1
|
Nguyen TD, Hoang YH, Thi-Tuyet Thai N, Thi-Ngoc Trinh G. Synthesis of copper nanoparticles by a sonication-mediated method using Malpighia glabra fruit extract and their applications. RSC Adv 2024; 14:34119-34134. [PMID: 39469005 PMCID: PMC11513897 DOI: 10.1039/d4ra06087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
This study introduces an environmentally friendly technique for copper nanoparticle synthesis utilizing Malpighia glabra fruit extract under the sonication treatment. The synthesis process and phenol red removal were optimized by a central composite full and response surface design. Highly pure and spherical-shaped copper nanoparticles with an average size of 22.5 nm were formed using 7.4 mL of Malpighia glabra fruit extract and 21.9 mM (AcO)2Cu. Additionally, the extract-mediated nanoparticles opposed the negative charges with a zeta potential of -11.8 mV and high stability of 30 days storage time. The sonication-assisted nanoparticles exhibited the highest inhibition against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), MCF7 human breast cancer cells, and Fusarium solani with 50% inhibition concentrations reaching 12, 0.82, and 80 ppm, respectively. Additionally, the green-synthesized nanomaterials functioned as an effective catalyst to remove phenol red. A conversion of 97% after a 540 seconds reaction was determined on 10 ppm phenol red with the presence of 21.5 ppm copper nanoparticles and 51.8 mM NaBH4. This research highlights the potential of Malpighia glabra fruit extract in the sustainable production of copper nanoparticles, with promising applications in biomedicine, agriculture, and environmental remediation.
Collapse
Affiliation(s)
- Trung Dien Nguyen
- School of Education, Can Tho University 3/2 Street, Ninh Kieu Can Tho 94000 Vietnam
| | - Yen Hai Hoang
- School of Education, Can Tho University 3/2 Street, Ninh Kieu Can Tho 94000 Vietnam
| | - Nhung Thi-Tuyet Thai
- School of Education, Can Tho University 3/2 Street, Ninh Kieu Can Tho 94000 Vietnam
| | - Gia Thi-Ngoc Trinh
- School of Education, Can Tho University 3/2 Street, Ninh Kieu Can Tho 94000 Vietnam
| |
Collapse
|
2
|
Wekesa TB, Wekesa VW, Onguso JM, Kavesu N, Okanya PW. Study of Pathogenicity Test, Antifungal Activity, and Secondary Metabolites of Bacillus spp. from Lake Bogoria as Biocontrol of Rhizoctonia solani Kühn in Phaseolus vulgaris L. Int J Microbiol 2024; 2024:6620490. [PMID: 38974709 PMCID: PMC11226341 DOI: 10.1155/2024/6620490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
The common bean (Phaseolus vulgaris L.) is a yearly herbaceous plant grown for its edible dry seeds. Despite that, pests and diseases have contributed to the decline of common bean production in Kenya. Therefore, the study aimed to identify bacteria from Lake Bogoria, assess the pathogenicity of Rhizoctonia solani Kühn, screen for effective antifungal agents, and determine secondary metabolites for the biocontrol of R. solani. A total of 49 bacteria were isolated, of which 10 isolates had varied mycelial inhibition rates of R. solani in the co-culture technique. The efficacy of volatile compounds of the three selected bacterial strains had varied mycelial growth and percent reduction against R. solani. The pathogenicity assay showed varied plant parameters and biomass of R. solani on common bean plantlets. The molecular characterization based on 16 S ribosomal RNA confirmed the selected bacterial strains' identity with a diversity similar to the Bacillus genus. Gas chromatography-mass spectrometry analysis of secondary metabolites showed different antimicrobial compounds produced by Bacillus subtilis strain TW21. In conclusion, Lake Bogoria harbors useful microbes as biocontrol agents against plant pathogens. The current study discovers the potential biocontrol bacteria isolates from Lake Bogoria as alternative bioagents against R. solani. Therefore, the isolate Bacillus subtilis strain TW21 can be assessed further for toxicological and ecotoxicological studies and registered by the Pest Control Products Board (PCPB), Kenya, as a biocontrol product against common diseases affecting common beans' production.
