1
|
Bagabir HA, Abdulkareem AA, Muthaffar OY, Shirah BH, Naseer MI. Clinical whole Exome Sequencing Reveals Novel Homozygous Missense Variant in the PMPCA Gene causing Autosomal Recessive Spinocerebellar Ataxia. Pak J Med Sci 2024; 40:2243-2250. [PMID: 39554679 PMCID: PMC11568725 DOI: 10.12669/pjms.40.10.10474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 11/19/2024] Open
Abstract
Background & Objective Autosomal recessive cerebellar ataxias (ARCA) are rare heterogenous neurodegenerative disorders characterized by degeneration of the cerebellum and spinal cord with an early onset before the age of 20 years. PMPCA (MIM: 613036), is a key enzyme in mitochondrial protein processing which is critical for cell survival and growth. Our objective was to investigate Peptidase, Mitochondrial Processing Subunit Alpha (PMPCA) mutations linked with Spinocerebellar ataxia, autosomal recessive 2 (SCAR2). Method In the current study, Whole Exome Sequencing (WES) was done followed by Sanger sequencing for the validation of the WES results. Results WES results identified a novel homozygous variant, NM_015160.2: c.802C>T p.(Arg268Trp) in PMPCA gene. Mutation in this gene leads to progressive cerebellar ataxia with fine motor skills difficulties, intentional tremors, slow slurred speech and learning difficulties in a 12-year-old Saudi patient. WES results were further validated by Sanger sequencing technique. Conclusions Identified phenotype in our case was similar as previously described for SCAR2 related conditions. To our knowledge, this is the first reported mutation in PMPCA gene leading to SCAR2 in Saudi Arabia. These findings will enrich the scarce literature, further provide a new insight on the role of PMPCA gene-related disorders leading to SCAR2 and expand the disease concept. In addition, this will help to establish a database for the disease and its causative factors will further help in controlling diseases resulting from consanguinity in Saudi population.
Collapse
Affiliation(s)
- Hala Abubaker Bagabir
- Hala Abubaker Bagabir Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Angham Abdulrhman Abdulkareem Center of Excellence in Genomic Medicine Research, Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Yousef Muthaffar
- Osama Yousef Muthaffar Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bader H. Shirah
- Bader H. Shirah Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Muhammad Imran Naseer Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
İpek R, Kömür M, Direk MÇ, Bozdoğan ST, Okuyaz Ç. Two Sibling Cases of Spastic Paraplegia-45 with a Novel Pathogenic Variant in NT5C2 Gene: Concomitant RYR1 Gene in One Sibling. Mol Syndromol 2024; 15:297-302. [PMID: 39119448 PMCID: PMC11305657 DOI: 10.1159/000536183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/03/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Hereditary spastic paraplegia (SPG) is a genetically and clinically heterogeneous group of rare neurodegenerative disorders. SPG45 is the AR inherited type of complicated SPG, which is due to a mutation in the NT5C2 gene. Case Presentation Two sisters, aged 8 and 4, exhibited delayed motor development since early childhood. They also experienced learning difficulties, dysarthric speech, ataxia, nystagmus, strabismus, and spasticity in their extremities. Additionally, brisk deep tendon reflexes were observed in their upper and lower limbs, and they exhibited positive pathological reflexes. Whole-exome sequencing identified a previously unidentified homozygous mutation in the NT5C2 gene, leading to the diagnosis of SPG45 in both siblings. A mutation in the RYR1 gene associated with malignant hyperthermia was also detected in one of the siblings, necessitating ongoing monitoring. Discussion/Conclusion To the best of our knowledge, we report the first case of a patient with coexistence of the NT5C2 gene and the RYR1 gene.
