1
|
Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: A review. Gene 2024; 927:148757. [PMID: 38986751 DOI: 10.1016/j.gene.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Dairy Research Institute, Karnal, India; U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura, India.
| | | | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
2
|
Ahmed Z, Xiang W, Wang F, Nawaz M, Kuthu ZH, Lei C, Xu D. Whole-genome resequencing deciphers patterns of genetic diversity, phylogeny, and evolutionary dynamics in Kashmir cattle. Anim Genet 2024; 55:511-526. [PMID: 38726735 DOI: 10.1111/age.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 07/04/2024]
Abstract
Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.
Collapse
Affiliation(s)
- Zulfiqar Ahmed
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, China
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Weixuan Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mohsin Nawaz
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Zulfiqar Hussan Kuthu
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
3
|
Weng YM, Kavanaugh DH, Schoville SD. Evidence for Admixture and Rapid Evolution During Glacial Climate Change in an Alpine Specialist. Mol Biol Evol 2024; 41:msae130. [PMID: 38935588 PMCID: PMC11247348 DOI: 10.1093/molbev/msae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The pace of current climate change is expected to be problematic for alpine flora and fauna, as their adaptive capacity may be limited by small population size. Yet, despite substantial genetic drift following post-glacial recolonization of alpine habitats, alpine species are notable for their success surviving in highly heterogeneous environments. Population genomic analyses demonstrating how alpine species have adapted to novel environments with limited genetic diversity remain rare, yet are important in understanding the potential for species to respond to contemporary climate change. In this study, we explored the evolutionary history of alpine ground beetles in the Nebria ingens complex, including the demographic and adaptive changes that followed the last glacier retreat. We first tested alternative models of evolutionary divergence in the species complex. Using millions of genome-wide SNP markers from hundreds of beetles, we found evidence that the N. ingens complex has been formed by past admixture of lineages responding to glacial cycles. Recolonization of alpine sites involved a distributional range shift to higher elevation, which was accompanied by a reduction in suitable habitat and the emergence of complex spatial genetic structure. We tested several possible genetic pathways involved in adaptation to heterogeneous local environments using genome scan and genotype-environment association approaches. From the identified genes, we found enriched functions associated with abiotic stress responses, with strong evidence for adaptation to hypoxia-related pathways. The results demonstrate that despite rapid demographic change, alpine beetles in the N. ingens complex underwent rapid physiological evolution.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
- Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan
| | - David H Kavanaugh
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Wang Y, Ma J, Wang J, Zhang L, Xu L, Chen Y, Zhu B, Wang Z, Gao H, Li J, Gao X. Genome-Wide Detection of Copy Number Variations and Their Potential Association with Carcass and Meat Quality Traits in Pingliang Red Cattle. Int J Mol Sci 2024; 25:5626. [PMID: 38891814 PMCID: PMC11172001 DOI: 10.3390/ijms25115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Copy number variation (CNV) serves as a significant source of genetic diversity in mammals and exerts substantial effects on various complex traits. Pingliang red cattle, an outstanding indigenous resource in China, possess remarkable breeding value attributed to their tender meat and superior marbling quality. However, the genetic mechanisms influencing carcass and meat quality traits in Pingliang red cattle are not well understood. We generated a comprehensive genome-wide CNV map for Pingliang red cattle using the GGP Bovine 100K SNP chip. A total of 755 copy number variable regions (CNVRs) spanning 81.03 Mb were identified, accounting for approximately 3.24% of the bovine autosomal genome. Among these, we discovered 270 potentially breed-specific CNVRs in Pingliang red cattle, including 143 gains, 73 losses, and 54 mixed events. Functional annotation analysis revealed significant associations between these specific CNVRs and important traits such as carcass and meat quality, reproduction, exterior traits, growth traits, and health traits. Additionally, our network and transcriptome analysis highlighted CACNA2D1, CYLD, UBXN2B, TG, NADK, and ITGA9 as promising candidate genes associated with carcass weight and intramuscular fat deposition. The current study presents a genome-wide CNV map in Pingliang red cattle, highlighting breed-specific CNVRs, and transcriptome findings provide valuable insights into the underlying genetic characteristics of Pingliang red cattle. These results offer potential avenues for enhancing meat quality through a targeted breeding program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Benfica LF, Brito LF, do Bem RD, de Oliveira LF, Mulim HA, Braga LG, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Detection and characterization of copy number variation in three differentially-selected Nellore cattle populations. Front Genet 2024; 15:1377130. [PMID: 38694873 PMCID: PMC11061390 DOI: 10.3389/fgene.2024.1377130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Nellore cattle (Bos taurus indicus) is the main beef cattle breed raised in Brazil. This breed is well adapted to tropical conditions and, more recently, has experienced intensive genetic selection for multiple performance traits. Over the past 43 years, an experimental breeding program has been developed in the Institute of Animal Science (IZ, Sertaozinho, SP, Brazil), which resulted in three differentially-selected lines known as Nellore Control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). The primary goal of this selection experiment was to determine the response to selection for yearling weight (YW) and residual feed intake (RFI) on Nellore cattle. The main objectives of this study were to: 1) identify copy number variation (CNVs) in Nellore cattle from three selection lines; 2) identify and characterize CNV regions (CNVR) on these three lines; and 3) perform functional enrichment analyses of the CNVR identified. Results: A total of 14,914 unique CNVs and 1,884 CNVRs were identified when considering all lines as a single population. The CNVRs were non-uniformly distributed across the chromosomes of the three selection lines included in the study. The NeT line had the highest number of CNVRs (n = 1,493), followed by the NeS (n = 823) and NeC (n = 482) lines. The CNVRs covered 23,449,890 bp (0.94%), 40,175,556 bp (1.61%), and 63,212,273 bp (2.54%) of the genome of the NeC, NeS, and NeT lines, respectively. Two CNVRs were commonly identified between the three lines, and six, two, and four exclusive regions were identified for NeC, NeS, and NeT, respectively. All the exclusive regions overlap with important genes, such as SMARCD3, SLC15A1, and MAPK1. Key biological processes associated with the candidate genes were identified, including pathways related to growth and metabolism. Conclusion: This study revealed large variability in CNVs and CNVRs across three Nellore lines differentially selected for YW and RFI. Gene annotation and gene ontology analyses of the exclusive CNVRs to each line revealed specific genes and biological processes involved in the expression of growth and feed efficiency traits. These findings contribute to the understanding of the genetic mechanisms underlying the phenotypic differences among the three Nellore selection lines.
