1
|
Yun M, Kim B. Effects of Scutellaria baicalensis Extract-Induced Exosomes on the Periodontal Stem Cells and Immune Cells under Fine Dust. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1396. [PMID: 39269058 PMCID: PMC11397387 DOI: 10.3390/nano14171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
In adverse environments, fine dust is linked to a variety of health disorders, including cancers, cardiovascular, neurological, renal, reproductive, motor, systemic, and respiratory diseases. Although PM10 is associated with oral inflammation and cancer, there is limited research on biomaterials that prevent damage caused by fine dust. In this study, we evaluated the effects of biomaterials using microRNA profiling, flow cytometry, conventional PCR, immunocytochemistry, Alizarin O staining, and ELISA. Compared to SBE (Scutellaria baicalensis extract), the preventive effectiveness of SBEIEs (SBE-induced exosomes) against fine dust was approximately two times higher. Furthermore, SBEIEs promoted cellular differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts, periodontal ligament cells (PDLCs), and pulp progenitor cells (PPCs), enhancing immune modulation for oral health against fine dust. In terms of immune modulation, SBEIEs activated the secretion of cytokines such as IL-10, LL-37, and TGF-β in T cells, B cells, and macrophages, while attenuating the secretion of MCP-1 in macrophages. MicroRNA profiling revealed that significantly modulated miRNAs in SBEIEs influenced four biochemical categories: apoptosis, cellular differentiation, immune activation, and anti-inflammation. These findings suggest that SBEIEs are an optimal biomaterial for developing oral health care products. Additionally, this study proposes functional microRNA candidates for the development of pharmaceutical liposomes.
Collapse
Affiliation(s)
- Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong-si 36616, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
2
|
Niu Y, Guo D, Wei Y, Li J, Bai Y, Liu Z, Jia X, Chen Z, Li L, Shi B, Zhang X, Zhao Z, Hu J, Wang J, Liu X, Li S. Comparative Transcriptome Analysis of mRNA and miRNA during the Development of Longissimus Dorsi Muscle of Gannan Yak and Tianzhu White Yak. Animals (Basel) 2024; 14:2278. [PMID: 39123804 PMCID: PMC11311108 DOI: 10.3390/ani14152278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The Gannan yak, a superior livestock breed found on the Tibetan Plateau, exhibits significantly enhanced body size, weight, and growth performance in comparison to the Tianzhu white yak. MiRNAs play a pivotal role in regulating muscle growth by negatively modulating target genes. In this study, we found the average diameter, area, and length of myofibers in Gannan yaks were significantly higher than those of Tianzhu white yaks. Further, we focused on analyzing the longissimus dorsi muscle from both Gannan yaks and Tianzhu white yaks through transcriptome sequencing to identify differentially expressed (DE)miRNAs that influence skeletal muscle development. A total of 254 DE miRNAs were identified, of which 126 miRNAs were up-regulated and 128 miRNAs were down-regulated. GO and KEGG enrichment analysis showed that the target genes of these DE miRNAs were significantly enriched in signaling pathways associated with muscle growth and development. By constructing a DE miRNA- DE mRNA interaction network, we screened 18 key miRNAs, and notably, four of the candidates (novel-m0143-3p, novel-m0024-3p, novel-m0128-5p, and novel-m0026-3p) targeted six genes associated with muscle growth and development (DDIT4, ADAMTS1, CRY2, AKIRIN2, SIX1, and FOXO1). These findings may provide theoretical references for further studies on the role of miRNAs in muscle growth and development in Gannan yaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.N.); (D.G.); (Y.W.); (J.L.); (Y.B.); (Z.L.); (X.J.); (Z.C.); (L.L.); (B.S.); (X.Z.); (J.H.); (J.W.); (X.L.); (S.L.)
| | | | | | | | | |
Collapse
|
3
|
Zhao Z, Guo D, Wei Y, Li J, Jia X, Niu Y, Liu Z, Bai Y, Chen Z, Shi B, Zhang X, Hu J, Wang J, Liu X, Li S. Integrative ATAC-seq and RNA-seq Analysis of the Longissimus Dorsi Muscle of Gannan Yak and Jeryak. Int J Mol Sci 2024; 25:6029. [PMID: 38892214 PMCID: PMC11172533 DOI: 10.3390/ijms25116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Jeryak is the F1 generation of the cross between Gannan yak and Jersey cattle, which has the advantages of fast growth and high adaptability. The growth and development of skeletal muscle is closely linked to meat production and the quality of meat. However, the molecular regulatory mechanisms of muscle growth differences between Gannan yak and Jeryak analyzed from the perspective of chromatin opening have not been reported. In this study, ATAC-seq was used to analyze the difference of chromatin openness in longissimus muscle of Gannan yak and Jeryak. It was found that chromatin accessibility was more enriched in Jeryak compared to Gannan yak, especially in the range of the transcription start site (TSS) ± 2 kb. GO and KEGG enrichment analysis indicate that differential peak-associated genes are involved in the negative regulation of muscle adaptation and the Hippo signaling pathway. Integration analysis of ATAC-seq and RNA-seq revealed overlapping genes were significantly enriched during skeletal muscle cell differentiation and muscle organ morphogenesis. At the same time, we screened FOXO1, ZBED6, CRY2 and CFL2 for possible involvement in skeletal muscle development, constructed a genes and transcription factors network map, and found that some transcription factors (TFs), including YY1, KLF4, KLF5 and Bach1, were involved in skeletal muscle development. Overall, we have gained a comprehensive understanding of the key factors that impact skeletal muscle development in various breeds of cattle, providing new insights for future analysis of the molecular regulatory mechanisms involved in muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730000, China; (Z.Z.); (D.G.); (Y.W.); (J.L.); (X.J.); (Y.N.); (Z.L.); (Y.B.); (Z.C.); (B.S.); (X.Z.); (J.W.); (X.L.); (S.L.)
| | | | | | | |
Collapse
|
4
|
Sun H, Wang X, Pratt RE, Dzau VJ, Hodgkinson CP. C166 EVs potentiate miR cardiac reprogramming via miR-148a-3p. J Mol Cell Cardiol 2024; 190:48-61. [PMID: 38582260 DOI: 10.1016/j.yjmcc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
We have demonstrated that directly reprogramming cardiac fibroblasts into new cardiomyocytes via miR combo improves cardiac function in the infarcted heart. However, major challenges exist with delivery and efficacy. During a screening based approach to improve delivery, we discovered that C166-derived EVs were effective delivery agents for miR combo both in vitro and in vivo. In the latter, EV mediated delivery of miR combo induced significant conversion of cardiac fibroblasts into cardiomyocytes (∼20%), reduced fibrosis and improved cardiac function in a myocardial infarction injury model. When compared to lipid-based transfection, C166 EV mediated delivery of miR combo enhanced reprogramming efficacy. Improved reprogramming efficacy was found to result from a miRNA within the exosome: miR-148a-3p. The target of miR-148a-3p was identified as Mdfic. Over-expression and targeted knockdown studies demonstrated that Mdfic was a repressor of cardiomyocyte specific gene expression. In conclusion, we have demonstrated that C166-derived EVs are an effective method for delivering reprogramming factors to cardiac fibroblasts and we have identified a novel miRNA contained within C166-derived EVs which enhances reprogramming efficacy.
Collapse
Affiliation(s)
- Hualing Sun
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Hubei Province, China
| | - Xinghua Wang
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America.
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
5
|
Abebe BK, Wang H, Li A, Zan L. A review of the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle. J Anim Breed Genet 2024; 141:235-256. [PMID: 38146089 DOI: 10.1111/jbg.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Xu YR, Zhao J, Huang HY, Lin YCD, Lee TY, Huang HD, Yang Y, Wang YF. Recent insights into breast milk microRNA: their role as functional regulators. Front Nutr 2024; 11:1366435. [PMID: 38689935 PMCID: PMC11058965 DOI: 10.3389/fnut.2024.1366435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Breast milk (BM) is a primary biofluid that plays a crucial role in infant development and the regulation of the immune system. As a class of rich biomolecules in BM, microRNAs (miRNAs) are regarded as active factors contributing to infant growth and development. Surprisingly, these molecules exhibit resilience in harsh conditions, providing an opportunity for infants to absorb them. In addition, many studies have shown that miRNAs in breast milk, when absorbed into the gastrointestinal system, can act as a class of functional regulators to effectively regulate gene expression. Understanding the absorption pattern of BM miRNA may facilitate the creation of formula with a more optimal miRNA balance and pave the way for novel drug delivery techniques. In this review, we initially present evidence of BM miRNA absorption. Subsequently, we compile studies that integrate both in vivo and in vitro findings to illustrate the bioavailability and biodistribution of BM miRNAs post-absorption. In addition, we evaluate the strengths and weaknesses of previous studies and discuss potential variables contributing to discrepancies in their outcomes. This literature review indicates that miRNAs can be absorbed and act as regulatory agents.
