1
|
Sales K, Gage MJG, Vasudeva R. Experimental evolution reveals that males evolving within warmer thermal regimes improve reproductive performance under heatwave conditions in a model insect. J Evol Biol 2024; 37:1329-1344. [PMID: 39283813 DOI: 10.1093/jeb/voae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 11/04/2024]
Abstract
Climate change is increasing mean temperatures, and intensifying heatwaves. Natural populations may respond to stress through shorter-term acclimation via plasticity and/or longer-term inter-generational evolution. However, if the pace and/or extent of thermal change is too great, local extinctions occur; one potential cause in ectotherms is identified to be the heat-liability of male reproductive biology. Recent data from several species, including the beetle Tribolium castaneum, confirmed that male reproductive biology is vulnerable to heatwaves, which may constrain populations. However, such reproductive-damage may be overestimated, if there is potential to adapt to elevated mean temperatures associated with climate change via evolution and/or acclimation. Here, we tested this to evaluate whether pre-exposures could improve heatwave tolerance (adaptation or acclimation), by experimentally evolving Tribolium castaneum populations to divergent thermal regimes (30 °C vs. 38 °C). Findings across assays revealed that relative to 30 °C-regime males, males from the 38 °C regime, maintained constantly at 8 °C warmer for 25 generations, displayed an increase; (i) in post heatwave (42 °C) reproductive fitness by 55%, (ii) survival by 33%, and (iii) 32% larger testes volumes. Unexpectedly, in the acclimation assay, warm-adapted males' post-heatwave survival and reproduction were best if they experienced cool developmental acclimation beforehand, suggesting a cost to adapting to 38 °C. These results help progress knowledge of the potential for survival and reproduction to adapt to climate change; trait specific adaptation to divergent thermal regimes can occur over relatively few generations, but this capacity depended on the interaction of evolutionary and thermal acclimatory processes.
Collapse
Affiliation(s)
- Kris Sales
- Inventory, Forecasting and Operational Support, Forest Research, Farnham, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - M J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - R Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- School of Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Meena A, De Nardo AN, Maggu K, Sbilordo SH, Roy J, Snook RR, Lüpold S. Fertility loss and recovery dynamics after repeated heat stress across life stages in male Drosophila melanogaster: patterns and processes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241082. [PMID: 39359471 PMCID: PMC11444773 DOI: 10.1098/rsos.241082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Frequent and extreme temperatures associated with climate change pose a major threat to biodiversity, particularly for organisms whose metabolism is strictly linked to ambient temperatures. Many studies have explored thermal effects on survival, but heat-induced fertility loss is emerging as a greater threat to population persistence. However, while evidence is accumulating that both juvenile and adult stages heat exposure can impair fertility in their own ways, much less is known about the immediate and longer-term fitness consequences of repeated heat stress across life stages. To address this knowledge gap, we used male Drosophila melanogaster to investigate (i) the cumulative fitness effects of repeated heat stress across life stages, (ii) the potential of recovery from these heat exposures, and (iii) the underlying mechanisms. We found individual and combined effects of chronic juvenile and acute adult heat stress on male fitness traits. These effects tended to exacerbate over several days after brief heat exposure, indicating a substantial fertility loss for these short-lived organisms. Our findings highlight the cumulative and persistent effects of heat stress on fitness. Such combined effects could accelerate population declines, particularly in more vulnerable species, emphasizing the importance of considering reproduction and its recovery for more accurate models of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N. De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rhonda R. Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Meena A, Maggu K, De Nardo AN, Sbilordo SH, Eggs B, Al Toma Sho R, Lüpold S. Life stage-specific effects of heat stress on spermatogenesis and oogenesis in Drosophila melanogaster. J Therm Biol 2024; 125:104001. [PMID: 39486108 DOI: 10.1016/j.jtherbio.