Collapse
Affiliation(s)
- Lorena F. Benfica
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ricardo D. do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Larissa G. Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Sarah F. M. Bonilha
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| | - Maria Eugenia Z. Mercadante
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| |
Collapse
|
6
|
Yan F, Wang Y, Wei M, Zhang J, Ye Y, Duan M, Chamba Y, Shang P. Exploring the role of the CapG gene in hypoxia adaptation in Tibetan pigs. Front Genet 2024; 15:1339683. [PMID: 38680426 PMCID: PMC11045884 DOI: 10.3389/fgene.2024.1339683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction: The CapG gene, which is an actin-binding protein, is prevalent in eukaryotic cells and is abundantly present in various pathways associated with plateau hypoxia adaptation. Tibetan pigs, which have inhabited high altitudes for extended periods, provide an excellent research population for investigating plateau hypoxia adaptation. Results: This study focused on Tibetan pigs and Yorkshire pigs residing in Nyingchi, Tibet. The blood physiological data of Tibetan pigs were found to be significantly higher than those of Yorkshire pigs, including RBC, HGB, HCT, MCH, and MCHC. The SNP analysis of the CapG gene identified six sites with mutations only present in Tibetan pigs. Notably, the transcription factors at sites C-489T, C-274T, and A-212G were found to be altered, and these sites are known to be associated with hypoxia adaptation and blood oxygen transportation. The mRNA expression of the CapG gene exhibited highly significant differences in several tissues, with the target proteins predominantly higher in the Yorkshire pig compared to the Tibetan pig. Specifically, a notable difference was observed in the lung tissues. Immunohistochemistry analysis revealed high expression levels of CapG proteins in the lung tissues of both Tibetan and Yorkshire pigs, primarily localized in the cytoplasm and cell membrane. Conclusion: The CapG gene plays a significant role in regulating hypoxia adaptation in Tibetan pigs. This study provides a theoretical basis for the conservation and utilization of Tibetan pig resources, the breeding of highland breeds, epidemic prevention and control, and holds great importance for the development of the highland livestock economy.
Collapse
Affiliation(s)
- Feifei Yan
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Yu Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, Tibet, China
- Key Laboratory for the Genetic Improvement and Reproduction Technology of the Tibetan Swine, Linzhi, Tibet, China
| |
Collapse
|
7
|
Wang Y, Ma J, Wang J, Zhang L, Hu J, Ma M, Xu L, Chen Y, Zhu B, Wang Z, Gao H, Li J, Gao X. Genetic Origin and Introgression Pattern of Pingliang Red Cattle Revealed Using Genome-Wide SNP Analyses. Genes (Basel) 2023; 14:2198. [PMID: 38137021 PMCID: PMC10743310 DOI: 10.3390/genes14122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The Pingliang red cattle, an outstanding indigenous resource in China, possesses an exceptional breeding value attributed to its tender meat and superior marbling quality. Currently, research efforts have predominantly concentrated on exploring its maternal origin and conducting conventional phenotypic studies. However, there remains a lack of comprehensive understanding regarding its genetic basis. To address this gap, we conducted a thorough whole-genome analysis to investigate the population structure, phylogenetic relationships, and gene flows of this breed using genomic SNP chip data from 17 bovine breeds. The results demonstrate that Pingliang red cattle have evolved distinct genetic characteristics unique to this breed, clearly distinguishing it from other breeds. Based on the analysis of the population structure and phylogenetic tree, it can be classified as a hybrid lineage between Bos taurus and Bos indicus. Furthermore, Pingliang red cattle display a more prominent B. taurus pedigree in comparison with Jinnan, Qinchuan, Zaosheng, Nanyang, and Luxi cattle. Moreover, this study also revealed closer genetic proximity within the Chinese indigenous cattle breed, particularly Qinchuan cattle, which shares the longest identical by descent (IBD) fragment with Pingliang red cattle. Gene introgression analysis shows that Pingliang red cattle have undergone gene exchange with South Devon and Red Angus cattle from Europe. Admixture analysis revealed that the proportions of East Asian taurine and Chinese indicine in the ancestry of Pingliang red cattle are approximately 52.44% and 21.00%, respectively, while Eurasian taurine, European taurine, and Indian indicine account for approximately 17.55%, 7.27%, and 1.74%. Our findings unveil distinct genetic characteristics in Pingliang red cattle and attribute their origin to B. taurus and B. indicus ancestry, as well as contributions from Qinchuan cattle, South Devon, and Red Angus.
