1
|
Sun M, Chang L, He L, Wang L, Jiang Z, Si Y, Yu J, Ma Y. Combining single-cell profiling and functional analysis explores the role of pseudogenes in human early embryonic development. J Genet Genomics 2024; 51:1173-1186. [PMID: 39032861 DOI: 10.1016/j.jgg.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
More and more studies have demonstrated that pseudogenes possess coding ability, and the functions of their transcripts in the development of diseases have been partially revealed. However, the role of pseudogenes in maintenance of normal physiological states and life activities has long been neglected. Here, we identify pseudogenes that are dynamically expressed during human early embryogenesis, showing different expression patterns from that of adult tissues. We explore the expression correlation between pseudogenes and the parent genes, partly due to their shared gene regulatory elements or the potential regulation network between them. The essential role of three pseudogenes, PI4KAP1, TMED10P1, and FBXW4P1, in maintaining self-renewal of human embryonic stem cells is demonstrated. We further find that the three pseudogenes might perform their regulatory functions by binding to proteins or microRNAs. The pseudogene-related single-nucleotide polymorphisms are significantly associated with human congenital disease, further illustrating their importance during early embryonic development. Overall, this study is an excavation and exploration of functional pseudogenes during early human embryonic development, suggesting that pseudogenes are not only capable of being specifically activated in pathological states, but also play crucial roles in the maintenance of normal physiological states.
Collapse
Affiliation(s)
- Mengyao Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China
| | - Le Chang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Liu He
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Li Wang
- Department of Obstetrics, Haidian District Maternity and Child Health Hospital, Beijing 100080, China
| | - Zhengyang Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yanmin Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China.
| |
Collapse
|
2
|
Tiwari P, Tripathi LP. Long Non-Coding RNAs, Nuclear Receptors and Their Cross-Talks in Cancer-Implications and Perspectives. Cancers (Basel) 2024; 16:2920. [PMID: 39199690 PMCID: PMC11352509 DOI: 10.3390/cancers16162920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various epigenetic and post-transcriptional events in the cell, thereby significantly influencing cellular processes including gene expression, development and diseases such as cancer. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that typically regulate transcription of genes involved in a broad spectrum of cellular processes, immune responses and in many diseases including cancer. Owing to their many overlapping roles as modulators of gene expression, the paths traversed by lncRNA and NR-mediated signaling often cross each other; these lncRNA-NR cross-talks are being increasingly recognized as important players in many cellular processes and diseases such as cancer. Here, we review the individual roles of lncRNAs and NRs, especially growth factor modulated receptors such as androgen receptors (ARs), in various types of cancers and how the cross-talks between lncRNAs and NRs are involved in cancer progression and metastasis. We discuss the challenges involved in characterizing lncRNA-NR associations and how to overcome them. Furthering our understanding of the mechanisms of lncRNA-NR associations is crucial to realizing their potential as prognostic features, diagnostic biomarkers and therapeutic targets in cancer biology.
Collapse
Affiliation(s)
- Prabha Tiwari
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Lokesh P. Tripathi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Kanagawa, Japan
- AI Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Kento Innovation Park NK Building, 3-17 Senrioka Shinmachi, Settsu 566-0002, Osaka, Japan
| |
Collapse
|
3
|
Li K, Ji YM, Guo JL, Guo Q. Biological functions and molecular mechanisms of LINC00961 in human cancer. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2174707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, People's Hospital of Jianyang, Jianyang, Sichuan, People’s Republic of China
| | - Yan-Mei Ji
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| |
Collapse
|
4
|
Xiao XY, Guo Q, Tong S, Wu CY, Chen JL, Ding Y, Wan JH, Chen SS, Wang SH. TRAT1 overexpression delays cancer progression and is associated with immune infiltration in lung adenocarcinoma. Front Oncol 2022; 12:960866. [PMID: 36276113 PMCID: PMC9582843 DOI: 10.3389/fonc.2022.960866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The roles and mechanisms of T-cell receptor (TCR)-associated transmembrane adaptor 1 (TRAT1) in lung adenocarcinoma (LAC) have not yet been reported in the relevant literature. Therefore, this study aimed to understand the roles and mechanisms of TRAT1 in LAC using bioinformatics and in vitro experiments. TRAT1 expression levels in LAC samples were analysed using various databases. TRAT1 co-expressed genes were acquired by the correlation analysis of LAC tissues. The functional mechanisms and protein network of TRAT1 co-expressed genes were analysed using bioinformatics analysis. The expression of TRAT1 was activated in LAC cells, and the roles of TRAT1 overexpression in the growth and migration of cancer cells was investigated using flow cytometry, Cell Counting Kit-8 (CCK-8), and migration and invasion assays. The relationship between TRAT1 overexpression, the immune microenvironment, and RNA modification was evaluated using correlation analysis. TRAT1 expression levels were significantly abnormal at multiple mutation sites and were related to the prognosis of LAC. TRAT1 co-expressed genes were involved in cell proliferation, adhesion, and differentiation, and TRAT1 overexpression significantly inhibited cell viability, migration, and invasion and promoted apoptosis of A549 and H1299 cells, which might be related to the TCR, B cell receptor (BCR), MAPK, and other pathways. TRAT1 expression levels were significantly correlated with the ESTIMATE, immune, and stromal scores in the LAC microenvironment. Additionally, TRAT1 expression levels were significantly correlated with the populations of B cells, CD8 T cells, cytotoxic cells, and other immune cells. TRAT1 overexpression was significantly correlated with the expression of immune cell markers (such as PDCD1, CD2, CD3E) and genes involved in RNA modification (such as ALKBH1, ALKBH3, ALKBH5). In conclusions, TRAT1 overexpression inhibited the growth and migration of LAC cells, thereby delaying cancer progression, and was correlated with the LAC microenvironment and RNA modifications.