Collapse
Affiliation(s)
- Tofick Barasa Wekesa
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000-00200, Nairobi, Kenya
| | - Vitalis Wafula Wekesa
- Bioline Agrosciences Africa Limited Production, P.O. Box 1927-20117, Naivasha, Kenya
| | - Justus Mong'are Onguso
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000-00200, Nairobi, Kenya
| | - Ndinda Kavesu
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000-00200, Nairobi, Kenya
| | - Patrick Wafula Okanya
- The Technical University of Kenya, Department of Biochemistry and Biotechnology, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
3
|
Elshahawy IE, Marrez DA. Antagonistic activity of Trichoderma asperellum against Fusarium species, chemical profile and their efficacy for management of Fusarium-root rot disease in dry bean. PEST MANAGEMENT SCIENCE 2024; 80:1153-1167. [PMID: 37874198 DOI: 10.1002/ps.7846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Diseases caused by Fusarium pathogens lead to significant yield losses on many economically important crops. The purpose of this study was to evaluate the antagonistic capability and chemical profile of the bioagent Trichoderma asperellum against several Fusarium strains. The efficacy of this strain in reducing Fusarium-root rot disease in dry bean was also examined. RESULTS The T. asperellum strain was identified based on sequencing the internal transcribed spacer (ITS) and tef1 gen regions of ribosomal DNA. Dual cultural assay demonstrated their antagonistic activity against the studied Fusarium strains due to the probable combination of competition, mycoparasitism and antibiosis. This strain was positive for cellulase, chitinase and protease activity. The crude extracts of T. asperellum significantly suppressed the growth of the tested Fusarium strains with inhibition zone values ranging from 7.3 to 19.7 mm and minimum inhibitory concentration (MIC) values ranging from 0.15 to 1.42 mg mL-1 . The gas chromatography-mass spectrometry (GC-MS) analysis of cell free supernatant and mycelial biomass of T. asperellum showed the presence of 27 and 21 compounds, respectively. The main compounds responsible for the bioactivity were butylated hydroxytoluene, hexadecanoic acid, 9-octadecenoic acid, ergosterol and hexadecanoic acid, ethyl ester. Trichoderma asperellum significantly increased plant emergence and reduced root rot caused by Fusarium solani in dry bean grown under glasshouse and field trials. Further, plant biomass and dry bean yield were higher in T. asperellum-treated plants than in control plants. CONCLUSION Trichoderma asperellum was highly effective, through various mechanisms, against Fusarium strains especially F. solani which causes root rot in dry bean. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Diaa Attia Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Gargouri Jbir T, Zitnick-Anderson K, Pasche JS, Kalil AK. Characterization of Fusarium oxysporum f. sp. pisi Associated with Root Rot of Field Pea in North Dakota and the Effects of Temperature on Aggressiveness. PLANT DISEASE 2024; 108:365-374. [PMID: 37578362 DOI: 10.1094/pdis-05-23-0908-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Fusarium root rot is an important disease of field pea (Pisum sativum var. sativum L.) that occurs everywhere pea is grown, causing yield loss of up to 75%. Fusarium root rot is caused by a complex of Fusarium species, most notably Fusarium solani in the Pacific Northwest of the United States and F. avenaceum in the northern Great Plains of the United States and Canada. F. oxysporum f. sp. pisi (Fop) was frequently isolated from peas exhibiting root rot symptoms in North Dakota during recent surveys. Fop causes wilt (races 1, 5, and 6) and near wilt (race 2) on pea. However, its contribution to pea root rot remains unclear. Fop race was determined for isolates from North Dakota pea root rot surveys. ND Fop isolates were evaluated for root rot pathogenicity and aggressiveness at standard and elevated temperatures. Results from greenhouse wilt assays indicated that all Fop races exist in North Dakota, with race 2 most prevalent among the 25 North Dakota isolates evaluated. Root rot evaluations conducted at 21/18°C and 25/19°C day/night temperatures demonstrated that most Fop isolates were as aggressive or more aggressive than F. solani and F. avenaceum under both temperature regimes. Aggressiveness of Fop isolates tended to increase at elevated assay temperatures. Results from these experiments indicate that Fop may be an important contributor to the root rot complex of field pea in North Dakota and should be considered in integrated pest management strategies, including pea breeding efforts to improve resistance to Fusarium root rot.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Taheni Gargouri Jbir
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| | | | - Julie S Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Audrey K Kalil
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| |
Collapse
|
5
|