Collapse
Affiliation(s)
- Yuanqing Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Jun Ma
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Jing Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Junwei Hu
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China
| | - Minghao Ma
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Zezhao Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
| |
Collapse
|
8
|
Yang Y, Tang J, Yang H, Yang S, Cai M, Qi A, Lan X, Huang B, Su C, Chen H. Copy number variation of bovine S100A7 as a positional candidate affected body measurements. Anim Biotechnol 2023; 34:2141-2149. [PMID: 35815693 DOI: 10.1080/10495398.2022.2077740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Beef production is closely related to the national economy and the attention has been paid to the improvement of beef cattle by molecular markers associated. Copy number variations (CNVs) recently have been gained many researches and recognized as an important source of genetic variation. Extensive studies have indicated that CNVs have effects on a large range of economic traits by a wide range of gene copy number alteration. S100A7 is a member of S100 family which is a famous family of Ca2+-binding proteins. S100A7 plays a crucial role in many important phenotypes (progress) including inflammatory diseases, psoriasis, obesity, etc. The aim of our study was to explore the phenotypic effects of CNV located in the S100A7 gene of bovine chromosome 3. We detected S100A7 CNV by qPCR in different cattle breeds, including Qinchuan cattle, Yunling cattle, Xianan cattle and a crossbred group Pinan. The copy number was identified as gain, normal and loss type, our results showed that the gain type was the main type in three types of S100A7 CNV of the whole tested breeds. After CNV detection, association analysis between S100A7 CNV and growth traits was carried out in four cattle breeds. We found significant effects of the CNV on cattle growth traits with differently preferred CNV types such as gain type with better chest depth (p = 0.043) in QC, loss type with better body length (p = 0.008) and rump width (p = 0.014) in YL, normal with better chest girth (p = 0.001), gain with better waist width (p = 0.001) and rump width (p = 0.044) in PN. These results suggested that the S100A7 CNV could affect the phenotypic traits and be used as a promising genetic marker for cattle molecular breeding.
Collapse
Affiliation(s)
- Yu Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Jia Tang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Haiyan Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Shuling Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ao Qi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chao Su
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
9
|
Singh VK, Singh S, Nandhini PB, Bhatia AK, Dixit SP, Ganguly I. Comparative genomic diversity analysis of copy number variations (CNV) in indicine and taurine cattle thriving in Europe and Indian subcontinent. Anim Biotechnol 2023; 34:3483-3494. [PMID: 36592947 DOI: 10.1080/10495398.2022.2162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copy number variations (CNVs) include deletions, duplications, and insertions that are larger than 50 bp in size causing structural variation responsible for diversity, adaptation, and breed development. Indian cattle breeds are highly diverse from the taurine breeds. The pattern of CNVRs in 191 animals belonging to 39 cattle breeds (four Indicine and 35 Taurine) was studied based on Illumina 777K BovineHD chip data. The Indicine breeds revealed 2590 CNVs and 335 copy number variation regions (CNVRs) in autosomes. Out of the identified CNVs, 50 were found to be novel. Structure analysis revealed admixed nature of Siri. Neighbor joining tree from CNVR data showed that hot (Kankrej and Hallikar) and cold (Ladakhi and Siri) adapted cattle breeds clustered separately. CNVR of Indian and European breeds revealed that Balkan and Italian breeds of Podolian group are admixed with Indian cattle breeds corroborating indicine introgression (6.1-13.5%). CNVRs spanning the regions of olfactory receptors and immune system genes were identified. AMOVA revealed 9% variation among populations which is 2% greater than SNP based studies showing higher inclusion of variation by CNVR. Detailed analysis of CNVs/CNVRs in Indian cattle adapted to hot and cold climate, and their diversity among worldwide cattle is presented in this study.