Collapse
Affiliation(s)
- Rojan İpek
- Department of Pediatric Neurology, Dicle University, Diyarbakır, Turkey
| | - Mustafa Kömür
- Department of Pediatric Neurology, Mersin University, Mersin, Turkey
| | | | | | - Çetin Okuyaz
- Department of Pediatric Neurology, Mersin University, Mersin, Turkey
| |
Collapse
|
3
|
Yan M, Zhang Z, Wang L, Huang H, Wang J, Zhu C, Li Z, Xu Z. Cross-talk of Three Molecular Subtypes of Telomere Maintenance Defines Clinical Characteristics and Tumor Microenvironment in Gastric Cancer. J Cancer 2024; 15:3227-3241. [PMID: 38706908 PMCID: PMC11064253 DOI: 10.7150/jca.92207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Telomere maintenance takes part in the regulation of gastric cancer (GC) pathogenesis and is essential for patients' clinical features. Though the correlation between a single telomere maintenance-related gene and GC has previously been published, comprehensive exploration and systematic analysis remain to be studied. Our study is aimed at determining telomere maintenance-related molecular subtypes and examining their role in GC. Methods: By analyzing the transcriptome data, we identified three telomere maintenance-associated clusters (TMCs) with heterogeneity in clinical features and tumor microenvironment (TME). Then, we screened five prognostic telomere maintenance-related genes and established corresponding TM scores. Additionally, the expression level and biological function of tubulin beta 6 class V (TUBB6) were validated in GC tissues and cells. Results: TMC1 was correlated with EMT and TGF-beta pathway and predicted low tumor mutation burden (TMB) as well as bad prognostic outcomes. TMC3 was associated with cell cycle and DNA repair. In terms of TMB and overall survival, TMC3 exhibited opposite results against TMC1. Significant heterogeneity was observed between TMCs. TUBB6 was upregulated and could promote GC proliferation, migration, and invasion. Conclusion: Altogether, combining bioinformatics and functional experiments, we identified three molecular subtypes based on telomere maintenance-associated genes in GC, which could bring new ideas and novel biomarkers to the clinic.
Collapse
Affiliation(s)
- Mengpei Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhijun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Luyao Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hongxin Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jihuan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Chengjun Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Institute of Gastric Cancer, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
Abdulkareem AA, Shirah BH, Bagabir HA, Haque A, Naseer MI. Whole exome sequencing of a novel homozygous missense variant in PALB2 gene leading to Fanconi anaemia complementation group. Biomed Rep 2024; 20:67. [PMID: 38476606 PMCID: PMC10928473 DOI: 10.3892/br.2024.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Partner and localiser of BRCA2 (PALB2), also known as FANCN, is a key tumour suppressor gene in maintaining genome integrity. Monoallelic mutations of PALB2 are associated with breast and overian cancers, while bi-allelic mutations cause Fanconi anaemia (FA). In the present study, whole exome sequencing (WES) identified a novel homozygous missense variant, NM_024675.3: c.3296C>G (p.Thr1099Arg) in PALB2 gene (OMIM: 610355) that caused FA with mild pulmonary valve stenosis and dysmorphic and atypical features, including lymphangiectasia, non-immune hydrops fetalis and right-sided pleural effusion in a preterm female baby. WES results were further validated by Sanger sequencing. WES improves the screening and detection of novel and causative genetic variants to improve management of disease. To the best of our knowledge, the present study is the first reported FA case in a Saudi family with phenotypic atypical FA features. The results support the role of PALB2 gene and pathogenic variants that may cause clinical presentation of FA. Furthermore, the present results may establish a disease database, providing a groundwork for understanding the key genomic regions to control diseases resulting from consanguinity.
Collapse
Affiliation(s)
- Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bader H. Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah 11211, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
6
|
Abdulkareem AA, Shirah BH, Naseer MI. Whole Exome Sequencing Reveals a Novel Homozygous Variant in the Ganglioside Biosynthetic Enzyme, ST3GAL5 Gene in a Saudi Family Causing Salt and Pepper Syndrome. Genes (Basel) 2023; 14:genes14020354. [PMID: 36833282 PMCID: PMC9957204 DOI: 10.3390/genes14020354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Salt and pepper developmental regression syndrome (SPDRS) is an autosomal recessive disorder characterized by epilepsy, profound intellectual disability, choreoathetosis, scoliosis, and dermal pigmentation along with dysmorphic facial features. GM3 synthase deficiency is due to any pathogenic mutation in the ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5) gene, which encodes the sialyltransferase enzyme that synthesizes ganglioside GM3. In this study, the Whole Exome Sequencing (WES) results presented a novel homozygous pathogenic variant, NM_003896.3:c.221T>A (p.Val74Glu), in the exon 3 of the ST3GAL5 gene. causing SPDRS with epilepsy, short stature, speech delay, and developmental delay in all three affected members of the same Saudi family. The results of the WES sequencing were further validated using Sanger sequencing analysis. For the first time, we are reporting SPDRS in a Saudi family showing phenotypic features similar to other reported cases. This study further adds to the literature and explains the role of the ST3GAL5 gene, which plays an important role, and any pathogenic variants that may cause the GM3 synthase deficiency that leads to the disease. This study would finally enable the creation of a database of the disease that provides a base for understanding the important and critical genomic regions that will help control intellectual disability and epilepsy in Saudi patients.