Laribi M, Fredua-Agyeman R, Ben M’Barek S, Sansaloni CP, Dreisigacker S, Gamba FM, Abdedayem W, Nefzaoui M, Araar C, Hwang SF, Yahyaoui AH, Strelkov SE. Genome-wide association analysis of tan spot disease resistance in durum wheat accessions from Tunisia. Front Genet 2023; 14:1231027. [PMID: 37946749 PMCID: PMC10631785 DOI: 10.3389/fgene.2023.1231027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
Background: Tunisia harbors a rich collection of unexploited durum wheat landraces (Triticum durum ssp. durum) that have been gradually replaced by elite cultivars since the 1970s. These landraces represent an important potential source for broadening the genetic background of elite durum wheat cultivars and for the introgression of novel genes for key traits, including disease resistance, into these cultivars. Methods: In this study, single nucleotide polymorphism (SNP) markers were used to investigate the genetic diversity and population structure of a core collection of 235 durum wheat accessions consisting mainly of landraces. The high phenotypic and genetic diversity of the fungal pathogen Pyrenophora tritici-repentis (cause of tan spot disease of wheat) in Tunisia allowed the assessment of the accessions for tan spot resistance at the adult plant stage under field conditions over three cropping seasons. A genome-wide association study (GWAS) was performed using a 90k SNP array. Results: Bayesian population structure analysis with 9191 polymorphic SNP markers classified the accessions into two groups, where groups 1 and 2 included 49.79% and 31.49% of the accessions, respectively, while the remaining 18.72% were admixtures. Principal coordinate analysis, the unweighted pair group method with arithmetic mean and the neighbor-joining method clustered the accessions into three to five groups. Analysis of molecular variance indicated that 76% of the genetic variation was among individuals and 23% was between individuals. Genome-wide association analyses identified 26 SNPs associated with tan spot resistance and explained between 8.1% to 20.2% of the phenotypic variation. The SNPs were located on chromosomes 1B (1 SNP), 2B (4 SNPs), 3A (2 SNPs), 3B (2 SNPs), 4A (2 SNPs), 4B (1 SNP), 5A (2 SNPs), 5B (4 SNPs), 6A (5 SNPs), 6B (2 SNPs), and 7B (1 SNP). Four markers, one on each of chromosomes 1B, and 5A, and two on 5B, coincided with previously reported SNPs for tan spot resistance, while the remaining SNPs were either novel markers or closely related to previously reported SNPs. Eight durum wheat accessions were identified as possible novel sources of tan spot resistance that could be introgressed into elite cultivars. Conclusion: The results highlighted the significance of chromosomes 2B, 5B, and 6A as genomic regions associated with tan spot resistance.
Collapse
Affiliation(s)
- Marwa Laribi
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sarrah Ben M’Barek
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
- Regional Field Crops Research Center of Beja (CRRGC), Beja, Tunisia
| | | | | | | | - Wided Abdedayem
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
| | - Meriem Nefzaoui
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
| | - Chayma Araar
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Amor H. Yahyaoui
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis, Tunisia
- Borlaug Training Foundation, Colorado State University, Fort Collins, CO, United States
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Kim TH, Kim S, Park W, Woo KS, Lee K, Chung MN, Lee YH, Lee HU, Lee KH, Nam SS, Jo H, Lee JD. Genome-wide association study to identify novel loci and genes for Fusarium root rot resistance in sweet potato using genotyping-by-sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1251157. [PMID: 37860237 PMCID: PMC10584150 DOI: 10.3389/fpls.2023.1251157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Fusarium root rot, caused by Fusarium solani, is a major post-harvest disease in sweet potatoes (Ipomoea batatas (L.) Lam.). An effective strategy for controlling this disease is the development of resistant varieties. In this study, a genome-wide association study (GWAS) was conducted on 96 sweet potato genotypes to identify novel candidate loci and dissect the genetic basis of Fusarium root rot resistance. Genotyping was performed using genotyping-by-sequencing (GBS), and 44,255 SNPs were identified after filtering. The genotypes (n = 96) were evaluated through resistance tests in 2021 and 2022, separately and combined. The GWAS identified two significant SNP markers (LG3_22903756 and LG4_2449919) on chromosomes 3 and 4 associated with Fusarium root rot resistance, respectively. Lesion length showed significant differences between homozygous A and G alleles of LG3_22903756, which can potentially be used to develop molecular markers for selecting accessions resistant to Fusarium root rot. Expression analysis of 11 putative genes flanking the significant SNPs revealed the alteration in the expression of nine genes, indicating their possible involvement in Fusarium root rot resistance. The results of this study will aid in the marker-assisted selection and functional analysis of candidate genes for Fusarium root rot resistance in sweet potatoes.