Collapse
Affiliation(s)
- V K Singh
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - P B Nandhini
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - A K Bhatia
- Animal Genetic Resources Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - S P Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - I Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
10
|
Tian D, Sun D, Ren Q, Zhang P, Zhang Z, Zhang W, Luo H, Li X, Han B, Liu D, Zhao K. Genome-wide identification of candidate copy number polymorphism genes associated with complex traits of Tibetan-sheep. Sci Rep 2023; 13:17283. [PMID: 37828092 PMCID: PMC10570297 DOI: 10.1038/s41598-023-44402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023] Open
Abstract
Copy number variation (CNV) is a genetic structural polymorphism important for phenotypic diversity and important economic traits of livestock breeds, and it plays an important role in the desired genetic variation. This study used whole genome sequencing to detect the CNV variation in the genome of 6 local Tibetan sheep groups. We detected 69,166 CNV events and 7230 copy number variable regions (CNVRs) after merging the overlapping CNVs, accounting for 2.72% of the reference genome. The CNVR length detected ranged from 1.1 to 1693.5 Kb, with a total length of 118.69 Mb and an average length of 16.42 Kb per CNVR. Functional GO cluster analysis showed that the CNVR genes were mainly involved in sensory perception systems, response to stimulus, and signal transduction. Through CNVR-based Vst analysis, we found that the CACNA2D3 and CTBP1 genes related to hypoxia adaptation, the HTR1A gene related to coat color, and the TRNAS-GGA and PIK3C3 genes related to body weight were all strongly selected. The findings of our study will contribute novel insights into the genetic structural variation underlying hypoxia adaptation and economically important traits in Tibetan sheep.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De Sun
- Animal Husbandry and Veterinary Station of Huzhu County of Qinghai Province, Huzhu, 810500, Qinghai, China
| | - Qianben Ren
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, 812300, Qinghai, China
| | - Pei Zhang
- Qinghai Animal and Plant Quarantine Station, Xining, 810000, Qinghai, China
| | - Zian Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, 812300, Qinghai, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, 812300, Qinghai, China
| | - Haizhou Luo
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, 812300, Qinghai, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dehui Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Salehian-Dehkordi H, Huang JH, Pirany N, Mehrban H, Lv XY, Sun W, Esmailizadeh A, Lv FH. Genomic Landscape of Copy Number Variations and Their Associations with Climatic Variables in the World's Sheep. Genes (Basel) 2023; 14:1256. [PMID: 37372436 PMCID: PMC10298528 DOI: 10.3390/genes14061256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sheep show characteristics of phenotypic diversity and adaptation to diverse climatic regions. Previous studies indicated associations between copy number variations (CNVs) and climate-driven adaptive evolution in humans and other domestic animals. Here, we constructed a genomic landscape of CNVs (n = 39,145) in 47 old autochthonous populations genotyped at a set of high-density (600 K) SNPs to detect environment-driven signatures of CNVs using a multivariate regression model. We found 136 deletions and 52 duplications that were significantly (Padj. < 0.05) associated with climatic variables. These climate-mediated selective CNVs are involved in functional candidate genes for heat stress and cold climate adaptation (e.g., B3GNTL1, UBE2L3, and TRAF2), coat and wool-related traits (e.g., TMEM9, STRA6, RASGRP2, and PLA2G3), repairing damaged DNA (e.g., HTT), GTPase activity (e.g., COPG), fast metabolism (e.g., LMF2 and LPIN3), fertility and reproduction (e.g., SLC19A1 and CCDC155), growth-related traits (e.g., ADRM1 and IGFALS), and immune response (e.g., BEGAIN and RNF121) in sheep. In particular, we identified significant (Padj. < 0.05) associations between probes in deleted/duplicated CNVs and solar radiation. Enrichment analysis of the gene sets among all the CNVs revealed significant (Padj. < 0.05) enriched gene ontology terms and pathways related to functions such as nucleotide, protein complex, and GTPase activity. Additionally, we observed overlapping between the CNVs and 140 known sheep QTLs. Our findings imply that CNVs can serve as genomic markers for the selection of sheep adapted to specific climatic conditions.
Collapse
Affiliation(s)
- Hosein Salehian-Dehkordi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Jia-Hui Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
| | - Nasrollah Pirany
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Hossein Mehrban
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Xiao-Yang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.-Y.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.-Y.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
| |
Collapse
|
12
|
Liu Y, Mu Y, Wang W, Ahmed Z, Wei X, Lei C, Ma Z. Analysis of genomic copy number variations through whole-genome scan in Chinese Qaidam cattle. Front Vet Sci 2023; 10:1148070. [PMID: 37065216 PMCID: PMC10103646 DOI: 10.3389/fvets.2023.1148070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Qaidam cattle (CDM) are indigenous breed inhabiting Northwest China. In the present study, we newly sequenced 20 Qaidam cattle to investigate the copy number variants (CNVs) based on the ARS-UMD1.2 reference genome. We generated the CNV region (CNVR) datasets to explore the genomic CNV diversity and population stratification. The other four cattle breeds (Xizang cattle, XZ; Kazakh cattle, HSK; Mongolian cattle, MG; and Yanbian cattle, YB) from the regions of North China embracing 43 genomic sequences were collected and are distinguished from each of the other diverse populations by deletions and duplications. We also observed that the number of duplications was significantly more than deletions in the genome, which may be less harmful to gene formation and function. At the same time, only 1.15% of CNVRs overlapped with the exon region. Population differential CNVRs and functional annotations between the Qaidam cattle population and other cattle breeds revealed the functional genes related to immunity (MUC6), growth (ADAMTSL3), and adaptability (EBF2). Our analysis has provided numerous genomic characteristics of some Chinese cattle breeds, which are valuable as customized biological molecular markers in cattle breeding and production.