Collapse
Affiliation(s)
- Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bader H. Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-2-64000 (ext. 25486); Fax: +966-2-6952521
| |
Collapse
|
7
|
Xin C, Guan X, Wang L, Liu J. Integrative Multi-Omics Research in Cerebral Palsy: Current Progress and Future Prospects. Neurochem Res 2022; 48:1269-1279. [PMID: 36512293 DOI: 10.1007/s11064-022-03839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Cerebral palsy (CP) describes a heterogeneous group of non-progressive neurodevelopmental disorders affecting movement and posture. The etiology and diagnostic biomarkers of CP are a hot topic in clinical research. Recent advances in omics techniques, including genomics, epigenomics, transcriptomics, metabolomics and proteomics, have offered new insights to further understand the pathophysiology of CP and have allowed for identification of diagnostic biomarkers of CP. In present study, we reviewed the latest multi-omics investigations of CP and provided an in-depth summary of current research progress in CP. This review will offer the basis and recommendations for future fundamental research on the pathogenesis of CP, identification of diagnostic biomarkers, and prevention strategies for CP.
Collapse
Affiliation(s)
- Chengqi Xin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China.
| |
Collapse
|
8
|
Clinical whole exome sequencing revealed de novo Heterozygous Stop-Gain and Missense variants in the STXBP1 gene associated with Epilepsy in Saudi Families. Saudi J Biol Sci 2022; 29:103309. [PMID: 35663845 PMCID: PMC9160351 DOI: 10.1016/j.sjbs.2022.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Intellectual disability and developmental encephalopathies are mostly linked with infant epilepsy. Epileptic encephalopathy is a term that is used to define association between developmental delay and epilepsy. Mutations in the STXBP1 (Syntaxin-binding protein 1) gene have been previously reported in association with multiple severe early epileptic encephalopathies along with many neurodevelopmental disorders. Among the disorders produced due to any mutations in the STXBP1 gene is developmental and epileptic encephalopathy 4 (OMIM: 612164), is an autosomal dominant neurologic disorder categorized by the onset of tonic seizures in early infancy (usually in the first months of life). In this article, we report two Saudi families one with de novo heterozygous stop-gain mutation c.364C > T and a novel missense c. 305C > A p.Ala102Glu in exon 5 of the STXBP1 gene (OMIM: 602926) lead to development of epileptic encephalopathy 4. The variants identified in the current study broadened the genetic spectrum of STXBP1 gene related with diseases, which will help to add in the literature and benefit to the studies addressing this disease in the future.
Collapse
|
9
|
Naseer MI, Abdulkareem AA, Pushparaj PN, Saharti S, Muthaffar OY. Next-Generation Sequencing Reveals Novel Homozygous Missense Variant c.934T > C in POLR1C Gene Causing Leukodystrophy and Hypomyelinating Disease. Front Pediatr 2022; 10:862722. [PMID: 35685919 PMCID: PMC9171136 DOI: 10.3389/fped.2022.862722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Leukodystrophies are a diverse group of genetically established disorders categorized by unusual white matter changes on brain imaging. Hypomyelinating leukodystrophies (HLDs) are a group of neurodevelopmental disorders that affect myelin sheath development in the brain. These disorders are categorized as developmental delay, spasticity, hypotonia, and intellectual disabilities. We describe a patient with developmental delay, cerebellar ataxia, spasticity, hypotonia, and intellectual disability from a healthy family member. Whole exome sequencing (WES) was performed to identify causative variants, which were further analyzed by bioinformatic analysis. WES was performed, and Sanger sequencing-based segregation analysis confirmed the presence of the homozygous missense variants of NM_203290.3 c.934T > C p.Ser312Pro of RNA polymerase I and III subunit C (POLR1C) gene in this patient and heterozygous variant in the unaffected carrier father and mother, supporting the pathogenicity and inheritance pattern of this variant. Furthermore, the variant identified by WES was validated in healthy controls (n = 100) using Sanger sequencing analysis. Finally, our study explained the important use of WES in disease diagnosis and provided further evidence that the variant in the POLR1C gene may play an important role in the development of hypomyelinating leukodystrophy in Saudi families.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Samah Saharti