Collapse
Affiliation(s)
- Yi-Ran Xu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jinglu Zhao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Hsi-Yuan Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yang-Chi-Dung Lin
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology and Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yi Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, China
| | - Yong-Fei Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Zhang Q, Su P, Zhao F, Ren H, He C, Wu Q, Wang Z, Ma J, Huang X, Wang Z. Enhancing Skin Injury Repair: Combined Application of PF-127 Hydrogel and hADSC-Exos Containing miR-148a-3p. ACS Biomater Sci Eng 2024; 10:2235-2250. [PMID: 38445959 DOI: 10.1021/acsbiomaterials.3c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The use of exosomes to relieve skin injuries has received considerable attention. The PluronicF-127 hydrogel (PF-127 hydrogel) is a novel biomaterial that can be used to carry biomolecules. This study sought to investigate the impact of exosomes originating from human mesenchymal stem cells (MSCs) developed from adipose tissue (hADSC-Exos) combined with a PF-127 hydrogel on tissue repair and explore the underlying mechanism using in vitro and in vivo experiments. miR-148a-3p is the most expressed microRNA (miRNA) in hADSC-Exos. We found that exosomes combined with the PF-127 hydrogel had a better efficacy than exosomes alone; moreover, miR-148a-3p knockdown lowered its efficacy. In vitro, we observed a significant increase in the tumor-like ability of HUVECs after exosome treatment, which was attenuated after miR-148a-3p knockdown. Furthermore, the effects of miR-148a-3p on hADSC-Exos were achieved through the prevention of PTEN and the triggering of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In conclusion, our results demonstrated that hADSC-Exos can promote angiogenesis and skin wound healing by delivering miR-148a-3p and have a better effect when combined with the PF-127 hydrogel, which may be an alternative strategy to promote wound healing.
Collapse
Affiliation(s)
- Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- Department of Pathology, Chengdu Third People's Hospital, Chengdu 610000, Sichuan, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Quan Wu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
8
|
Shin DI, Jin YJ, Noh S, Yun HW, Park DY, Min BH. Exosomes Secreted During Myogenic Differentiation of Human Fetal Cartilage-Derived Progenitor Cells Promote Skeletal Muscle Regeneration through miR-145-5p. Tissue Eng Regen Med 2024; 21:487-497. [PMID: 38294592 PMCID: PMC10987463 DOI: 10.1007/s13770-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Currently, there is no apparent treatment for sarcopenia, which is characterized by diminished myoblast function. We aimed to manufacture exosomes that retain the myogenic differentiation capacity of human fetal cartilage-derived progenitor cells (hFCPCs) and investigate their muscle regenerative efficacy in myoblasts and a sarcopenia rat model. METHODS The muscle regeneration potential of exosomes (F-Exo) secreted during myogenic differentiation of hFCPCs was compared to human bone marrow mesenchymal stem cells-derived (hBMSCs) exosomes (B-Exo) in myoblasts and sarcopenia rat model. The effect of F-Exo was analyzed through known microRNAs (miRNAs) analysis. The mechanism of action of F-Exo was confirmed by measuring the expression of proteins involved in the Wnt signaling pathway. RESULTS F-Exo and B-Exo showed similar exosome characteristics. However, F-Exo induced the expression of muscle markers (MyoD, MyoG, and MyHC) and myotube formation in myoblasts more effectively than B-Exo. Moreover, F-Exo induced greater increases in muscle fiber cross-sectional area and muscle mass compared to B-Exo in a sarcopenia rat. The miR-145-5p, relevant to muscle regeneration, was found in high concentrations in the F-Exo, and RNase pretreatment reduced the efficacy of exosomes. The effects of F-Exo on the expression of myogenic markers in myoblasts were paralleled by the miR-145-5p mimics, while the inhibitor partially negated this effect. F-Exo was involved in the Wnt signaling pathway by enhancing the expression of Wnt5a and β-catenin. CONCLUSION F-Exo improved muscle regeneration by activating the Wnt signaling pathway via abundant miR-145-5p, mimicking the remarkable myogenic differentiation potential of hFCPCs.
Collapse
Affiliation(s)
- Dong Il Shin
- Department of Molecular Science and Technology, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Yong Jun Jin
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Sujin Noh
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
9
|
Xu Z, Liu Q, Ning C, Yang M, Zhu Q, Li D, Wang T, Li F. miRNA profiling of chicken follicles during follicular development. Sci Rep 2024; 14:2212. [PMID: 38278859 PMCID: PMC10817932 DOI: 10.1038/s41598-024-52716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role as transcription regulators in various aspects of follicular development, including steroidogenesis, ovulation, apoptosis, and gene regulation in poultry. However, there is a paucity of studies examining the specific impact of miRNAs on ovarian granulosa cells (GCs) across multiple grades in laying hens. Consequently, this study aims to investigate the roles of miRNAs in chicken GCs. By constructing miRNA expression profiles of GCs at 10 different time points, encompassing 4 pre-hierarchical, 5 preovulatory, and 1 postovulatory follicles stage, we identified highly expressed miRNAs involved in GC differentiation (miR-148a-3p, miR-143-3p), apoptosis (let7 family, miR-363-3p, miR-30c-5p, etc.), and autophagy (miR-128-3p, miR-21-5p). Furthermore, we discovered 48 developmentally dynamic miRNAs (DDMs) that target 295 dynamic differentially expressed genes (DDGs) associated with follicular development and selection (such as oocyte meiosis, progesterone-mediated oocyte maturation, Wnt signaling pathway, TGF-β signaling pathway) as well as follicular regression (including autophagy and cellular senescence). These findings contribute to a more comprehensive understanding of the intricate mechanisms underlying follicle recruitment, selection, and degeneration, aiming to enhance poultry's reproductive capacity.
Collapse
Affiliation(s)
- Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Maosen Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
10
|
Guo D, Wei Y, Li X, Bai Y, Liu Z, Li J, Chen Z, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Comprehensive Analysis of miRNA and mRNA Expression Profiles during Muscle Development of the Longissimus Dorsi Muscle in Gannan Yaks and Jeryaks. Genes (Basel) 2023; 14:2220. [PMID: 38137042 PMCID: PMC10742600 DOI: 10.3390/genes14122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
A hybrid offspring of Gannan yak and Jersey cattle, the Jeryak exhibits apparent hybrid advantages over the Gannan yak in terms of production performance and other factors. The small non-coding RNAs known as miRNAs post-transcriptionally exert a significant regulatory influence on gene expression. However, the regulatory mechanism of miRNA associated with muscle development in Jeryak remains elusive. To elucidate the regulatory role of miRNAs in orchestrating skeletal muscle development in Jeryak, we selected longissimus dorsi muscle tissues from Gannan yak and Jeryak for transcriptome sequencing analysis. A total of 230 (DE) miRNAs were identified in the longissimus dorsi muscle of Gannan yak and Jeryak. The functional enrichment analysis revealed a significant enrichment of target genes from differentially expressed (DE)miRNAs in signaling pathways associated with muscle growth, such as the Ras signaling pathway and the MAPK signaling pathway. The network of interactions between miRNA and mRNA suggest that some (DE)miRNAs, including miR-2478-z, miR-339-x, novel-m0036-3p, and novel-m0037-3p, played a pivotal role in facilitating muscle development. These findings help us to deepen our understanding of the hybrid dominance of Jeryaks and provide a theoretical basis for further research on the regulatory mechanisms of miRNAs associated with Jeryak muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Vu TH, Hong Y, Heo J, Kang S, Lillehoj HS, Hong YH. Chicken miR-148a-3p regulates immune responses against AIV by targeting the MAPK signalling pathway and IFN-γ. Vet Res 2023; 54:110. [PMID: 37993949 PMCID: PMC10664352 DOI: 10.1186/s13567-023-01240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/17/2023] [Indexed: 11/24/2023] Open
Abstract
MicroRNAs are involved in the immune systems of host animals and play essential roles in several immune-related pathways. In the current study, we investigated the systemic biological function of the chicken miRNA gga-miR-148a-3p on immune responses in chicken lines resistant and susceptible to HPAIV-H5N1. We found that gga-miR-148a expression in the lung tissue of H5N1-resistant chickens was significantly downregulated during HPAIV-H5N1 infection. Overexpression of gga-miR-148a and a reporter construct with wild type or mutant IFN-γ, MAPK11, and TGF-β2 3' untranslated region (3' UTR)-luciferase in chicken fibroblasts showed that gga-miR-148a acted as a direct translational repressor of IFN-γ, MAPK11, and TGF-β2 by targeting their 3' UTRs. Furthermore, miR-148a directly and negatively influenced the expression of signalling molecules related to the MAPK signalling pathway, including MAPK11, TGF-β2, and Jun, and regulated antiviral responses through interferon-stimulated genes and MHC class I and class II genes by targeting IFN-γ. Downstream of the MAPK signalling pathway, several proinflammatory cytokines such as IL-1β, IFN-γ, IL-6, TNF-α, IFN-β, and interferon-stimulated genes were downregulated by the overexpression of gga-miR-148a. Our data suggest that gga-miR-148a-3p is an important regulator of the MAPK signalling pathway and antiviral response. These findings improve our understanding of the biological functions of gga-miR-148a-3p, the mechanisms underlying the MAPK signalling pathway, and the antiviral response to HPAIV-H5N1 infection in chickens as well as the role of gga-miR-148a-3p in improving the overall performance of chicken immune responses for breeding disease-resistant chickens.