Collapse
Affiliation(s)
- Xiao-Yue Xiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Hao Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Shan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si-Hua Wang, ; Shan-Shan Chen,
| | - Si-Hua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si-Hua Wang, ; Shan-Shan Chen,
| |
Collapse
|
5
|
Chen H, Rong Z, Ge L, Yu H, Li C, Xu M, Zhang Z, Lv J, He Y, Li W, Chen L. Leader gene identification for digestive system cancers based on human subcellular location and cancer-related characteristics in protein-protein interaction networks. Front Genet 2022; 13:919210. [PMID: 36226184 PMCID: PMC9548996 DOI: 10.3389/fgene.2022.919210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stomach, liver, and colon cancers are the most common digestive system cancers leading to mortality. Cancer leader genes were identified in the current study as the genes that contribute to tumor initiation and could shed light on the molecular mechanisms in tumorigenesis. An integrated procedure was proposed to identify cancer leader genes based on subcellular location information and cancer-related characteristics considering the effects of nodes on their neighbors in human protein-protein interaction networks. A total of 69, 43, and 64 leader genes were identified for stomach, liver, and colon cancers, respectively. Furthermore, literature reviews and experimental data including protein expression levels and independent datasets from other databases all verified their association with corresponding cancer types. These final leader genes were expected to be used as diagnostic biomarkers and targets for new treatment strategies. The procedure for identifying cancer leader genes could be expanded to open up a window into the mechanisms, early diagnosis, and treatment of other cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
7
|
Zhang CW, Zhou B, Liu YC, Su LW, Meng J, Li SL, Wang XL. LINC00365 inhibited lung adenocarcinoma progression and glycolysis via sponging miR-429/KCTD12 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1853-1866. [PMID: 35426242 DOI: 10.1002/tox.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
This study researched the function of long non-coding RNA LINC00365 in lung adenocarcinoma (LAD) progression. LINC00365, miR-429, and KCTD12 expression in the LAD clinical tissues and cells were detcetd by qRT-PCR and Western blot. LINC00365, miR-429, and KCTD12 effects on H1975 cells malignant phenotype were detected by cell counting kit-8 assay, clone formation experiment, Transwell experiment, and glycolysis. Dual luciferase reporter gene assay and RNA pull-down assay were implemented. LINC00365 effect on H1975 cells in vivo growth was detected. LINC00365 was low expressed in the LAD patients and cells, associating with poor outcome. LINC00365 up-regulation attenuated H1975 cells proliferation, migration, invasion, glycolysis and in vivo growth. LINC00365 inhibited KCTD12 expression by sponging miR-429. miR-429 up-regulation and KCTD12 down-regulation partial reversed LINC00365 inhibition on H1975 cells malignant phenotype. Thus, LINC00365 inhibited LAD progression and glycolysis via targeting miR-429/KCTD12 axis. LINC00365 might be a potential candidate for LAD target treatment clinically.