- Department of Pathology and Microbiology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Y Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Naseer MI, Abdulkareem AA, Rasool M, Algahtani H, Muthaffar OY, Pushparaj PN. Whole-Exome Sequencing Identifies Novel SCN1A and CACNB4 Genes Mutations in the Cohort of Saudi Patients With Epilepsy. Front Pediatr 2022; 10:919996. [PMID: 35813387 PMCID: PMC9257097 DOI: 10.3389/fped.2022.919996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a neurological disorder described as recurrent seizures mild to severe convulsions along with conscious loss. There are many different genetic anomalies or non-genetic conditions that affect the brain and cause epilepsy. The exact cause of epilepsy is unknown so far. In this study, whole-exome sequencing showed a family having novel missense variant c.1603C>T, p. Arg535Cys in exon 10 of Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) gene. Moreover, targeted Sanger sequencing analysis showed c.1212A>G p.Val404Ile in SCN1A gene in 10 unrelated patients and a mutation in Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4 gene where one base pair insertion of "G" c.78_79insG, p.Asp27Glyfs*26 in the exon 3 in three different patients were observed from the cohort of 25 epileptic sporadic cases. The insertion changes the amino acid sequence leading to a frameshift mutation. Here, we have described, for the first time, three novel mutations that may be associated with epilepsy in the Saudi population. The study not only help us to identify the exact cause of genetic variations causing epilepsy whereas but it would also eventually enable us to establish a database to provide a foundation for understanding the critical genomic regions to control epilepsy in Saudi patients.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussein Algahtani
- King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Osama Yousef Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Yang K, Xu YC, Hu HY, Li YZ, Li Q, Luan YY, Liu Y, Sun YQ, Feng ZK, Yan YS, Yin CH. Investigation of a Novel NTRK1 Variation Causing Congenital Insensitivity to Pain With Anhidrosis. Front Genet 2021; 12:763467. [PMID: 34938316 PMCID: PMC8686761 DOI: 10.3389/fgene.2021.763467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Congenital insensitivity to pain with anhidrosis (CIPA), a rare autosomal recessive sensory neuropathy, was caused mainly by biallelic mutations in the NTRK1 gene. The pathogenesis of CIPA still needs further elucidation. Methods: Here, we recruited a CIPA case and introduced whole-exome sequencing (WES) to identify the causative variation. Subsequently, an in silico molecular dynamic (MD) analysis was performed to explore the intramolecular impact of the novel missense variant. Meanwhile, in vitro functional study on the novel variant from a metabolomic perspective was conducted via the liquid chromatography–mass spectrometry (LC-MS) approach, of which the result was verified by quantitative real-time PCR (qRT-PCR). Results: A novel compound heterozygous variation in NTRK1 gene was detected, consisting of the c.851–33T > A and c.2242C > T (p.Arg748Trp) variants. MD result suggested that p.Arg748Trp could affect the intramolecular structure stability. The results of the LC-MS and metabolic pathway clustering indicated that the NTRK1Arg748Trp variant would significantly affect the purine metabolism in vitro. Further analysis showed that it induced the elevation of NT5C2 mRNA level. Conclusion: The findings in this study extended the variation spectrum of NTRK1, provided evidence for counseling to the affected family, and offered potential clues and biomarkers to the pathogenesis of CIPA.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yi-Cheng Xu
- Department of Neurology, Aerospace Center Hospital, Beijing, China
| | - Hua-Ying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Ya-Zhou Li
- Department of Pediatric Orthopaedic, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- National Research Institute for Family Planning, Beijing, China
| | - Ying-Yi Luan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yong-Qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhan-Ke Feng
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - You-Sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Cheng-Hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Imran Naseer M, Abdulrahman Abdulkareem A, Yousef Muthaffar O, Chaudhary AG. Exome sequencing reveled a compound heterozygous mutations in RTTN gene causing developmental delay and primary microcephaly. Saudi J Biol Sci 2021; 28:2824-2829. [PMID: 34012324 PMCID: PMC8116967 DOI: 10.1016/j.sjbs.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022] Open
Abstract