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Biodiversity is increasingly threatened by unpredictable, frequent, and intense climatic events like heatwaves that pose harmful impacts on ectotherms. Beyond the health and survival of organisms, reduced reproductive performance has emerged as a critical fitness consequence of thermal stress induced by high temperatures. Many studies on these effects expose organisms to heat stress during the adult stage or throughout development, often focusing on cumulative effects across life stages, and they tend to examine one or the other sex. This approach may not reflect the short-term nature of many extreme heat events and limits our understanding of stage- and sex-specific fitness consequences in short-lived organisms. To address this gap, we used Drosophila melanogaster to investigate the sex-specific reproductive performance following short heat stress of varying intensity at different developmental stages. We found the thermal sensitivity to be higher in males than females, and to increase toward adult emergence, leading to nearly complete reproductive failure and substantially slowed recovery. These results highlight how even brief bouts of heat stress during a sensitive phase could affect population dynamics and persistence. Our findings also underscore that incorporating both sex and life stage could improve predictions of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Benjamin Eggs
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rawaa Al Toma Sho
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Costa S, Magalhães S, Santos I, Zélé F, Rodrigues L. A Sex-Specific Trade-Off Between Pesticide Resistance and Tolerance to Heat-Induced Sterility in Tetranychus urticae. Evol Appl 2024; 17:e70014. [PMID: 39328186 PMCID: PMC11424881 DOI: 10.1111/eva.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/11/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Current pest management relies extensively on pesticide application worldwide, despite the frequent rise of pesticide resistance in crop pests. This is particularly worrisome because resistance is often not costly enough to be lost in populations after pesticide application, resulting in increased dependency on pesticide application. As climate warming increases, effort should be put into understanding how heat tolerance will affect the persistence of pesticide resistance in populations. To address this, we measured heat tolerance in two populations of the spider mite crop pest Tetranychus urticae that differ in the presence or absence of a target-site mutation conferring resistance to etoxazole pesticide. We found that developmental time and fertility, but not survival, were negatively affected by increasing temperatures in the susceptible population. Furthermore, we found no difference between resistant and susceptible populations in all life-history traits when both sexes developed at control temperature, nor when females developed at high temperature. Resistant heat-stressed males, in contrast, showed lower fertility than susceptible ones, indicating a sex-specific trade-off between heat tolerance and pesticide resistance. This suggests that global warming could lead to reduced pesticide resistance in natural populations. However, resistant females, being as affected by high temperature as susceptible individuals, may buffer the toll in resistant male fertility, and the shorter developmental time at high temperatures may accelerate adaptation to temperature, the pesticide or the cost thereof. Ultimately, the complex dynamic between these two factors will determine whether resistant populations can persist under climate warming.
Collapse
Affiliation(s)
- Sofia G. Costa
- Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute (cE3c), Faculty of SciencesUniversity of LisbonLisbonPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute (cE3c), Faculty of SciencesUniversity of LisbonLisbonPortugal
| | - Inês Santos
- Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute (cE3c), Faculty of SciencesUniversity of LisbonLisbonPortugal
| | - Flore Zélé
- Institute of Evolution Sciences (ISEM), CNRS, IRD, EPHEUniversity of MontpellierMontpellierFrance
| | - Leonor R. Rodrigues
- Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute (cE3c), Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
5
|