Collapse
Affiliation(s)
- Cheng-Wei Zhang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Bin Zhou
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Yan-Chao Liu
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Li-Wei Su
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Jie Meng
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Shao-Lei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| |
Collapse
|
8
|
Yang L, Xiong H, Li X, Li Y, Zhou H, Lin X, Chan TF, Li R, Lai KP, Chen X. Network Pharmacology and Comparative Transcriptome Reveals Biotargets and Mechanisms of Curcumol Treating Lung Adenocarcinoma Patients With COVID-19. Front Nutr 2022; 9:870370. [PMID: 35520289 PMCID: PMC9063984 DOI: 10.3389/fnut.2022.870370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to 4,255,892 deaths worldwide. Although COVID-19 vaccines are available, mutant forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have reduced the effectiveness of vaccines. Patients with cancer are more vulnerable to COVID-19 than patients without cancer. Identification of new drugs to treat COVID-19 could reduce mortality rate, and traditional Chinese Medicine(TCM) has shown potential in COVID-19 treatment. In this study, we focused on lung adenocarcinoma (LUAD) patients with COVID-19. We aimed to investigate the use of curcumol, a TCM, to treat LUAD patients with COVID-19, using network pharmacology and systematic bioinformatics analysis. The results showed that LUAD and patients with COVID-19 share a cluster of common deregulated targets. The network pharmacology analysis identified seven core targets (namely, AURKA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2, and TTK) of curcumol in patients with COVID-19 and LUAD. Clinicopathological analysis of these targets demonstrated that the expression of these targets is associated with poor patient survival rates. The bioinformatics analysis further highlighted the involvement of this target cluster in DNA damage response, chromosome stability, and pathogenesis of LUAD. More importantly, these targets influence cell-signaling associated with the Warburg effect, which supports SARS-CoV-2 replication and inflammatory response. Comparative transcriptomic analysis on in vitro LUAD cell further validated the effect of curcumol for treating LUAD through the control of cell cycle and DNA damage response. This study supports the earlier findings that curcumol is a potential treatment for patients with LUAD and COVID-19.
Collapse
Affiliation(s)
- Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Hao Xiong
- Guilin Center for Disease Control and Prevention, Guilin, China
| | - Xin Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yu Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Huanhuan Zhou
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ting Fung Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- *Correspondence: Rong Li
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- Keng Po Lai
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Xu Chen ;
| |
Collapse
|
9
|
Guo H, Lin S, Gan Z, Xie J, Zhou J, Hu M. lncRNA FOXD3-AS1 promotes the progression of non-small cell lung cancer by regulating the miR-135a-5p/CDK6 axis. Oncol Lett 2021; 22:853. [PMID: 34733371 PMCID: PMC8561623 DOI: 10.3892/ol.2021.13114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/22/2021] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA (lncRNA) is essential to the development and progression of malignant human cancer. Growing evidence suggests that the lncRNA forkhead box D3 antisense 1 (FOXD3-AS1) is a crucial regulatory effector for multiple cancer types and is closely associated with poor prognosis. However, in most cases, the molecular mechanism underlying the role of FOXD3-AS1 in cancer development has not yet been fully elucidated. The present study focused on non-small cell lung cancer (NSCLC) in order to gain insight into how FOXD3-AS1 drives cancer progression. First, FOXD3-AS1 expression in NSCLC tissue samples was detected using reverse transcription-quantitative (RT-qPCR). Moreover, cell proliferation and apoptosis were determined using Cell Counting Kit-8 assays and flow cytometry, respectively. A luciferase reporter assay was then performed to determine whether there was a direct binding association between FOXD3-AS1 and microRNA (miR)-135a-5p. Lastly, a tumor subcutaneous xenograft model was established to examine the role of FOXD3-AS1 in tumor growth. FOXD3-AS1 was significantly overexpressed in NSCLC tissue samples and cell lines compared with normal tissue samples and cells. FOXD3-AS1 silencing expression significantly inhibited A549 and H1229 cell proliferation while inducing apoptosis compared with sh-NC group. The luciferase reporter assay demonstrated the direct binding interaction between FOXD3-AS1 and miR-135a-5p. Moreover, FOXD3-AS1 silencing led to the upregulation of miR-135a-5p in A549 and H1229 cells compared with sh-NC group. It was also demonstrated that miR-135a-5p could bind to the 3′ untranslated region of cyclin-dependent kinase 6 (CDK6) and negatively modulate its transcription. miR-135a-5p knockdown or CDK6 overexpression reversed the inhibition on cell proliferation and apoptosis following FOXD3-AS1 knockdown. Altogether, the present study suggests that FOXD3-AS1 sponges miR-135a-5p to promote cell proliferation and concomitantly inhibit apoptosis by regulating CDK6 expression in NSCLC cells.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Respiratory Medicine, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China