Collapse
Affiliation(s)
- Yangkai Liu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yanan Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Wenxiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Xudong Wei
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Chuzhao Lei
| | - Zhijie Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- *Correspondence: Zhijie Ma
| |
Collapse
|
13
|
Liu M, Huang C, Dai R, Ren W, Li X, Wu X, Ma X, Chu M, Bao P, Guo X, Pei J, Xiong L, Yan P, Liang C. Copy Number Variations in the MICALL2 and MOGAT2 Genes Are Associated with Ashidan Yak Growth Traits. Animals (Basel) 2022; 12:ani12202779. [PMID: 36290165 PMCID: PMC9597734 DOI: 10.3390/ani12202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Copy number variations (CNVs) are a result of genomic rearrangement affecting DNA regions over 1 kb in length, and can include inversions, translocations, deletions, and duplications. The molecule interacting with CasL-like protein 2 (MICALL2) gene is primarily associated with mitochondrial protein targeting and exhibits predicted stress fiber colocalization. The monoacylglycerol O-acyltransferase 2 (MOGAT2) gene encodes an enzyme responsible for catalyzing diacylglycerol synthesis from 2-monoacylglycerol and fatty acyl-CoA. For this study, blood samples were obtained from 315 yaks, and the body weight, body length, withers height, and chest girth of these animals were measured at 6, 12, 18, and 30 months of age. Genomic DNA was harvested from the collected blood samples, and CNVs in these samples were detected by qPCR. The resultant data were compared using ANOVAs, revealing significant associations between MICALL2 gene CNVs and body weight at 6 months of age (p < 0.05), body length and chest girth at 30 months of age (p < 0.05), and withers height at 18 months of age (p < 0.01) in Ashidan yaks. Similarly, MOGAT2 CNVs were significantly associated with body weight at 6 and 30 months of age (p < 0.05), and with withers height at 18 months of age (p < 0.01) in these Ashidan yaks. MICALL2 and MOGAT2 gene expression was further analyzed in yak tissue samples, revealing that MICALL2 was most highly expressed in the adipose tissue, whereas MOGAT2 was most highly expressed in the lung. These results thus confirmed the relationship between CNVs in the MICALL2 and MOGAT2 genes and Ashidan yak growth traits, providing a valuable gene locus that can be leveraged for future marker-assisted yak breeding efforts.
Collapse
Affiliation(s)
- Modian Liu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xinyi Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.)
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.)
| |
Collapse
|
14
|
Li B, Jia G, Wen D, Zhao X, Zhang J, Xu Q, Zhao X, Jiang N, Liu Z, Wang Y. Rumen microbiota of indigenous and introduced ruminants and their adaptation to the Qinghai-Tibetan plateau. Front Microbiol 2022; 13:1027138. [PMID: 36299720 PMCID: PMC9589358 DOI: 10.3389/fmicb.2022.1027138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The grassland in the Qinghai-Tibetan plateau provide habitat for many indigenous and introduced ruminants which perform important ecological functions that impact the whole Qinghai-Tibetan plateau ecosystem. These indigenous Tibetan ruminants have evolved several adaptive traits to withstand the severe environmental conditions, especially cold, low oxygen partial pressure, high altitude, strong UV radiation, and poor forage availability on the alpine rangelands. Despite the challenges to husbandry associated with the need for enhanced adaptation, several domesticated ruminants have also been successfully introduced to the alpine pasture regions to survive in the harsh environment. For ruminants, these challenging conditions affect not only the host, but also their commensal microbiota, especially the diversity and composition of the rumen microbiota; multiple studies have described tripartite interactions among host-environment-rumen microbiota. Thus, there are significant benefits to understanding the role of rumen microbiota in the indigenous and introduced ruminants of the Qinghai-Tibetan plateau, which has co-evolved with the host to ensure the availability of specific metabolic functions required for host survival, health, growth, and development. In this report, we systemically reviewed the dynamics of rumen microbiota in both indigenous and introduced ruminants (including gut microbiota of wild ruminants) as well as their structure, functions, and interactions with changing environmental conditions, especially low food availability, that enable survival at high altitudes. We summarized that three predominant driving factors including increased VFA production, enhanced fiber degradation, and lower methane production as indicators of higher efficiency energy harvest and nutrient utilization by microbiota that can sustain the host during nutrient deficit. These cumulative studies suggested alteration of rumen microbiota structure and functional taxa with genes that encode cellulolytic enzymes to potentially enhance nutrient and energy harvesting in response to low quality and quantity forage and cold environment. Future progress toward understanding ruminant adaptation to high altitudes will require the integration of phenotypic data with multi-omics analyses to identify host-microbiota co-evolutionary adaptations enabling survival on the Qinghai-Tibetan plateau.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Agricultural College, Ningxia University, Yinchuan, China
| | - Gaobin Jia
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiuxin Zhao
- Agricultural College, Ningxia University, Yinchuan, China
| | - Junxing Zhang