Weaving H, Terblanche JS, English S. Heatwaves are detrimental to fertility in the viviparous tsetse fly. Proc Biol Sci 2024; 291:20232710. [PMID: 38471560 DOI: 10.1098/rspb.2023.2710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Heatwaves are increasing in frequency and intensity due to climate change, pushing animals beyond physiological limits. While most studies focus on survival limits, sublethal effects on fertility tend to occur below lethal thresholds, and consequently can be as important for population viability. Typically, male fertility is more heat-sensitive than female fertility, yet direct comparisons are limited. Here, we measured the effect of experimental heatwaves on tsetse flies, Glossina pallidipes, disease vectors and unusual live-bearing insects of sub-Saharan Africa. We exposed males or females to a 3-day heatwave peaking at 36, 38 or 40°C for 2 h, and a 25°C control, monitoring mortality and reproduction over six weeks. For a heatwave peaking at 40°C, mortality was 100%, while a 38°C peak resulted in only 8% acute mortality. Females exposed to the 38°C heatwave experienced a one-week delay in producing offspring, whereas no such delay occurred in males. Over six weeks, heatwaves resulted in equivalent fertility loss in both sexes. Combined with mortality, this lead to a 10% population decline over six weeks compared to the control. Furthermore, parental heatwave exposure gave rise to a female-biased offspring sex ratio. Ultimately, thermal limits of both survival and fertility should be considered when assessing climate change vulnerability.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Baur J, Zwoinska M, Koppik M, Snook RR, Berger D. Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evol Lett 2024; 8:101-113. [PMID: 38370539 PMCID: PMC10872150 DOI: 10.1093/evlett/qrad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 02/20/2024] Open
Abstract
Climates are changing rapidly, demanding equally rapid adaptation of natural populations. Whether sexual selection can aid such adaptation is under debate; while sexual selection should promote adaptation when individuals with high mating success are also best adapted to their local surroundings, the expression of sexually selected traits can incur costs. Here we asked what the demographic consequences of such costs may be once climates change to become harsher and the strength of natural selection increases. We first adopted a classic life history theory framework, incorporating a trade-off between reproduction and maintenance, and applied it to the male germline to generate formalized predictions for how an evolutionary history of strong postcopulatory sexual selection (sperm competition) may affect male fertility under acute adult heat stress. We then tested these predictions by assessing the thermal sensitivity of fertility (TSF) in replicated lineages of seed beetles maintained for 68 generations under three alternative mating regimes manipulating the opportunity for sexual and natural selection. In line with the theoretical predictions, we find that males evolving under strong sexual selection suffer from increased TSF. Interestingly, females from the regime under strong sexual selection, who experienced relaxed selection on their own reproductive effort, had high fertility in benign settings but suffered increased TSF, like their brothers. This implies that female fertility and TSF evolved through genetic correlation with reproductive traits sexually selected in males. Paternal but not maternal heat stress reduced offspring fertility with no evidence for adaptive transgenerational plasticity among heat-exposed offspring, indicating that the observed effects may compound over generations. Our results suggest that trade-offs between fertility and traits increasing success in postcopulatory sexual selection can be revealed in harsh environments. This can put polyandrous species under immediate risk during extreme heat waves expected under future climate change.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martyna Zwoinska
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Berger
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Santos MA, Antunes MA, Grandela A, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. Heat-induced female biased sex ratio during development is not mitigated after prolonged thermal selection. BMC Ecol Evol 2023; 23:64. [PMID: 37919666 PMCID: PMC10623787 DOI: 10.1186/s12862-023-02172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The negative impacts of climate change on biodiversity are consistently increasing. Developmental stages are particularly sensitive in many ectotherms. Moreover, sex-specific differences in how organisms cope with thermal stress can produce biased sex ratios upon emergence, with potentially major impacts on population persistence. This is an issue that needs investigation, particularly testing whether thermal selection can alleviate sex ratio distortions in the long-term is a critical but neglected issue. Here, we report an experiment analyzing the sex ratio patterns at different developmental temperatures in Drosophila subobscura populations subjected to long-term experimental evolution (~ 30 generations) under a warming environment. RESULTS We show that exposure to high developmental temperatures consistently promotes sex ratio imbalance upon emergence, with a higher number of female than male offspring. Furthermore, we found that thermal selection resulting from evolution in a warming environment did not alleviate such sex ratio distortions generated by heat stress. CONCLUSIONS We demonstrate that heat stress during development can lead to clear sex ratio deviations upon emergence likely because of differential survival between sexes. In face of these findings, it is likely that sex ratio deviations of this sort occur in natural populations when facing environmental perturbation. The inability of many insects to avoid thermal shifts during their (more) sessile developmental stages makes this finding particularly troublesome for population subsistence in face of climate warming events.