Collapse
Affiliation(s)
- Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Hanoi, 100000, Vietnam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jubi Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Suyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
12
|
Fan RF, Chen XW, Cui H, Fu HY, Xu WX, Li JZ, Lin H. Selenoprotein K knockdown induces apoptosis in skeletal muscle satellite cells via calcium dyshomeostasis-mediated endoplasmic reticulum stress. Poult Sci 2023; 102:103053. [PMID: 37716231 PMCID: PMC10507440 DOI: 10.1016/j.psj.2023.103053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023] Open
Abstract
Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca2+) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken. Here, we established a SELENOK deficient model to explore the role of SELENOK in SMSCs. SELENOK knockdown inhibited SMSCs proliferation and differentiation by regulating the protein levels of paired box 7 (Pax7), myogenic factor 5 (Myf5), CyclinD1, myogenic differentiation (MyoD), and Myf6. Further analysis exhibited that SELENOK knockdown markedly activated the ERS signaling pathways, which ultimately induced apoptosis in SMSCs. SELENOK knockdown-induced ERS is related with ER Ca2+ ([Ca2+]ER) overload via decreasing the protein levels of STIM2, Orai1, palmitoylation of inositol 1,4,5-trisphosphate receptor 1 (IP3R1), phospholamban (PLN), and plasma membrane Ca2+-ATPase (PMCA) while increasing the protein levels of sarco/endoplasmic Ca2+-ATPase 1 (SERCA1) and Na+/Ca2+ exchanger 1 (NCX1). Moreover, thimerosal, an activator of IP3R1, reversed the overload of [Ca2+]ER, ERS, and subsequent apoptosis caused by SELENOK knockdown. These findings indicated that SELENOK knockdown triggered ERS driven by intracellular Ca2+ dyshomeostasis and further induced apoptosis, which ultimately inhibited SMSCs proliferation and differentiation.
Collapse
Affiliation(s)
- Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Han Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Hong-Yu Fu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Wan-Xue Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jiu-Zhi Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; State Key Laboratory of Crop Biology, College of Life Sciences, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
13
|
Wu Y, Zhao J, Zhao X, He H, Cui C, Zhang Y, Zhu Q, Yin H, Han S. CircLRRFIP1 promotes the proliferation and differentiation of chicken skeletal muscle satellite cells by sponging the miR-15 family via activating AKT3-mTOR/p70S6K signaling pathway. Poult Sci 2023; 102:103050. [PMID: 37683450 PMCID: PMC10498000 DOI: 10.1016/j.psj.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Skeletal muscle is important for animal meat production, regulating movements, and maintaining homeostasis. Circular RNAs (circRNAs) have been founded to play vital role in myogenesis. However, the effects of the numerous circRNAs on growth and development of the skeletal muscle are yet to be uncovered. Herein, we identified circLRRFIP1, which is a novel circular RNA that is preferentially expressed in the skeletal muscle. To study the role of circLRRFIP1 in the skeletal muscle, the skeletal muscle satellite cells (SMSCs) was used to silenced or overexpressed circLRRFIP1. The results obtained in this study showed that circLRRFIP1 play a positive role in the proliferation and differentiation of SMSCs. The SMSCs were generated with stable knockdown and overexpression of circLRRFIP1, and the results showed that circLRRFIP1 exerts a stimulatory effect on the proliferation and differentiation of SMSCs. We further generated SMSCs with stable knockdown and overexpression of circLRRFIP1, and the results revealed that circLRRFIP1 exerts a stimulatory effect on the proliferation and differentiation of SMSCs. Mechanistically, circLRRFIP1 targets the myogenic inhibitory factor-miR-15 family to release the suppression of the miR-15 family to AKT3. The knockdown of AKT inhibits SMSC differentiation through the mTOR/p70S6K pathway. Taken together, the results obtained in this present study revealed the important role and the regulatory mechanisms of circLRRFIP1 in the development of chicken skeletal muscle. Therefore, this study provides an attractive target for molecular breeding to enhance meat production in the chicken industry.
Collapse
Affiliation(s)
- Yamei Wu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jing Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haorong He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Can Cui
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shunshun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
Yang Y, Wu J, Liu W, Zhao Y, Chen H. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development. Int J Mol Sci 2023; 24:14534. [PMID: 37833983 PMCID: PMC10572267 DOI: 10.3390/ijms241914534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.
Collapse
Affiliation(s)
- Yaling Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Jian Wu
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Yumin Zhao
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| |
Collapse
|
15
|
Ding F, Wu H, Han X, Jiang X, Xiao Y, Tu Y, Yu M, Lei W, Hu S. The miR-148/152 family contributes to angiogenesis of human pluripotent stem cell- derived endothelial cells by inhibiting MEOX2. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:582-593. [PMID: 37200858 PMCID: PMC10185738 DOI: 10.1016/j.omtn.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) represent a promising source of human ECs urgently needed for the study of cardiovascular disease mechanisms, cell therapy, and drug screening. This study aims to explore the function and regulatory mechanism of the miR-148/152 family consisting of miR-148a, miR-148b, and miR-152 in hPSC-ECs, so as to provide new targets for improving EC function during the above applications. In comparison with the wild-type (WT) group, miR-148/152 family knockout (TKO) significantly reduced the endothelial differentiation efficiency of human embryonic stem cells (hESCs), and impaired the proliferation, migration, and capillary-like tube formatting abilities of their derived ECs (hESC-ECs). Overexpression of miR-152 partially restored the angiogenic capacity of TKO hESC-ECs. Furthermore, the mesenchyme homeobox 2 (MEOX2) was validated as the direct target of miR-148/152 family. MEOX2 knockdown resulted in partial restoration of the angiogenesis ability of TKO hESC-ECs. The Matrigel plug assay further revealed that the in vivo angiogenic capacity of hESC-ECs was impaired by miR-148/152 family knockout, and increased by miR-152 overexpression. Thus, the miR-148/152 family is crucial for maintaining the angiogenesis ability of hPSC-ECs, and might be used as a target to enhance the functional benefit of EC therapy and promote endogenous revascularization.