| | - Shufang Lin
- Department of Respiratory Medicine, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China
| | - Zhenyong Gan
- Department of Respiratory Medicine, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China
| | - Jinglian Xie
- Department of Respiratory Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China.,Department of Cardiothoracic Surgery, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China
| | - Jiaming Zhou
- Department of Respiratory Medicine, The Fifth People's Hospital of Nanhai District, Foshan, Guangdong 528200, P.R. China
| | - Ming Hu
- Department of Urology, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China.,Department of Urology, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China
| |
Collapse
|
10
|
Zhang M, Lan X, Chen Y. MiR-133b suppresses the proliferation, migration and invasion of lung adenocarcinoma cells by targeting SKA3. Cancer Biol Ther 2021; 22:571-578. [PMID: 34711122 DOI: 10.1080/15384047.2021.1973819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Spindle and Kinetochore Associated Complex Subunit 3 (SKA3) is crucial for anaphase mitosis. However, the relationship between SKA3 and lung adenocarcinoma (LUAD) has not been fully clarified. Differentially expressed genes were first identified by analyzing data from TCGA. It was found that miR-133b was significantly lowly expressed in LUAD, while SKA3 was remarkably highly expressed. Cell Counting Kit-8 (CCK8), wound healing assay and Transwell assay uncovered that overexpressing miR-133b could inhibit the proliferation, invasion and migration of LUAD cells. In addition, the targeting relationship between miR-133b and SKA3 was also verified by dual-luciferase analysis. Moreover, it was proved by the rescue assay that the overexpression of miR-133b significantly downregulated SKA3 in LUAD cells. All in all, these findings revealed the role of miR-133b and SKA3 in regulating the proliferation, migration, and invasion of LUAD cells. This study could yield new information about the mechanisms of LUAD.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang PR China
| | - Xiang Lan
- Department of Radiation Oncology, Lishui City People's Hospital, Lishui, Zhejiang PR China
| | - Yong Chen
- Department of Radiation Oncology, Lishui City People's Hospital, Lishui, Zhejiang PR China
| |
Collapse
|
11
|
Wang L, Chen Y, Wu S, Tang J, Chen G, Li F. miR-135a Suppresses Granulosa Cell Growth by Targeting Tgfbr1 and Ccnd2 during Folliculogenesis in Mice. Cells 2021; 10:cells10082104. [PMID: 34440873 PMCID: PMC8394614 DOI: 10.3390/cells10082104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
The success of female reproduction relies on high quality oocytes, which is determined by well-organized cooperation between granulosa cells (GCs) and oocytes during folliculogenesis. GC growth plays a crucial role in maintaining follicle development. Herein, miR-135a was identified as a differentially expressed microRNA in pre-ovulatory ovarian follicles between Large White and Chinese Taihu sows detected by Solexa deep sequencing. We found that miR-135a could significantly facilitate the accumulation of cells arrested at the G1/S phase boundary and increase apoptosis. Mechanically, miR-135a suppressed transforming growth factor, beta receptor I (Tgfbr1) and cyclin D2 (Ccnd2) expression by targeting their 3′UTR in GCs. Furthermore, subcellular localization analysis and a chromatin immunoprecipitation-quantitative real-time PCR (ChIP-qPCR) assay demonstrated that the TGFBR1-SMAD3 pathway could enhance Ccnd2 promoter activity and thus upregulate Ccnd2 expression. Finally, estrogen receptor 2 (ESR2) functioned as a transcription factor by directly binding to the miR-135a promoter region and decreasing the transcriptional activity of miR-135a. Taken together, our study reveals a pro-survival mechanism of ESR2/miR-135a/Tgfbr1/Ccnd2 axis for GC growth, and also provides a novel target for the improvement of female fertility.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.W.); (Y.C.); (S.W.); (J.T.); (G.C.)
| | - Yaru Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.W.); (Y.C.); (S.W.); (J.T.); (G.C.)
| | - Shang Wu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.W.); (Y.C.); (S.W.); (J.T.); (G.C.)
| | - Jinhua Tang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.W.); (Y.C.); (S.W.); (J.T.); (G.C.)
| | - Gaogui Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.W.); (Y.C.); (S.W.); (J.T.); (G.C.)