RTTN (Rotatin) (OMIM 614833) is a large centrosomal protein coding gene. RTTN mutations are responsible for syndromic forms of malformation of brain development, leading to polymicrogyria, microcephaly, primordial dwarfism, seizure along with many other malformations. In this study we have identified a compound heterozygous mutation in RTTN gene having NM_173630 c.5225A > G p.His1742Arg in exon 39 and NM_173630 c.6038G > T p.Cys2013Phe in exon 45 of a consanguineous Saudi family leading to brain malformation, seizure, developmental delay, dysmorphic feature and microcephaly. Whole exome sequencing (WES) techniques was used to identify the causative mutation in the affected members of the family. WES data analysis was done and obtained data were further confirmed by using Sanger sequencing analysis. Moreover, the mutation was ruled out in 100 healthy control from normal population. To the best of our knowledge the novel compound heterozygous mutation observed in this study is the first report from Saudi Arabia. The identified compound heterozygous mutation will further explain the role of RTTN gene in development of microcephaly and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Lewis SA, Shetty S, Wilson BA, Huang AJ, Jin SC, Smithers-Sheedy H, Fahey MC, Kruer MC. Insights From Genetic Studies of Cerebral Palsy. Front Neurol 2021; 11:625428. [PMID: 33551980 PMCID: PMC7859255 DOI: 10.3389/fneur.2020.625428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cohort-based whole exome and whole genome sequencing and copy number variant (CNV) studies have identified genetic etiologies for a sizable proportion of patients with cerebral palsy (CP). These findings indicate that genetic mutations collectively comprise an important cause of CP. We review findings in CP genomics and propose criteria for CP-associated genes at the level of gene discovery, research study, and clinical application. We review the published literature and report 18 genes and 5 CNVs from genomics studies with strong evidence of for the pathophysiology of CP. CP-associated genes often disrupt early brain developmental programming or predispose individuals to known environmental risk factors. We discuss the overlap of CP-associated genes with other neurodevelopmental disorders and related movement disorders. We revisit diagnostic criteria for CP and discuss how identification of genetic etiologies does not preclude CP as an appropriate diagnosis. The identification of genetic etiologies improves our understanding of the neurobiology of CP, providing opportunities to study CP pathogenesis and develop mechanism-based interventions.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Bryce A Wilson
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Aris J Huang
- Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States.,Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
15
|
Naseer MI, Abdulkareem AA, Muthaffar OY, Sogaty S, Alkhatabi H, Almaghrabi S, Chaudhary AG. Whole Exome Sequencing Identifies Three Novel Mutations in the ASPM Gene From Saudi Families Leading to Primary Microcephaly. Front Pediatr 2020; 8:627122. [PMID: 33643967 PMCID: PMC7904689 DOI: 10.3389/fped.2020.627122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental defect that is characterized by reduced head circumference at birth along with non-progressive intellectual disability. Till date, 25 genes related to MCPH have been reported so far in humans. The ASPM (abnormal spindle-like, microcephaly-associated) gene is among the most frequently mutated MCPH gene. We studied three different families having primary microcephaly from different regions of Saudi Arabia. Whole exome sequencing (WES) and Sanger sequencing were done to identify the genetic defect. Collectively, three novel variants were identified in the ASPM gene from three different primary microcephaly families. Family 1, showed a deletion mutation leading to a frameshift mutation c.1003del. (p.Val335*) in exon 3 of the ASPM gene and family 2, also showed deletion mutation leading to frameshift mutation c.1047del (p.Gln349Hisfs*18), while in family 3, we identified a missense mutation c.5623A>G leading to a change in protein (p.Lys1875Glu) in exon 18 of the ASPM gene underlying the disorder. The identified respective mutations were ruled out in 100 healthy control samples. In conclusion, we found three novel mutations in the ASPM gene in Saudi families that will help to establish a disease database for specified mutations in Saudi population and will further help to identify strategies to tackle primary microcephaly in the kingdom.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Sameera Sogaty
- Department of Medical Genetics, King Fahed General Hospital, Jeddah, Saudi Arabia
| | - Hiba Alkhatabi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,College of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|