Collapse
Affiliation(s)
- Fengyue Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xue Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Yang Xiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Yuanyuan Tu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Corresponding author: Wei Lei, Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Corresponding author: Shijun Hu, Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| |
Collapse
|
16
|
MicroRNA-148a Controls Epidermal and Hair Follicle Stem/Progenitor Cells by Modulating the Activities of ROCK1 and ELF5. J Invest Dermatol 2023; 143:480-491.e5. [PMID: 36116511 DOI: 10.1016/j.jid.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022]
Abstract
Skin and hair development is regulated by complex programs of gene activation and silencing and microRNA-dependent modulation of gene expression to maintain normal skin and hair follicle development, homeostasis, and cycling. In this study, we show that miR-148a, through its gene targets, plays an important role in regulating skin homeostasis and hair follicle cycling. RNA and protein analysis of miR-148a and its gene targets were analyzed using a combination of in vitro and in vivo experiments. We show that the expression of miR-148a markedly increases during telogen (bulge and hair germ stem cell compartments). Administration of antisense miR-148a inhibitor into mouse skin during the telogen phases of the postnatal hair cycle results in accelerated anagen development and altered stem cell activity in the skin. We also show that miR-148a can regulate colony-forming abilities of hair follicle bulge stem cells as well as control keratinocyte proliferation/differentiation processes. RNA and protein analysis revealed that miR-148a may control these processes by regulating the expression of Rock1 and Elf5 in vitro and in vivo. These data provide an important foundation for further analyses of miR-148a as a crucial regulator of these genes target in the skin and hair follicles and its importance in maintaining stem/progenitor cell functions during normal tissue homeostasis and regeneration.
Collapse
|
17
|
Zhao B, Zhang H, Zhao D, Liang Y, Qiao L, Liu J, Pan Y, Yang K, Liu W. circINSR Inhibits Adipogenic Differentiation of Adipose-Derived Stromal Vascular Fractions through the miR-152/ MEOX2 Axis in Sheep. Int J Mol Sci 2023; 24:ijms24043501. [PMID: 36834919 PMCID: PMC9964708 DOI: 10.3390/ijms24043501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Adipose tissue plays a crucial role in energy metabolism. Several studies have shown that circular RNA (circRNA) is involved in the regulation of fat development and lipid metabolism. However, little is known about their involvement in the adipogenic differentiation of ovine stromal vascular fractions (SVFs). Here, based on previous sequencing data and bioinformatics analysis, a novel circINSR was identified in sheep, which acts as a sponge to promote miR-152 in inhibiting the adipogenic differentiation of ovine SVFs. The interactions between circINSR and miR-152 were examined using bioinformatics, luciferase assays, and RNA immunoprecipitation. Of note, we found that circINSR was involved in adipogenic differentiation via the miR-152/mesenchyme homeobox 2 (MEOX2) pathway. MEOX2 inhibited adipogenic differentiation of ovine SVFs and miR-152 inhibited the expression of MEOX2. In other words, circINSR directly isolates miR-152 in the cytoplasm and inhibits its ability to promote adipogenic differentiation of ovine SVFs. In summary, this study revealed the role of circINSR in the adipogenic differentiation of ovine SVFs and its regulatory mechanisms, providing a reference for further interpretation of the development of ovine fat and its regulatory mechanisms.
Collapse
|
18
|
Tian Y, Shen X, Zhao J, Wei Y, Han S, Yin H. CircSUCO promotes proliferation and differentiation of chicken skeletal muscle satellite cells via sponging miR-15. Br Poult Sci 2023; 64:90-99. [PMID: 36093974 DOI: 10.1080/00071668.2022.2124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. In a previous high-throughput sequencing study, a novel circular RNA (circRNA) generated from a SUN domain containing ossification factor (SUCO) gene transcript (circSUCO) was differentially expressed during the embryonic muscle development. This study aimed to further explore the effect of circSUCO on chicken skeletal muscle development.2. The experiment analysed the expression patterns of circSUCO in Tianfu broilers and clarified its function in the chicken skeletal muscle satellite cells (SMSC) after circSUCO knockdown. The qPCR results showed circSUCO was highly expressed in skeletal muscle and has different expression levels during various development periods.3. Mechanistically, a series of in vitro experiments showed that circSUCO interference suppressed proliferation and differentiation of SMSC. In addition, it was observed that circSUCO competitively binds with microRNAs such as miR-15a, miR-15b-5p, and miR-15c-5p according to the dual-luciferase assay and qPCR.4. Correlation was positive between the circSUCO expression level and the ratio of the breast muscle. The results revealed that circSUCO could play a positive role in proliferation and differentiation of SMSC via sponging miR-15a, miR-15b-5p, and miR-15c-5p, hence, may contribute to skeletal muscle development in chicken.
Collapse
Affiliation(s)
- Y Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - X Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - J Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Y Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - S Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - H Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
19
|
Sethi S, Mehta P, Pandey A, Gupta G, Rajender S. miRNA Profiling of Major Testicular Germ Cells Identifies Stage-Specific Regulators of Spermatogenesis. Reprod Sci 2022; 29:3477-3493. [PMID: 35715552 DOI: 10.1007/s43032-022-01005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is tightly controlled at transcriptional, post-transcriptional, and epigenetic levels by various regulators, including miRNAs. This study deals with the identification of miRNAs critical to the three important stages of germ cell development (spermatocytes, round spermatids, and mature sperm) during spermatogenesis. We used high-throughput transcriptome sequencing to identify the differentially expressed miRNAs in the pachytene spermatocytes, round spermatids, and mature sperm of rat. We identified 1843 miRNAs that were differentially expressed across the three stages of germ cell development. These miRNAs were further categorized into three classes according to their pattern of expression during spermatogenesis: class 1 - miRNAs found exclusively in one stage and absent in the other two stages; class 2 - miRNAs found in any two stages but absent in the third stage; class 3 - miRNAs expressed in all the three stages. Six hundred forty-six miRNAs were found to be specific to one developmental stage, 443 miRNAs were found to be common across any two stages, and 754 miRNAs were common to all the three stages. Target prediction for ten most abundant miRNAs specific to each category identified miRNA regulators of mitosis, meiosis, and cell differentiation. The expression of each miRNA is specific to a particular developmental stage, which is required to maintain a significant repertoire of target mRNAs in the respective stage. Thus, this study provided valuable data that can be used in the future to identify the miRNAs involved in spermatogenic arrest at a particular stage of the germ cell development.
Collapse
Affiliation(s)
- Shruti Sethi
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Poonam Mehta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Aastha Pandey
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Gopal Gupta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Singh Rajender
- CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India.
| |
Collapse
|
20
|
He W, Zhang F, Jiang F, Liu H, Wang G. Correlations between serum levels of microRNA-148a-3p and microRNA-485-5p and the progression and recurrence of prostate cancer. BMC Urol 2022; 22:195. [PMID: 36434610 PMCID: PMC9701040 DOI: 10.1186/s12894-022-01143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Unpredicted postoperative recurrence of prostate cancer, one of the most common malignancies among males worldwide, has become a prominent issue affecting patients after treatment. Here, we investigated the correlation between the serum miR-148a-3p and miR-485-5p expression levels and cancer recurrence in PCa patients, aiming to identify new biomarkers for diagnosis and predicting postoperative recurrence of prostate cancer. METHODS A total of 198 male PCa cases treated with surgery, postoperative radiotherapy, and chemotherapy were involved in the presented study. Serum levels of miR-148a-3p and miR-485-5p were measured before the initial operation for the involved cases, which were then followed up for two years to monitor the recurrence of cancer and to split the cases into recurrence and non-recurrence groups. Comparison of the relative expressions of serum miR-148a-3p and miR-485-5p were made and related to other clinic pathological features. RESULTS Pre-surgery serum levels of miR-148a-3p in patients with TNM stage cT1-2a prostate cancer (Gleason score < 7) were significantly lower (P < 0.05) than levels in patients with TNM Classification of Malignant Tumors (TNM) stage cT2b and higher prostate cancer (Gleason score ≥ 7). pre-surgery serum levels of miR-485-5p in patients with TNM stage cT1-2a prostate cancer (Gleason score < 7) were significantly higher (P < 0.05) than in patients with TNM stage cT2b and higher cancer (Gleason score ≥ 7). Serum miR-148a-3p level in recurrence group is higher than the non-recurrence group (P < 0.05) while serum miR-485-5p level in recurrence group is lower than non-recurrence group (P < 0.05). ROC curve analysis showed the AUCs of using miR-148a-3p, miR-485-5p, and combined detection for predicting recurrence of prostate cancer were 0.825 (95% CI 0.765-0.875, P < 0.0001), 0.790 (95% CI 0.726-0.844, P < 0.0001), and 0.913 (95% CI 0.865-0.948, P < 0.0001). CONCLUSION Pre-surgery serum miR-148a-3p level positively correlates while miR-485-5p level negatively correlates with prostate cancer's progressing and postoperative recurrence. Both molecules show potential to be used for predicting postoperative recurrence individually or combined.