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta A Antunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Afonso Grandela
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mauro Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Kjærsgaard A, Blanckenhorn WU, Berger D, Esperk T. Weak sex-specific evolution of locomotor activity of Sepsis punctum (Diptera: Sepsidae) thermal experimental evolution lines. J Therm Biol 2023; 116:103680. [PMID: 37579518 DOI: 10.1016/j.jtherbio.2023.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
Elevated temperatures are expected to rise beyond what the physiology of many organisms can tolerate. Behavioural responses facilitating microhabitat shifts may mitigate some of this increased thermal selection on physiology, but behaviours are themselves mediated by physiology, and any behavioural response may trade-off against other fitness-related activities. We investigated whether experimental evolution in different thermal regimes (Cold: 15 °C; Hot: 31 °C; Intergenerational fluctuation 15/31 °C; Control: 23 °C) resulted in genetic differentiation of standard locomotor activity in the dung fly Sepsis punctum. We assessed individual locomotor performance, an integral part of most behavioral repertoires, across eight warm temperatures from 24 °C to 45 °C using an automated device. We found no evidence for generalist-specialist trade-offs (i.e. changes in the breadth of the performance curve) for this trait. Instead, at the warmest assay temperatures hot-selected flies showed somewhat higher maximal performance than all other, especially cold-selected flies, overall more so in males than females. Yet, the flies' temperature optimum was not higher than that of the cold-selected flies, as expected under the 'hotter-is-better' hypothesis. Maximal locomotor performance merely weakly increased with body size. These results suggest that thermal performance curves are unlikely to evolve as an entity according to theory, and that locomotor activity is a trait of limited use in revealing thermal adaptation.
Collapse
Affiliation(s)
- Anders Kjærsgaard
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus, Denmark.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Sweden.
| | - Toomas Esperk
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Institute of Ecology and Earth Sciences, Tartu University, Juhan Liivi 2, 50409, Tartu, Estonia.
| |
Collapse
|
9
|
Gandara ACP, Drummond-Barbosa D. Chronic exposure to warm temperature causes low sperm abundance and quality in Drosophila melanogaster. Sci Rep 2023; 13:12331. [PMID: 37518578 PMCID: PMC10387475 DOI: 10.1038/s41598-023-39360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Temperature influences male fertility across organisms; however, how suboptimal temperatures affect adult spermatogenesis remains understudied. In a recent study on Drosophila melanogaster oogenesis, we observed a drastic reduction in the fertility of adult males exposed to warm temperature (29 °C). Here, we show that males become infertile at 29 °C because of low sperm abundance and quality. The low sperm abundance at 29 °C does not stem from reduced germline stem cell or spermatid numbers, as those numbers remain comparable between 29 °C and control 25 °C. Notably, males at cold 18 °C and 29 °C had similarly increased frequencies of spermatid elongation and individualization defects which, considering the high sperm abundance and male fertility measured at 18 °C, indicate that spermatogenesis has a high tolerance for elongation and individualization defects. Interestingly, the abundance of sperm at 29 °C decreases abruptly and with no evidence of apoptosis as they transition into the seminal vesicle near the end of spermatogenesis, pointing to sperm elimination through an unknown mechanism. Finally, sperm from males at 29 °C fertilize eggs less efficiently and do not support embryos past the first stage of embryogenesis, indicating that poor sperm quality is an additional cause of male infertility at 29 °C.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, WI, 53706, USA
| | - Daniela Drummond-Barbosa
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, Madison, WI, 53706, USA.