- Agricultural College, Ningxia University, Yinchuan, China
| | - Qing Xu
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Xialing Zhao
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Nan Jiang
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yachun Wang
- Agricultural College, Ningxia University, Yinchuan, China
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Naji MM, Jiang Y, Utsunomiya YT, Rosen BD, Sölkner J, Wang C, Jiang L, Zhang Q, Zhang Y, Ding X, Mészáros G. Favored single nucleotide variants identified using whole genome Re-sequencing of Austrian and Chinese cattle breeds. Front Genet 2022; 13:974787. [PMID: 36238155 PMCID: PMC9552183 DOI: 10.3389/fgene.2022.974787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cattle have been essential for the development of human civilization since their first domestication few thousand years ago. Since then, they have spread across vast geographic areas following human activities. Throughout generations, the cattle genome has been shaped with detectable signals induced by various evolutionary processes, such as natural and human selection processes and demographic events. Identifying such signals, called selection signatures, is one of the primary goals of population genetics. Previous studies used various selection signature methods and normalized the outputs score using specific windows, in kbp or based on the number of SNPs, to identify the candidate regions. The recent method of iSAFE claimed for high accuracy in pinpointing the candidate SNPs. In this study, we analyzed whole-genome resequencing (WGS) data of ten individuals from Austrian Fleckvieh (Bos taurus) and fifty individuals from 14 Chinese indigenous breeds (Bos taurus, Bos taurus indicus, and admixed). Individual WGS reads were aligned to the cattle reference genome of ARS. UCD1.2 and subsequently undergone single nucleotide variants (SNVs) calling pipeline using GATK. Using these SNVs, we examined the population structure using principal component and admixture analysis. Then we refined selection signature candidates using the iSAFE program and compared it with the classical iHS approach. Additionally, we run Fst population differentiation from these two cattle groups. We found gradual changes of taurine in north China to admixed and indicine to the south. Based on the population structure and the number of individuals, we grouped samples to Fleckvieh, three Chinese taurines (Kazakh, Mongolian, Yanbian), admixed individuals (CHBI_Med), indicine individuals (CHBI_Low), and a combination of admixed and indicine (CHBI) for performing iSAFE and iHS tests. There were more significant SNVs identified using iSAFE than the iHS for the candidate of positive selection and more detectable signals in taurine than in indicine individuals. However, combining admixed and indicine individuals decreased the iSAFE signals. From both within-population tests, significant SNVs are linked to the olfactory receptors, production, reproduction, and temperament traits in taurine cattle, while heat and parasites tolerance in the admixed individuals. Fst test suggests similar patterns of population differentiation between Fleckvieh and three Chinese taurine breeds against CHBI. Nevertheless, there are genes shared only among the Chinese taurine, such as PAX5, affecting coat color, which might drive the differences between these yellowish coated breeds, and those in the greater Far East region.
Collapse
Affiliation(s)
- Maulana M. Naji
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yifan Jiang
- China Agricultural University, Beijing, China
| | - Yuri T. Utsunomiya
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, USDA‐ARS, Beltsville, MD, United States
| | - Johann Sölkner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Li Jiang
- China Agricultural University, Beijing, China
| | - Qin Zhang
- China Agricultural University, Beijing, China
| | - Yi Zhang
- China Agricultural University, Beijing, China
| | - Xiangdong Ding
- China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding, ; Gábor Mészáros,
| | - Gábor Mészáros
- University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Xiangdong Ding, ; Gábor Mészáros,
| |
Collapse
|
16
|
Sjodin BMF, Russello MA. Comparative genomics reveals putative evidence for high-elevation adaptation in the American pika ( Ochotona princeps). G3 GENES|GENOMES|GENETICS 2022; 12:6695220. [PMID: 36087005 PMCID: PMC9635661 DOI: 10.1093/g3journal/jkac241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
High-elevation environments have lower atmospheric oxygen content, reduced temperatures, and higher levels of UV radiation than found at lower elevations. As such, species living at high elevations must overcome these challenges to survive, grow, and reproduce. American pikas (Ochotona princeps) are alpine lagomorphs that are habitat specialists typically found at elevations >2,000 m. Previous research has shown putative evidence for high-elevation adaptation; however, investigations to date have been limited to a fraction of the genome. Here, we took a comparative genomics approach to identify putative regions under selection using a chromosomal reference genome assembly for the American pika relative to 8 other mammalian species targeted based on phylogenetic relatedness and (dis)similarity in ecology. We first identified orthologous gene groups across species and then extracted groups containing only American pika genes as well as unclustered pika genes to inform functional enrichment analyses; among these, we found 141 enriched terms with many related to hypoxia, metabolism, mitochondrial function/development, and DNA repair. We identified 15 significantly expanded gene families within the American pika across all orthologous gene groups that displayed functionally enriched terms associated with hypoxia adaptation. We further detected 196 positively selected genes, 41 of which have been associated with putative adaptation to hypoxia, cold tolerance, and response to UV following a literature review. In particular, OXNAD1, NRDC, and those genes critical in DNA repair represent important targets for future research to examine their functional implications in the American pika, especially as they may relate to adaptation to rapidly changing environments.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna, V1V 1V7 BC, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna, V1V 1V7 BC, Canada