Collapse
Affiliation(s)
- Tae Hwa Kim
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Sujung Kim
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Won Park
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Koan Sik Woo
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Keunpyo Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju, Republic of Korea
| | - Mi Nam Chung
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Young Hoon Lee
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Kyo Hwui Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Sang-Sik Nam
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Republic of Korea
| | - Hyun Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Wohor OZ, Rispail N, Ojiewo CO, Rubiales D. Pea Breeding for Resistance to Rhizospheric Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:2664. [PMID: 36235530 PMCID: PMC9572552 DOI: 10.3390/plants11192664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Pea (Pisum sativum L.) is a grain legume widely cultivated in temperate climates. It is important in the race for food security owing to its multipurpose low-input requirement and environmental promoting traits. Pea is key in nitrogen fixation, biodiversity preservation, and nutritional functions as food and feed. Unfortunately, like most crops, pea production is constrained by several pests and diseases, of which rhizosphere disease dwellers are the most critical due to their long-term persistence in the soil and difficulty to manage. Understanding the rhizosphere environment can improve host plant root microbial association to increase yield stability and facilitate improved crop performance through breeding. Thus, the use of various germplasm and genomic resources combined with scientific collaborative efforts has contributed to improving pea resistance/cultivation against rhizospheric diseases. This improvement has been achieved through robust phenotyping, genotyping, agronomic practices, and resistance breeding. Nonetheless, resistance to rhizospheric diseases is still limited, while biological and chemical-based control strategies are unrealistic and unfavourable to the environment, respectively. Hence, there is a need to consistently scout for host plant resistance to resolve these bottlenecks. Herein, in view of these challenges, we reflect on pea breeding for resistance to diseases caused by rhizospheric pathogens, including fusarium wilt, root rots, nematode complex, and parasitic broomrape. Here, we will attempt to appraise and harmonise historical and contemporary knowledge that contributes to pea resistance breeding for soilborne disease management and discuss the way forward.
Collapse
Affiliation(s)
- Osman Z. Wohor
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- Savanna Agriculture Research Institute, CSIR, Nyankpala, Tamale Post TL52, Ghana
| | - Nicolas Rispail
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Chris O. Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue—Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
8
|
Huster AR, Wallace LT, Myers JR. Associated SNPs, Heritabilities, Trait Correlations, and Genomic Breeding Values for Resistance in Snap Beans ( Phaseolus vulgaris L.) to Root Rot Caused by Fusarium solani (Mart.) f. sp. phaseoli (Burkholder). FRONTIERS IN PLANT SCIENCE 2021; 12:697615. [PMID: 34650574 PMCID: PMC8507974 DOI: 10.3389/fpls.2021.697615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Root rot is a major constraint to snap bean (Phaseolus vulgaris) production in the United States and around the world. Genetic resistance is needed to effectively control root rot disease because cultural control methods are ineffective, and the pathogen will be present at the end of one season of production on previously clean land. A diversity panel of 149 snap bean pure lines was evaluated for resistance to Fusarium root rot in Oregon. Morphological traits potentially associated with root rot resistance, such as aboveground biomass, adventitious roots, taproot diameter, basal root diameter, deepest root angle, shallowest root angle, root angle average, root angle difference, and root angle geometric mean were evaluated and correlated to disease severity. A genome wide association study (GWAS) using the Fixed and random model Circulating Probability Unification (FarmCPU) statistical method, identified five associated single nucleotide polymorphisms (SNPs) for disease severity and two SNPs for biomass. The SNPs were found on Pv03, Pv07, Pv08, Pv10, and Pv11. One candidate gene for disease reaction near a SNP on Pv03 codes for a peroxidase, and two candidates associated with biomass SNPs were a 2-alkenal reductase gene cluster on Pv10 and a Pentatricopeptide repeat domain on Pv11. Bean lines utilized in the study were ranked by genomic estimated breeding values (GEBV) for disease severity, biomass, and the root architecture traits, and the observed and predicted values had high to moderate correlations. Cross validation of genomic predictions showed slightly lower correlational accuracy. Bean lines with the highest GEBV were among the most resistant, but did not necessarily rank at the very top numerically. This study provides information on the relationship of root architecture traits to root rot disease reaction. Snap bean lines with genetic merit for genomic selection were identified and may be utilized in future breeding efforts.