Collapse
Affiliation(s)
- Wenyan He
- grid.513202.7Department of Urology, Yan’an People’s Hospital, Yan’an, China
| | - Furong Zhang
- grid.507892.10000 0004 8519 1271Department of Neurology, Affiliated Hospital of Yan’an University, Yan’an, China
| | - Feng Jiang
- grid.412750.50000 0004 1936 9166Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Huan Liu
- grid.412750.50000 0004 1936 9166Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Gang Wang
- grid.513202.7Department of Urology, Yan’an People’s Hospital, Yan’an, China
| |
Collapse
|
21
|
Cui R, Kang X, Liu Y, Liu X, Chan S, Wang Y, Li Z, Ling Y, Feng D, Li M, Lv F, Fang M. Integrated analysis of the whole transcriptome of skeletal muscle reveals the ceRNA regulatory network related to the formation of muscle fibers in Tan sheep. Front Genet 2022; 13:991606. [PMID: 36330447 PMCID: PMC9624228 DOI: 10.3389/fgene.2022.991606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022] Open
Abstract
Meat quality is highly influenced by the kind of muscle fiber, and it can be significantly improved by increasing the percentage of slow-twitch fibers. It is still not known which genes control the formation of muscle fibers or how those genes control the process of forming in sheep until now. In this study, we used high-throughput RNA sequencing to assess the expression profiles of coding and noncoding RNAs in muscle tissue of Tan sheep and Dorper sheep. To investigate the molecular processes involved in the formation of muscle fibers, we collected two different muscle tissues, longissimus dorsi and biceps femoris, from Tan sheep and Dorper sheep. The longissimus dorsi of Tan sheep and Dorper sheep displayed significantly differential expression levels for 214 lncRNAs, 25 mRNAs, 4 miRNAs, and 91 circRNAs. Similarly, 172 lncRNAs, 35 mRNAs, 12 miRNAs, and 95 circRNAs were differentially expressed in the biceps femoris of Tan sheep and Dorper sheep according to the expression profiling. GO and KEGG annotation revealed that these differentially expressed genes and noncoding RNAs were related to pathways of the formation of muscle fiber, such as the Ca2+, FoxO, and AMPK signaling pathways. Several key genes are involved in the formation of muscle fibers, including ACACB, ATP6V0A1, ASAH1, EFHB, MYL3, C1QTNF7, SFSWAP, and FBXL5. RT-qPCR verified that the expression patterns of randomly selected differentially expressed transcripts were highly consistent with those obtained by RNA sequencing. A total of 10 lncRNAs, 12 miRNAs, 20 circRNAs, and 19 genes formed lncRNA/circRNA-miRNA-gene networks, indicating that the formation of muscle fiber in Tan sheep is controlled by intricate regulatory networks of coding and noncoding genes. Our findings suggested that specific ceRNA subnetworks, such as circ_0017336-miR-23a-FBXL5, may be critical in the regulation of the development of muscle fibers, offering a valuable resource for future study of the development of muscle fibers in this animal species. The findings increase our understanding of the variety in how muscle fibers originate in various domestic animals and lay the groundwork for future research into new systems that regulate the development of muscle.
Collapse
Affiliation(s)
- Ran Cui
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaolong Kang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximing Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuheng Chan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yubei Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Ling
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dengzhen Feng
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Menghua Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fenghua Lv
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Fenghua Lv, ; Meiying Fang,
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Fenghua Lv, ; Meiying Fang,
| |
Collapse
|
22
|
Li D, Li X, He H, Zhang Y, He H, Sun C, Zhang X, Wang X, Kan Z, Su Y, Han S, Xia L, Tan B, Ma M, Zhu Q, Yin H, Cui C. miR-10a-5p inhibits chicken granulosa cells proliferation and Progesterone(P4) synthesis by targeting MAPRE1 to suppress CDK2. Theriogenology 2022; 192:97-108. [PMID: 36084389 DOI: 10.1016/j.theriogenology.2022.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
The proliferation and steroid hormone synthesis of granulosa cells (GCs) are essential for ovarian follicle growth and ovulation, which are necessary to support the normal function of the follicle. Numerous studies suggest that miRNAs play key roles in this process. In this study, we report a novel role for miR-10a-5p that inhibits ovarian GCs proliferation and progesterone (P4) synthesis in chicken. Specifically, we found that miR-10a-5p significantly decreased the P4 secretion by quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot. Moreover, we observed that miR-10a-5p can inhibit the proliferation of chicken GCs through the investigation of cell proliferation gene expression, cell counting kit 8 (CCK-8), cell cycle progression, and 5-ethynyl-2'-deoxyuridine (EdU) assay. Then we screened a target gene MAPRE1 of miR-10a-5p, which can promote P4 synthesis and proliferation of GCs. To explore how miR-10a-5p affects cell cycle by MAPRE1, we investigated the interaction between MAPRE1 and cyclin-dependent kinase 2 (CDK2) by Co-Immunoprecipitation (Co-IP), and then we found that MAPRE1 can form a complex with CDK2. In addition, miR-10a-5p was found to inhibit CDK2 expression by repressing the expression of MAPRE1. Overall, our results indicate that miR-10a-5p regulates the proliferation and P4 synthesis of chicken GCs by targeting MAPRE1 to suppress CDK2.
Collapse
Affiliation(s)
- Dongmei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Congjiao Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinyi Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xunzi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhaoyi Kan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Su
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lu Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bo Tan
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mengen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
23
|
Wei Q, Xue H, Sun C, Li J, He H, Amevor FK, Tan B, Ma M, Tian K, Zhang Z, Zhang Y, He H, Xia L, Zhu Q, Yin H, Cui C. Gga-miR-146b-3p promotes apoptosis and attenuate autophagy by targeting AKT1 in chicken granulosa cells. Theriogenology 2022; 190:52-64. [DOI: 10.1016/j.theriogenology.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
|
24
|
Fan J, Chen J, Wu H, Lu X, Fang X, Yin F, Zhao Z, Jiang P, Yu H. Chitosan Oligosaccharide Inhibits the Synthesis of Milk Fat in Bovine Mammary Epithelial Cells through AMPK-Mediated Downstream Signaling Pathway. Animals (Basel) 2022; 12:ani12131692. [PMID: 35804595 PMCID: PMC9265072 DOI: 10.3390/ani12131692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary In order to study the effect of chitosan oligosaccharides on milk fat synthesis of bovine mammary epithelial cells (BMECs), we did a series of related experiments. The results showed that chitosan oligosaccharide (COS) could inhibit the fatty acid synthesis and promote milk fat decomposition and oxidation through AMPK/SREBP1/SCD1, AMPK/HSL and AMPK/PPARα signaling pathways to reduce the milk fat content in bovine mammary epithelial cells. We elucidated the important role of COS in BMECs lipid metabolism. COS may be the potential small-molecule component in milk cow molecular breeding to regulate milk fat synthesis and metabolism. These findings will help us to further understand the mechanism of COS on milk fat metabolism. Abstract Chitosan oligosaccharide (COS) is a variety of oligosaccharides, and it is also the only abundant basic amino oligosaccharide in natural polysaccharides. Chitosan oligosaccharide is a low molecular weight product of chitosan after enzymatic degradation. It has many biological effects, such as lipid-lowering, antioxidant and immune regulation. Previous studies have shown that chitosan oligosaccharide has a certain effect on fat synthesis, but the effect of chitosan oligosaccharide on milk fat synthesis of bovine mammary epithelial cells (BMECs) has not been studied. Therefore, this study aimed to investigate chitosan oligosaccharide’s effect on milk fat synthesis in bovine mammary epithelial cells and explore the underlying mechanism. We treated bovine mammary epithelial cells with different concentrations of chitosan oligosaccharide (0, 100, 150, 200, 400 and 800 μg/mL) for 24 h, 36 h and 48 h respectively. To assess the effect of chitosan oligosaccharide on bovine mammary epithelial cells and determine the concentration and time for chitosan oligosaccharide treatment on cells, several in vitro cellular experiments, including on cell viability, cycle and proliferation were carried out. The results highlighted that chitosan oligosaccharide (100, 150 μg/mL) significantly promoted cell viability, cycle and proliferation, increased intracellular cholesterol content, and reduced intracellular triglyceride and non-esterified fatty acids content. Under the stimulation of chitosan oligosaccharide, the expression of genes downstream of Phosphorylated AMP-activated protein kinase (P-AMPK) and AMP-activated protein kinase (AMPK) signaling pathway changed, increasing the expression of peroxisome proliferator-activated receptor alpha (PPARα) and hormone-sensitive lipase (HSL), but the expression of sterol regulatory element-binding protein 1c (SREBP1) and its downstream target gene stearoyl-CoA desaturase (SCD1) decreased. In conclusion, these results suggest that chitosan oligosaccharide may inhibit milk fat synthesis in bovine mammary epithelial cells by activating the AMP-activated protein kinase signaling pathway, promoting the oxidative decomposition of fatty acids and inhibiting fatty acid synthesis.
