WA, Margarido GRA, de Souza AP. The Wild Sugarcane and Sorghum Kinomes: Insights Into Expansion, Diversification, and Expression Patterns. FRONTIERS IN PLANT SCIENCE 2021; 12:668623. [PMID: 34305969 PMCID: PMC8294386 DOI: 10.3389/fpls.2021.668623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 05/11/2023]
Abstract
The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi), a close diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs when disregarding duplications and allelic copies, and these were related to 1,345 representative gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and exhibited high compositional similarities and evolutionary divergences. By utilizing the collinearity between the species, this study offers insights into Sbi and Ssp speciation, PK differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq and identified significant similarities between Sbi and Ssp. Moreover, coexpression networks allowed inference of a core structure of kinase interactions with specific key elements. This study provides the first categorization of the allelic specificity of a kinome and offers a wide reservoir of molecular and genetic information, thereby enhancing the understanding of Sbi and Ssp PK evolutionary history.
Collapse
Affiliation(s)
- Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo José Gonzaga Pimenta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Letycia Basso Garcia
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Fernando Henrique Correr
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Guilherme Kenichi Hosaka
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Marishani Marin Carrasco
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Melina Cristina Mancini
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Danilo Augusto Sforça
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas Borges dos Santos
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - James Shiniti Nagai
- Faculty of Medicine, Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Luciana Rossini Pinto
- Advanced Center of Sugarcane Agrobusiness Technological Research, Agronomic Institute of Campinas (IAC), Ribeirão Preto, Brazil
| | | | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Thiago Willian Balsalobre
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Marcos Gonçalves Quiles
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (Unifesp), São José dos Campos, Brazil
| | | | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Anete Pereira de Souza,
| |
Collapse
|
20
|
The AP2/ERF Gene Family in Triticum durum: Genome-Wide Identification and Expression Analysis under Drought and Salinity Stresses. Genes (Basel) 2020; 11:genes11121464. [PMID: 33297327 PMCID: PMC7762271 DOI: 10.3390/genes11121464] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Members of the AP2/ERF transcription factor family play critical roles in plant development, biosynthesis of key metabolites, and stress response. A detailed study was performed to identify TtAP2s/ERFs in the durum wheat (Triticum turgidum ssp. durum) genome, which resulted in the identification of 271 genes distributed on chromosomes 1A-7B. By carrying 27 genes, chromosome 6A had the highest number of TtAP2s/ERFs. Furthermore, a duplication assay of TtAP2s/ERFs demonstrated that 70 duplicated gene pairs had undergone purifying selection. According to RNA-seq analysis, the highest expression levels in all tissues and in response to stimuli were associated with DRF and ERF subfamily genes. In addition, the results revealed that TtAP2/ERF genes have tissue-specific expression patterns, and most TtAP2/ERF genes were significantly induced in the root tissue. Additionally, 13 TtAP2/ERF genes (six ERFs, three DREBs, two DRFs, one AP2, and one RAV) were selected for further analysis via qRT-PCR of their potential in coping with drought and salinity stresses. The TtAP2/ERF genes belonging to the DREB subfamily were markedly induced under both drought-stress and salinity-stress conditions. Furthermore, docking simulations revealed several residues in the pocket sites of the proteins associated with the stress response, which may be useful in future site-directed mutagenesis studies to increase the stress tolerance of durum wheat. This study could provide valuable insights for further evolutionary and functional assays of this important gene family in durum wheat.
Collapse
|