| |
Collapse
|
17
|
Vahedi SM, Salek Ardestani S, Pahlevan Afshari K, Ghoreishifar SM, Moghaddaszadeh-Ahrabi S, Banabazi MH, Brito LF. Genome-Wide Selection Signatures and Human-Mediated Introgression Events in Bos taurus indicus-influenced Composite Beef Cattle. Front Genet 2022; 13:844653. [PMID: 35719394 PMCID: PMC9201998 DOI: 10.3389/fgene.2022.844653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic introgression from interbreeding hybridization of European Bos taurus taurus (EBT) and Indian Bos taurus indicus (IBI) cattle breeds have been widely used to combine the climatic resilience of the IBI cattle and the higher productivity of EBT when forming new composite beef cattle (CB) populations. The subsequent breeding strategies have shifted their initial genomic compositions. To uncover population structure, signatures of selection, and potential introgression events in CB populations, high-density genotypes [containing 492,954 single nucleotide polymorphisms (SNPs) after the quality control] of 486 individuals from 15 cattle breeds, including EBT, IBI, and CB populations, along with two Bos grunniens genotypes as outgroup were used in this study. Then, in-depth population genetics analyses were performed for three CB breeds of Beefmaster, Brangus, and Santa Gertrudis. Neighbor-joining, principal components, and admixture analyses confirmed the historical introgression of EBT and IBI haplotypes into CB breeds. The fdM statistics revealed that only 12.9% of CB populations' genetic components are of IBI origin. The results of signatures of selection analysis indicated different patterns of selection signals in the three CB breeds with primary pressure on pathways involved in protein processing and stress response in Beefmaster, cell proliferation regulation and immune response in Brangus, and amino acids and glucose metabolisms in Santa Gertrudis. An average of >90% of genomic regions underlying selection signatures were of EBT origin in the studied CB populations. Investigating the CB breeds' genome allows the estimation of EBT and IBI ancestral proportions and the locations within the genome where either taurine or indicine origin alleles are under selective pressure. Such findings highlight various opportunities to control the selection process more efficiently and explore complementarity at the genomic level in CB populations.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kian Pahlevan Afshari
- Department of Animal Sciences, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
18
|
Yudin NS, Yurchenko AA, Larkin DM. [Signatures of selection and candidate genes for adaptation to extreme environmental factors in the genomes of Turano-Mongolian cattle breeds]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:190-201. [PMID: 34901717 PMCID: PMC8627871 DOI: 10.18699/vj21.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
Changes in the environment force populations of organisms to adapt to new conditions, either through phenotypic plasticity or through genetic or epigenetic changes. Signatures of selection, such as specific changes in the frequency of alleles and haplotypes, as well as the reduction or increase in genetic diversity, help to identify changes in the cattle genome in response to natural and artificial selection, as well as loci and genetic variants directly affecting adaptive and economically important traits. Advances in genetics and biotechnology enable a rapid transfer of unique genetic variants that have originated in local cattle breeds in the process of adaptation to local environments into the genomes of cosmopolitan high-performance breeds, in order to preserve their outstanding performance in new environments. It is also possible to use genomic selection approach to increase the frequency of already present adaptive alleles in cosmopolitan breeds. The review examines recent work on the origin and evolution of Turano-Mongolian cattle breeds, adaptation of Turano-Mongolian cattle to extreme environments, and summarizes available information on potential candidate genes for climate adaptation of Turano-Mongolian breeds, including cold resistance genes, immune response genes, and high-altitude adaptation genes. The authors conclude that the current literature data do not provide preference to one of the two possible scenarios of Turano-Mongolian breed origins: as a result of the domestication of a wild aurochs at East Asia or as a result of the migration of taurine proto-population from the Middle East. Turano-Mongolian breeds show a high degree of adaptation to extreme climatic conditions (cold, heat, lack of oxygen in the highlands) and parasites (mosquitoes, ticks, bacterial and viral infections). As a result of high-density genotyping and sequencing of genomes and transcriptomes, prospective candidate genes and genetic variants involved in adaptation to environmental factors have recently been identified.