Collapse
Affiliation(s)
- Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiayi Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haochen Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Lu
- College of Animal Science, Jilin University, Changchun 130062, China; (X.L.); (X.F.)
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.L.); (X.F.)
| | - Fuquan Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (P.J.); (H.Y.); Tel.: +86-151-4305-9097 (P.J.); +86-186-8660-9912 (H.Y.)
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (J.C.); (H.W.); (F.Y.); (Z.Z.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (P.J.); (H.Y.); Tel.: +86-151-4305-9097 (P.J.); +86-186-8660-9912 (H.Y.)
| |
Collapse
|
25
|
Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes (Basel) 2022; 13:genes13061033. [PMID: 35741795 PMCID: PMC9222894 DOI: 10.3390/genes13061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and quality. In domestic chickens, skeletal muscle growth is regulated by a complex network of molecules that includes some non-coding RNAs (ncRNAs). As a regulator of muscle growth and development, ncRNAs play a significant function in the development of skeletal muscle in domestic chickens. Recent advances in sequencing technology have contributed to the identification and characterization of more ncRNAs (mainly microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (CircRNAs)) involved in the development of domestic chicken skeletal muscle, where they are widely involved in proliferation, differentiation, fusion, and apoptosis of myoblasts and satellite cells, and the specification of muscle fiber type. In this review, we summarize the ncRNAs involved in the skeletal muscle growth and development of domestic chickens and discuss the potential limitations and challenges. It will provide a theoretical foundation for future comprehensive studies on ncRNA participation in the regulation of skeletal muscle growth and development in domestic chickens.
Collapse
|
26
|
Wu P, Zhou K, Zhang J, Ling X, Zhang X, Zhang L, Li P, Wei Q, Zhang T, Wang X, Zhang G. Identification of crucial circRNAs in skeletal muscle during chicken embryonic development. BMC Genomics 2022; 23:330. [PMID: 35484498 PMCID: PMC9052468 DOI: 10.1186/s12864-022-08588-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Chicken provides humans with a large amount of animal protein every year, in which skeletal muscle plays a leading role. The embryonic skeletal muscle development determines the number of muscle fibers and will affect the muscle production of chickens. CircRNAs are involved in a variety of important biological processes, including muscle development. However, studies on circRNAs in the chicken embryo muscle development are still lacking. Results In the study, we collected chicken leg muscles at 14 and 20-day embryo ages both in the fast- and slow-growing groups for RNA-seq. We identified 245 and 440 differentially expressed (DE) circRNAs in the comparison group F14vsF20 and S14vsS20 respectively. GO enrichment analysis for the host genes of DE circRNAs showed that biological process (BP) terms in the top 20 related to growth in F14vsF20 were found such as positive regulation of transcription involved in G1/S phase of mitotic cell cycle, multicellular organismal macromolecule metabolic process, and multicellular organismal metabolic process. In group S14vsS20, we also found some BP terms associated with growth in the top 20 including actomyosin structure organization, actin cytoskeleton organization and myofibril assembly. A total of 7 significantly enriched pathways were obtained, containing Adherens junction and Tight junction. Further analysis of those pathways found three crucial host genes MYH9, YBX3, IGF1R in both fast- and slow-growing groups, three important host genes CTNNA3, AFDN and CREBBP only in the fast-growing group, and six host genes FGFR2, ACTN2, COL1A2, CDC42, DOCK1 and MYL3 only in the slow-growing group. In addition, circRNA-miRNA network also revealed some key regulation pairs such as novel_circ_0007646-miR-1625-5p, novel_circ_0007646-miR-1680-5p, novel_circ_0008913-miR-148b-5p, novel_circ_0008906-miR-148b-5p and novel_circ_0001640-miR-1759-3p. Conclusions Comprehensive analysis of circRNAs and their targets would contribute to a better understanding of the molecular mechanisms in poultry skeletal muscle and it also plays an important guiding role in the next research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08588-4.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Peifeng Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Qingyu Wei
- College of Animal Science, Shanxi Agricultural University, Taiyuan, 030032, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinglong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
27
|
Identification and characterization of circular RNAs in Longissimus dorsi muscle tissue from two goat breeds using RNA-Seq. Mol Genet Genomics 2022; 297:817-831. [DOI: 10.1007/s00438-022-01887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
28
|
He H, Li D, Tian Y, Wei Q, Amevor FK, Sun C, Yu C, Yang C, Du H, Jiang X, Ma M, Cui C, Zhang Z, Tian K, Zhang Y, Zhu Q, Yin H. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1. J Anim Sci Biotechnol 2022; 13:55. [PMID: 35410457 PMCID: PMC9003977 DOI: 10.1186/s40104-022-00697-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
Background The egg production performance of chickens is affected by many factors, including genetics, nutrition and environmental conditions. These factors all play a role in egg production by affecting the development of follicles. MicroRNAs (miRNAs) are important non-coding RNAs that regulate biological processes by targeting genes or other non-coding RNAs after transcription. In the animal reproduction process, miRNA is known to affect the development and atresia of follicles by regulating apoptosis and autophagy of granulosa cells (GCs). Results In this study, we identified potential miRNAs in the atretic follicles of broody chickens and unatretic follicles of healthy chickens. We identified gga-miR-30a-5p in 50 differentially expressed miRNAs and found that gga-miR-30a-5p played a regulatory role in the development of chicken follicles. The function of miR-30a-5p was explored through the transfection test of miR-30a-5p inhibitor and miR-30a-5p mimics. In the study, we used qPCR, western blot and flow cytometry to detect granulosa cell apoptosis, autophagy and steroid hormone synthesis. Confocal microscopy and transmission electron microscopy are used for the observation of autophagolysosomes. The levels of estradiol (E2), progesterone (P4), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected by ELISA. The results showed that miR-30a-5p showed a negative effect on autophagy and apoptosis of granulosa cells, and also contributed in steroid hormones and reactive oxygen species (ROS) production. In addition, the results obtained from the biosynthesis and dual luciferase experiments showed that Beclin1 was the target gene of miR-30a-5p. The rescue experiment conducted further confirmed that Beclin1 belongs to the miR-30a-5p regulatory pathway. Conclusions In summary, after deep miRNA sequencing on healthy and atretic follicles, the results indicated that miR-30a-5p inhibits granulosa cell death by inhibiting Beclin1. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00697-0.
Collapse
Affiliation(s)
- Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dongmei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yongtong Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qinyao Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunlin Yu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kai Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
29
|
Li Y, Yuan P, Fan S, Zhai B, Jin W, Li D, Li H, Sun G, Han R, Liu X, Tian Y, Li G, Kang X. Weighted gene co-expression network indicates that the DYNLL2 is an important regulator of chicken breast muscle development and is regulated by miR-148a-3p. BMC Genomics 2022; 23:258. [PMID: 35379193 PMCID: PMC8978428 DOI: 10.1186/s12864-022-08522-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The characteristics of muscle fibers determine the growth and meat quality of poultry. In this study, we performed a weighted gene co-expression network analysis (WGCNA) on the muscle fiber characteristics and transcriptome profile of the breast muscle tissue of Gushi chicken at 6, 14, 22, and 30 weeks. RESULTS A total of 27 coexpressed biological functional modules were identified, of which the midnight blue module had the strongest correlation with muscle fiber and diameter. In addition, 7 hub genes were found from the midnight blue module, including LC8 dynein light chain 2 (DYNLL2). Combined with miRNA transcriptome data, miR-148a-3p was found to be a potential target miRNA of DYNLL2. Experiments on chicken primary myoblasts (CPMs) demonstrated that miR-148a-3p promotes the expression of myosin heavy chain (MYHC) protein by targeting DYNLL2, proving that it can promote differentiation of myoblasts. CONCLUSIONS This study proved that the hub gene DYNLL2 and its target miR-148-3p are important regulators in chicken myogenesis. These results provide novel insights for understanding the molecular regulation mechanisms related to the development of chicken breast muscle.