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.W.); (Y.C.); (S.W.); (J.T.); (G.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
12
|
García-Padilla C, Lozano-Velasco E, López-Sánchez C, Garcia-Martínez V, Aranega A, Franco D. Non-Coding RNAs in Retinoic Acid as Differentiation and Disease Drivers. Noncoding RNA 2021; 7:ncrna7010013. [PMID: 33671241 PMCID: PMC8005990 DOI: 10.3390/ncrna7010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
All-trans retinoic acid (RA) is the most active metabolite of vitamin A. Several studies have described a pivotal role for RA signalling in different biological processes such as cell growth and differentiation, embryonic development and organogenesis. Since RA signalling is highly dose-dependent, a fine-tuning regulatory mechanism is required. Thus, RA signalling deregulation has a major impact, both in development and disease, related in many cases to oncogenic processes. In this review, we focus on the impact of ncRNA post-transcriptional regulatory mechanisms, especially those of microRNAs and lncRNAs, in RA signalling pathways during differentiation and disease.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
- Correspondence:
| |
Collapse
|
13
|
Li L, Wan D, Li L, Qin Y, Ma W. lncRNA RAET1K Promotes the Progression of Acute Myeloid Leukemia by Targeting miR-503-5p/INPP4B Axis. Onco Targets Ther 2021; 14:531-544. [PMID: 33500628 PMCID: PMC7823139 DOI: 10.2147/ott.s291123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background Although long non-coding RNA (lncRNA) RAET1K has been observed to be abnormally expressed in patients with various cancers, its role and molecular mechanism in acute myeloid leukemia (AML) remain unclear. Methods The expression of RAET1K and miR-503-5p in bone marrow tissues and cell lines was detected by qRT-PCR. Cell proliferation was evaluated by cell counting kit-8 and 5-ethynyl-20-deoxyuridine (EdU) staining assay. Cell invasion and migration were detected by transwell assay. Cell apoptosis was evaluated by flow cytometry. The relationship between RAET1K and miR-503-5p, as well as miR-503-5p and INPP4B, was determined by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. In addition, the tumorigenesis of leukemia cells was evaluated by using a xenograft mouse model in vivo. Results RAET1K was significantly upregulated and miR-503-5p was markedly downregulated in bone marrow tissues and cell lines (HL-60 and THP-1). Silencing of RAET1K (si-RAET1K) and overexpression of miR-503-5p inhibited cell proliferation, migration, and invasion but promoted apoptosis of HL-60 and THP-1 cells. RAET1K functioned as a sponge of miR-503-5p, and miR-503-5p inhibitor obviously attenuated the effect of si-RAET1K on AML progression in vitro. INPP4B was identified as a target of miR-503-5p, and INPP4B overexpression obviously reversed the effect of miR-503-5p mimics on cell proliferation, migration, invasion, and apoptosis of HL-60 and THP-1 cells in vitro. Knockdown of RAET1K effectively inhibited the tumorigenesis of leukemia cells in vivo. Conclusion Our results demonstrated that RAET1K/miR-503-5p/INPP4B axis contributed to AML progression, suggesting that RAET1K might be a potential target for the treatment of AML.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Lin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Yang Qin
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| |
Collapse
|
14
|
Li SQ, Feng J, Yang M, Ai XP, He M, Liu F. Sauchinone: a prospective therapeutic agent-mediated EIF4EBP1 down-regulation suppresses proliferation, invasion and migration of lung adenocarcinoma cells. J Nat Med 2020; 74:777-787. [PMID: 32666278 DOI: 10.1007/s11418-020-01435-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Lung adenocarcinoma (LUAD) is the top prevalent histological kind of lung cancer worldwide. Recent evidences have demonstrated that Sauchinone plays an anticancer role in tumor cell invasion and migration. Therefore, we performed this investigation to explain the potential role of Sauchinone in LUAD as well as the potential mechanism involved. Cell counting kit 8 (CCK-8) and transwell experiments were implemented to measure the proliferative, invasive and migratory abilities of LUAD cells. qRT-PCR and Western blot were performed to detect the transfection efficiency of si-EIF4EBP1s. Additionally, Western blot was also implemented to evaluate the effect of Sauchinone on EIF4EBP1 expression level as well as cell cycle-related proteins. Our findings showed that Sauchinone remarkably suppressed the proliferative ability of LUAD cells in a dose-dependent and time-dependent manner. EIF4EBP1 was a candidate target gene of Sauchinone. EIF4EBP1 expression was increased in LUAD tissues, and its high expression induced a poorer prognosis of LUAD patients. EIF4EBP1 expression was positively associated with cell cycle in LUAD. Sauchinone treatment attenuated EIF4EBP1 expression and cell cycle-related protein levels. Knockdown of EIF4EBP1 repressed the proliferation, invasion and migration of LUAD cells; furthermore, Sauchinone stimulation enforced its inhibitory effect. Meanwhile, the treatment of Sauchinone intensified the arrest of cell cycle induced by EIF4EBP1 knockdown. To sum up, our discovery indicated that Sauchinone exerts an anticancer role through down-regulating EIF4EBP1 and mediating cell cycle in LUAD.
Collapse
Affiliation(s)
- Sheng-Qian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Jing Feng
- Department of Pharmacy, Nanchong Second People's Hospital, No.55, Baituba Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Xiao-Peng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China.
| |
Collapse
|