Collapse
Affiliation(s)
- N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Yurchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia The Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
19
|
Lei Z, Sun W, Guo T, Li J, Zhu S, Lu Z, Qiao G, Han M, Zhao H, Yang B, Zhang L, Liu J, Yuan C, Yue Y. Genome-Wide Selective Signatures Reveal Candidate Genes Associated with Hair Follicle Development and Wool Shedding in Sheep. Genes (Basel) 2021; 12:genes12121924. [PMID: 34946875 PMCID: PMC8702090 DOI: 10.3390/genes12121924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 02/03/2023] Open
Abstract
Hair follicle development and wool shedding in sheep are poorly understood. This study investigated the population structures and genetic differences between sheep with different wool types to identify candidate genes related to these traits. We used Illumina ovine SNP 50K chip genotyping data of 795 sheep populations comprising 27 breeds with two wool types, measuring the population differentiation index (Fst), nucleotide diversity (θπ ratio), and extended haplotype homozygosity among populations (XP-EHH) to detect the selective signatures of hair sheep and fine-wool sheep. The top 5% of the Fst and θπ ratio values, and values of XP-EHH < −2 were considered strongly selected SNP sites. Annotation showed that the PRX, SOX18, TGM3, and TCF3 genes related to hair follicle development and wool shedding were strongly selected. Our results indicated that these methods identified important genes related to hair follicle formation, epidermal differentiation, and hair follicle stem cell development, and provide a meaningful reference for further study on the molecular mechanisms of economically important traits in sheep.
Collapse
Affiliation(s)
- Zhihui Lei
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Weibo Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Jianye Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Shaohua Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Mei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
- Correspondence:
| |
Collapse
|
20
|
Guo S, Wu X, Pei J, Wang X, Bao P, Xiong L, Chu M, Liang C, Yan P, Guo X. Genome-wide CNV analysis reveals variants associated with high-altitude adaptation and meat traits in Qaidam cattle. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Gene Copy Number Variation Does Not Reflect Structure or Environmental Selection in Two Recently Diverged California Populations of Suillus brevipes. G3 (BETHESDA, MD.) 2020; 10:4591-4597. [PMID: 33051263 PMCID: PMC7718732 DOI: 10.1534/g3.120.401735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene copy number variation across individuals has been shown to track population structure and be a source of adaptive genetic variation with significant fitness impacts. In this study, we report opposite results for both predictions based on the analysis of gene copy number variants (CNVs) of Suillus brevipes, a mycorrhizal fungus adapted to coastal and montane habitats in California. In order to assess whether gene copy number variation mirrored population structure and selection in this species, we investigated two previously studied locally adapted populations showing a highly differentiated genomic region encompassing a gene predicted to confer salt tolerance. In addition, we examined whether copy number in the genes related to salt homeostasis was differentiated between the two populations. Although we found many instances of CNV regions across the genomes of S. brevipes individuals, we also found CNVs did not recover population structure and known salt-tolerance-related genes were not under selection across the coastal population. Our results contrast with predictions of CNVs matching single-nucleotide polymorphism divergence and showed CNVs of genes for salt homeostasis are not under selection in S. brevipes.
Collapse
|
22
|
|
23
|
Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. Evolution and domestication of the Bovini species. Anim Genet 2020; 51:637-657. [PMID: 32716565 DOI: 10.1111/age.12974] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species - taurine cattle, zebu and yak - and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Yalelaan 104, Utrecht, 3584 CM, The Netherlands
| | - S Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - W Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
24
|
Hu Y, Xia H, Li M, Xu C, Ye X, Su R, Zhang M, Nash O, Sonstegard TS, Yang L, Liu GE, Zhou Y. Comparative analyses of copy number variations between Bos taurus and Bos indicus. BMC Genomics 2020; 21:682. [PMID: 33004001 PMCID: PMC7528262 DOI: 10.1186/s12864-020-07097-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bos taurus and Bos indicus are two main sub-species of cattle. However, the differential copy number variations (CNVs) between them are not yet well studied. RESULTS Based on the new high-quality cattle reference genome ARS-UCD1.2, we identified 13,234 non-redundant CNV regions (CNVRs) from 73 animals of 10 cattle breeds (4 Bos taurus and 6 Bos indicus), by integrating three detection strategies. While 6990 CNVRs (52.82%) were shared by Bos taurus and Bos indicus, large CNV differences were discovered between them and these differences could be used to successfully separate animals into two subspecies. We found that 2212 and 538 genes uniquely overlapped with either indicine-specific CNVRs and or taurine-specific CNVRs, respectively. Based on FST, we detected 16 candidate lineage-differential CNV segments (top 0.1%) under selection, which overlapped with eight genes (CTNNA1, ENSBTAG00000004415, PKN2, BMPER, PDE1C, DNAJC18, MUSK, and PLCXD3). Moreover, we obtained 1.74 Mbp indicine-specific sequences, which could only be mapped on the Bos indicus reference genome UOA_Brahman_1. We found these sequences and their associated genes were related to heat resistance, lipid and ATP metabolic process, and muscle development under selection. We further analyzed and validated the top significant lineage-differential CNV. This CNV overlapped genes related to muscle cell differentiation, which might be generated from a retropseudogene of CTH but was deleted along Bos indicus lineage. CONCLUSIONS This study presents a genome wide CNV comparison between Bos taurus and Bos indicus. It supplied essential genome diversity information for understanding of adaptation and phenotype differences between the Bos taurus and Bos indicus populations.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaowei Ye
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruixue Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mai Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | | | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA.
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|