Collapse
Affiliation(s)
- Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenjiao Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
30
|
Snellings DA, Girard R, Lightle R, Srinath A, Romanos S, Li Y, Chen C, Ren AA, Kahn ML, Awad IA, Marchuk DA. Developmental venous anomalies are a genetic primer for cerebral cavernous malformations. NATURE CARDIOVASCULAR RESEARCH 2022; 1:246-252. [PMID: 35355835 PMCID: PMC8958845 DOI: 10.1038/s44161-022-00035-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/04/2022] [Indexed: 01/22/2023]
Abstract
Cerebral cavernous malformations (CCM) are a neurovascular anomaly that may occur sporadically, or be inherited due to autosomal dominant mutations in KRIT1 , CCM2 , or PDCD10 . Individual lesions are caused by somatic mutations which have been identified in KRIT1, CCM2, PDCD10, MAP3K3, and PIK3CA . However, the interactions between mutations, and their relative contributions to sporadic versus familial cases remain unclear. We show that mutations in KRIT1, CCM2, PDCD10, and MAP3K3 are mutually exclusive, but may co-occur with mutations in PIK3CA. We also find that MAP3K3 mutations may cause sporadic, but not familial CCM. Furthermore, we find identical PIK3CA mutations in CCMs and adjacent developmental venous anomalies (DVA), a common vascular malformation frequently found in the vicinity of sporadic CCMs. However, somatic mutations in MAP3K3 are found only in the CCM. This suggests that sporadic CCMs are derived from cells of the DVA which have acquired an additional mutation in MAP3K3 .
Collapse
Affiliation(s)
- Daniel A. Snellings
- Department of Molecular Genetics and Microbiology, Duke
University School of Medicine, Durham, North Carolina 27710, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological
Surgery, The University of Chicago Medicine and Biological Sciences, Chicago,
Illinois, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological
Surgery, The University of Chicago Medicine and Biological Sciences, Chicago,
Illinois, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological
Surgery, The University of Chicago Medicine and Biological Sciences, Chicago,
Illinois, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological
Surgery, The University of Chicago Medicine and Biological Sciences, Chicago,
Illinois, USA
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological
Surgery, The University of Chicago Medicine and Biological Sciences, Chicago,
Illinois, USA
| | - Chang Chen
- Neurovascular Surgery Program, Department of Neurological
Surgery, The University of Chicago Medicine and Biological Sciences, Chicago,
Illinois, USA
| | - Aileen A. Ren
- Department of Medicine and Cardiovascular Institute,
University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia PA 19104
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute,
University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia PA 19104
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological
Surgery, The University of Chicago Medicine and Biological Sciences, Chicago,
Illinois, USA
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke
University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
31
|
Lin C, Li F, Zhang X, Zhang D, Li X, Zhang Y, Zhao Y, Song Q, Wang J, Zhou B, Cheng J, Xu D, Li W, Zhao L, Wang W. Expression and polymorphisms of CD8B gene and its associations with body weight and size traits in sheep. Anim Biotechnol 2021:1-9. [PMID: 34928779 DOI: 10.1080/10495398.2021.2016432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The growth traits are economically important traits in sheep. Improving growth rates will increase the profitability of producers. The aim of this study was to identify alleles of CD8B (encoding T-cell surface glycoprotein CD8 beta chain) that are aberrantly expressed in different tissues and to assess the effects and associations of its different genotypes on weight and size traits in sheep. Using quantitative real-time reverse transcription PCR arrays, expression profiling of CD8B was performed in various organs and tissues. CD8B was ubiquitously expressed, with very high expression in the lung, spleen, lymph, duodenum, and liver. One intronic mutation (chr3:62,718,030 (Oar_rambouillet_v1.0, same below) G > A) was identified using pooled DNA sequencing. Subsequently, the variants (AA, AG, and GG) were genotyped using the KASPar® PCR single nucleotide polymorphism (SNP) genotyping system. The results of association analysis with body weight and body size traits in 1304 sheep showed that increases in multiple phenotypic traits correlated with the AA genotype (body weight, p < 0.05; body length, p < 0.05). Thus, SNP chr3:62,718,030 G > A is a promising molecular marker for marker-assisted selection in sheep breeding.
Collapse
Affiliation(s)
- Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China.,The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qizhi Song
- Linze County Animal Disease Prevention and Control Center of Gansu Province, Linze, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
32
|
Yang C, Guo Z, Zhao Z, Wei Y, Wang X, Song Y. miR-4306 Suppresses Proliferation of Esophageal Squamous Cell Carcinoma Cell by Targeting SIX3. Cell Biochem Biophys 2021; 79:769-779. [PMID: 34021861 DOI: 10.1007/s12013-021-00994-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers and the primary cause of cancer-related mortality in China. micoRNA plays a vital role during tumor initiation and malignant progression. miR-4306 has been reported to negatively regulate aggressive cell phenotypes in triple-negative breast cancer (TNBC). Nevertheless, the function of miR-4306 in ESCC was still not clear. In this study, we detected miR-4306 expression by quantitative real-time reverse transcription-PCR (qRT-PCR) and found that miR-4306 expression was downregulated in human ESCC tissue samples and cell lines. Moreover, miR-4306 overexpression could restrain ESCC cell proliferation, migratory and invasive ability and epithelial-mesenchymal transition (EMT), promote cell apoptosis after treatment with or without cisplatin. In contrast, inhibiting the expression of miR-4306 showed the opposing results. Furthermore, we explored the molecular mechanism of effects of miR-4306 and found that miR-4306 inhibited the expression of SIX3 by interaction with SIX3 3'UTR in ESCC cells, and SIX3 overexpression significantly reversed the effect of miR-4306-mediated ESCC cells proliferation. The current study provided evidence of miR-4306 as a tumor suppression gene in ESCC.
Collapse
Affiliation(s)
- Chengyuan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zichan Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
33
|
Tachon G, Masliantsev K, Rivet P, Desette A, Milin S, Gueret E, Wager M, Karayan-Tapon L, Guichet PO. MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells. Cancers (Basel) 2021; 13:cancers13235943. [PMID: 34885053 PMCID: PMC8672280 DOI: 10.3390/cancers13235943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and lethal primary brain tumor for which no curative treatment currently exists. In our previous work, we showed that MEOX2 was associated with a poor patient prognosis but its biological involvement in tumor development remains ill defined. To this purpose, the aim of our study was to investigate the role of MEOX2 in patient-derived glioblastoma cell cultures. We unraveled the MEOX2 contribution to cell viability and growth and its potential involvement in phenotype and adhesion properties of glioblastoma cells. This work paves the way toward a better understanding of the role of MEOX2 in the pathophysiology of primary brain tumors. Abstract The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC.
Collapse
Affiliation(s)
- Gaëlle Tachon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Pierre Rivet
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Serge Milin
- Service d’Anatomo-Cytopathologie, CHU Poitiers, 86000 Poitiers, France;
| | - Elise Gueret
- Université Montpellier, CNRS, INSERM, 34094 Montpellier, France;
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Service de Neurochirurgie, CHU Poitiers, 86000 Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| |
Collapse
|
34
|
Integrated Analysis Reveals a lncRNA-miRNA-mRNA Network Associated with Pigeon Skeletal Muscle Development. Genes (Basel) 2021; 12:genes12111787. [PMID: 34828393 PMCID: PMC8625974 DOI: 10.3390/genes12111787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence has demonstrated the emerging role of long non-coding RNA as competitive endogenous RNA (ceRNA) in regulating skeletal muscle development. However, the mechanism of ceRNA regulated by lncRNA in pigeon skeletal muscle development remains unclear. To reveal the function and regulatory mechanisms of lncRNA, we first analyzed the expression profiles of lncRNA, microRNA (miRNA), and mRNA during the development of pigeon skeletal muscle using high-throughput sequencing. We then constructed a lncRNA-miRNA-mRNA ceRNA network based on differentially expressed (DE) lncRNAs, miRNAs, and mRNAs according to the ceRNA hypothesis. Functional enrichment and short time-series expression miner (STEM) analysis were performed to explore the function of the ceRNA network. Hub lncRNA-miRNA-mRNA interactions were identified by connectivity degree and validated using dual-luciferase activity assay. The results showed that a total of 1625 DE lncRNAs, 11,311 DE mRNAs, and 573 DE miRNAs were identified. A ceRNA network containing 9120 lncRNA-miRNA-mRNA interactions was constructed. STEM analysis indicated that the function of the lncRNA-associated ceRNA network might be developmental specific. Functional enrichment analysis identified potential pathways regulating pigeon skeletal muscle development, such as cell cycle and MAPK signaling. Based on the connectivity degree, lncRNAs TCONS_00066712, TCONS_00026594, TCONS_00001557, TCONS_00001553, and TCONS_00003307 were identified as hub genes in the ceRNA network. lncRNA TCONS_00026594 might regulate the FSHD region gene 1 (FRG1)/ SRC proto-oncogene, non-receptor tyrosine kinase (SRC) by sponge adsorption of cli-miR-1a-3p to affect the development of pigeon skeletal muscle. Our findings provide a data basis for in-depth elucidation of the lncRNA-associated ceRNA mechanism underlying pigeon skeletal muscle development.