Collapse
Affiliation(s)
- Abigail R. Huster
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Lyle T. Wallace
- USDA-ARS, Plant Germplasm Introduction and Testing Research Unit, Washington State University, Pullman, WA, United States
| | - James R. Myers
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Diaz LM, Arredondo V, Ariza-Suarez D, Aparicio J, Buendia HF, Cajiao C, Mosquera G, Beebe SE, Mukankusi CM, Raatz B. Genetic Analyses and Genomic Predictions of Root Rot Resistance in Common Bean Across Trials and Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:629221. [PMID: 33777068 PMCID: PMC7994901 DOI: 10.3389/fpls.2021.629221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Root rot in common bean is a disease that causes serious damage to grain production, particularly in the upland areas of Eastern and Central Africa where significant losses occur in susceptible bean varieties. Pythium spp. and Fusarium spp. are among the soil pathogens causing the disease. In this study, a panel of 228 lines, named RR for root rot disease, was developed and evaluated in the greenhouse for Pythium myriotylum and in a root rot naturally infected field trial for plant vigor, number of plants germinated, and seed weight. The results showed positive and significant correlations between greenhouse and field evaluations, as well as high heritability (0.71-0.94) of evaluated traits. In GWAS analysis no consistent significant marker trait associations for root rot disease traits were observed, indicating the absence of major resistance genes. However, genomic prediction accuracy was found to be high for Pythium, plant vigor and related traits. In addition, good predictions of field phenotypes were obtained using the greenhouse derived data as a training population and vice versa. Genomic predictions were evaluated across and within further published data sets on root rots in other panels. Pythium and Fusarium evaluations carried out in Uganda on the Andean Diversity Panel showed good predictive ability for the root rot response in the RR panel. Genomic prediction is shown to be a promising method to estimate tolerance to Pythium, Fusarium and root rot related traits, indicating a quantitative resistance mechanism. Quantitative analyses could be applied to other disease-related traits to capture more genetic diversity with genetic models.
Collapse
Affiliation(s)
- Lucy Milena Diaz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Victoria Arredondo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Daniel Ariza-Suarez
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Johan Aparicio
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Hector Fabio Buendia
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Cesar Cajiao
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Gloria Mosquera
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Stephen E. Beebe
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Clare Mugisha Mukankusi
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Kampala, Uganda
| | - Bodo Raatz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
10
|
Simons KJ, Oladzad A, Lamppa R, Maniruzzaman, McClean PE, Osorno JM, Pasche JS. Using Breeding Populations With a Dual Purpose: Cultivar Development and Gene Mapping-A Case Study Using Resistance to Common Bacterial Blight in Dry Bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2021; 12:621097. [PMID: 33719292 PMCID: PMC7953056 DOI: 10.3389/fpls.2021.621097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/22/2021] [Indexed: 03/27/2024]
Abstract
Dry bean (Phaseolus vulgaris L.) is an important worldwide legume crop with low to moderate levels of resistance to common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli. A total of 852 genotypes (cultivars, preliminary and advanced breeding lines) from the North Dakota State University dry bean breeding program were tested for their effectiveness as populations for genome-wide association studies (GWAS) to identify genomic regions associated with resistance to CBB, to exploit the associated markers for marker-assisted breeding (MAB), and to identify candidate genes. The genotypes were evaluated in a growth chamber for disease resistance at both the unifoliate and trifoliate stages. At the unifoliate stage, 35% of genotypes were resistant, while 25% of genotypes were resistant at the trifoliate stage. Libraries generated from each genotype were sequenced using the Illumina platform. After filtering for sequence quality, read depth, and minor allele frequency, 41,998 single-nucleotide polymorphisms (SNPs) and 30,285 SNPs were used in GWAS for the Middle American and Andean gene pools, respectively. One region near the distal end of Pv10 near the SAP6 molecular marker from the Andean gene pool explained 26.7-36.4% of the resistance variation. Three to seven regions from the Middle American gene pool contributed to 25.8-27.7% of the resistance, with the most significant peak also near the SAP6 marker. Six of the eight total regions associated with CBB resistance are likely the physical locations of quantitative trait loci identified from previous genetic studies. The two new locations associated with CBB resistance are located at Pv10:22.91-23.36 and Pv11:52.4. A lipoxgenase-1 ortholog on Pv10 emerged as a candidate gene for CBB resistance. The state of one SNP on Pv07 was associated with susceptibility. Its subsequent use in MAB would reduce the current number of lines in preliminary and advanced field yield trial by up to 14% and eliminate only susceptible genotypes. These results provide a foundational SNP data set, improve our understanding of CBB resistance in dry bean, and impact resource allocation within breeding programs as breeding populations may be used for dual purposes: cultivar development as well as genetic studies.
Collapse
Affiliation(s)
- Kristin J. Simons
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Robin Lamppa
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Maniruzzaman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Julie S. Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|