Collapse
|
35
|
Su Y, Lin T, Liu C, Cheng C, Han X, Jiang X. microRNAs, the Link Between Dengue Virus and the Host Genome. Front Microbiol 2021; 12:714409. [PMID: 34456895 PMCID: PMC8385664 DOI: 10.3389/fmicb.2021.714409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) is a small envelope virus of Flaviviridae that is mainly transmitted by Aedes aegypti and Aedes albopictus. It can cause dengue fever with mild clinical symptoms or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). At present, there are no specific drugs or mature vaccine products to treat DENV. microRNAs (miRNAs) are a class of important non-coding small molecular RNAs that regulate gene expression at the post-transcriptional level. It is involved in and regulates a series of important life processes, such as growth and development, cell differentiation, cell apoptosis, anti-virus, and anti-tumor. miRNAs also play important roles in interactions between host and viral genome transcriptomes. Host miRNAs can directly target the genome of the virus or regulate host factors to promote or inhibit virus replication. Understanding the expression and function of miRNAs during infection with DENV and the related signal molecules of the miRNA-mediated regulatory network will provide new insights for the development of miRNA-based therapies.
Collapse
Affiliation(s)
- Yinghua Su
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Ting Lin
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
36
|
Shen X, Wei Y, You G, Liu W, Amevor FK, Zhang Y, He H, Ma M, Zhang Y, Li D, Zhu Q, Yin H. Circular PPP1R13B RNA Promotes Chicken Skeletal Muscle Satellite Cell Proliferation and Differentiation via Targeting miR-9-5p. Animals (Basel) 2021; 11:ani11082396. [PMID: 34438852 PMCID: PMC8388737 DOI: 10.3390/ani11082396] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle plays important roles in animal locomotion, metabolism, and meat production in farm animals. Current studies showed that non-coding RNAs, especially the circular RNA (circRNA) play an indispensable role in skeletal muscle development. Our previous study revealed that several differentially expressed circRNAs among fast muscle growing broilers (FMGB) and slow muscle growing layers (SMGL) may regulate muscle development in the chicken. In this study, a novel differentially expressed circPPP1R13B was identified. Molecular mechanism analysis indicated that circPPP1R13B targets miR-9-5p and negatively regulates the expression of miR-9-5p, which was previously reported to be an inhibitor of skeletal muscle development. In addition, circPPP1R13B positively regulated the expression of miR-9-5p target gene insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) and further activated the downstream insulin like growth factors (IGF)/phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway. The results also showed that the knockdown of circPPP1R13B inhibits chicken skeletal muscle satellite cells (SMSCs) proliferation and differentiation, and the overexpression of circPPP1R13B promotes the proliferation and differentiation of chicken SMSCs. Furthermore, the overexpression of circPPP1R13B could block the inhibitory effect of miR-9-5p on chicken SMSC proliferation and differentiation. In summary, our results suggested that circPPP1R13B promotes chicken SMSC proliferation and differentiation by targeting miR-9-5p and activating IGF/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Yuanhang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Guishuang You
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Wei Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yun Zhang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China;
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
- Correspondence: (Q.Z.); (H.Y.)
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
- Correspondence: (Q.Z.); (H.Y.)
| |
Collapse
|
37
|
PDLIM5 Affects Chicken Skeletal Muscle Satellite Cell Proliferation and Differentiation via the p38-MAPK Pathway. Animals (Basel) 2021; 11:ani11041016. [PMID: 33916517 PMCID: PMC8065989 DOI: 10.3390/ani11041016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary PDZ and LIM domain 5 (PDLIM5) can increase C2C12 cell differentiation; however, the role of PDLIM5 in chicken skeletal muscle satellite cells (SMSCs) is unclear. In this study, the effect of PDLIM5 was verified on SMSCs in vitro, and then the molecular mechanism was determined by transcriptome sequencing. We demonstrated that PDLIM5 can positively affect chicken SMSC proliferation and differentiation via the p38-MAPK (mitogen activated kinase-like protein) pathway. These results indicate that PDLIM5 may be involved in chicken skeletal muscle growth and development. Abstract Skeletal muscle satellite cell growth and development is a complicated process driven by multiple genes. The PDZ and LIM domain 5 (PDLIM5) gene has been proven to function in C2C12 myoblast differentiation and is involved in the regulation of skeletal muscle development. The role of PDLIM5 in chicken skeletal muscle satellite cells, however, is unclear. In this study, in order to determine whether the PDLIM5 gene has a function in chicken skeletal muscle satellite cells, we examined the changes in proliferation and differentiation of chicken skeletal muscle satellite cells (SMSCs) after interfering and overexpressing PDLIM5 in cells. In addition, the molecular pathways of the PDLIM5 gene regulating SMSC proliferation and differentiation were analyzed by transcriptome sequencing. Our results show that PDLIM5 can promote the proliferation and differentiation of SMSCs; furthermore, through transcriptome sequencing, it can be found that the differential genes are enriched in the MAPK signaling pathway after knocking down PDLIM5. Finally, it was verified that PDLIM5 played an active role in the proliferation and differentiation of chicken SMSCs by activating the p38-MAPK signaling pathway. These results indicate that PDLIM5 may be involved in the growth and development of chicken skeletal muscle.
Collapse
|
38
|
Comparison of MicroRNA Transcriptomes Reveals the Association between MiR-148a-3p Expression and Rumen Development in Goats. Animals (Basel) 2020; 10:ani10111951. [PMID: 33114089 PMCID: PMC7690783 DOI: 10.3390/ani10111951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary In ruminants, the rumen epithelium plays an important role in nutrient absorption, metabolism and transport. MicroRNAs (miRNAs) have been reported to regulate the proliferation of diverse epithelial cells. In this study, we profiled the miRNA transcriptomes of goat rumens at four development stages and screened for candidate miRNAs related to rumen development. MiR-148a-3p was found to be highly expressed in the rumen tissues and induced the proliferation of GES-1 cells by targeting QKI. Our findings provide some insights into the functional roles of miRNAs in rumen growth and functional development in ruminants. Abstract The rumen is an important digestive organ of ruminants. From the fetal to adult stage, the morphology, structure and function of the rumen change significantly. However, the knowledge of the intrinsic genetic regulation of these changes is still limited. We previously reported a genome-wide expression profile of miRNAs in pre-natal goat rumens. In this study, we combined and analyzed the transcriptomes of rumen miRNAs during pre-natal (E60 and E135) and post-natal (D30 and D150) stages. A total of 66 differentially expressed miRNAs (DEMs) were identified in the rumen tissues from D30 and D150 goats. Of these, 17 DEMs were consistently highly expressed in the rumens at the pre-weaning stages (E60, E135 and D30), while down-regulated at D150. Noteworthy, annotation analysis revealed that the target genes regulated by the DEMs were mainly enriched in MAPK signaling pathway, Jak-STAT signaling pathway and Ras signaling pathway. Interestingly, the expression of miR-148a-3p was significantly high in the embryonic stage and down-regulated at D150. The potential binding sites of miR-148a-3p in the 3′-UTR of QKI were predicted by the TargetScan and verified by the dual luciferase report assay. The co-localization of miR-148a-3p and QKI through in situ hybridization was observed in the rumen tissues but not in the intestinal tracts. Moreover, the expression of miR-148a-3p in the epithelium was significantly higher than that in the other layers of the rumen, suggesting that miR-148a-3p is involved in the development of the rumen epithelial cells by targeting QKI. Subsequently, miR-148a-3p inhibitor was found to induce the proliferation of GES-1 cells. Taken together, our study identified DEMs involved in the development of the rumen and provides insights into the regulation mechanism of rumen development in goats.
Collapse
|