| |
Collapse
|
10
|
Carney TD, Hebalkar RY, Edeleva E, Çiçek IÖ, Shcherbata HR. Signaling through the dystrophin glycoprotein complex affects the stress-dependent transcriptome in Drosophila. Dis Model Mech 2023; 16:286223. [PMID: 36594281 PMCID: PMC9922874 DOI: 10.1242/dmm.049862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Deficiencies in the human dystrophin glycoprotein complex (DGC), which links the extracellular matrix with the intracellular cytoskeleton, cause muscular dystrophies, a group of incurable disorders associated with heterogeneous muscle, brain and eye abnormalities. Stresses such as nutrient deprivation and aging cause muscle wasting, which can be exacerbated by reduced levels of the DGC in membranes, the integrity of which is vital for muscle health and function. Moreover, the DGC operates in multiple signaling pathways, demonstrating an important function in gene expression regulation. To advance disease diagnostics and treatment strategies, we strive to understand the genetic pathways that are perturbed by DGC mutations. Here, we utilized a Drosophila model to investigate the transcriptomic changes in mutants of four DGC components under temperature and metabolic stress. We identified DGC-dependent genes, stress-dependent genes and genes dependent on the DGC for a proper stress response, confirming a novel function of the DGC in stress-response signaling. This perspective yields new insights into the etiology of muscular dystrophy symptoms, possible treatment directions and a better understanding of DGC signaling and regulation under normal and stress conditions.
Collapse
Affiliation(s)
- Travis D. Carney
- Hannover Medical School, Research Group Gene Expression and Signaling, Institute of Cell Biochemistry, Hannover 30625, Germany,Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Rucha Y. Hebalkar
- Hannover Medical School, Research Group Gene Expression and Signaling, Institute of Cell Biochemistry, Hannover 30625, Germany
| | | | | | - Halyna R. Shcherbata
- Hannover Medical School, Research Group Gene Expression and Signaling, Institute of Cell Biochemistry, Hannover 30625, Germany,Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA,Author for correspondence ()
| |
Collapse
|
11
|
Canal Domenech B, Fricke C. Recovery from heat-induced infertility-A study of reproductive tissue responses and fitness consequences in male Drosophila melanogaster. Ecol Evol 2022; 12:e9563. [PMID: 36466140 PMCID: PMC9712812 DOI: 10.1002/ece3.9563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
The predicted temperature increase caused by climate change is a threat to biodiversity. Across animal taxa, male reproduction is often sensitive to elevated temperatures leading to fertility loss, and in more adverse scenarios, this can result in sterility when males reach their upper thermal fertility limit. Here, we investigate temperature-induced changes in reproductive tissues, fertility reduction, sterility, and the associated fitness loss during the subsequent recovery phase in male Drosophila melanogaster. We heat-stressed males during development and either allowed them to recover or not in early adulthood while measuring several determinants of male reproductive success. We found significant differences in recovery rate, organ sizes, sperm production, and other key reproductive traits among males from our different temperature treatments. Sperm maturation was impaired before reaching the upper thermal sterility threshold. While some effects were reversible, this did not compensate for the fitness loss due to damage imposed during development. Surprisingly, developmental heat stress was damaging to accessory gland growth, and female post-mating responses mediated by seminal fluid proteins were impaired regardless of the possibility of recovery. We suggest that sub-lethal thermal sterility and the subsequent fertility reduction are caused by a combination of inefficient functionality of both the accessory gland and testes.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Muenster Graduate School of Evolution University of Muenster Muenster Germany
| | - Claudia Fricke
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Institute for Zoology Halle-Wittenberg University Halle (Saale) Germany
| |
Collapse
|
12
|
Schou MF, Engelbrecht A, Brand Z, Svensson EI, Cloete S, Cornwallis CK. Evolutionary trade-offs between heat and cold tolerance limit responses to fluctuating climates. SCIENCE ADVANCES 2022; 8:eabn9580. [PMID: 35622916 PMCID: PMC9140960 DOI: 10.1126/sciadv.abn9580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The evolutionary potential of species to cope with short-term temperature fluctuations during reproduction is critical to predicting responses to future climate change. Despite this, vertebrate research has focused on reproduction under high or low temperatures in relatively stable temperate climates. Here, we characterize the genetic basis of reproductive thermal tolerance to temperature fluctuations in the ostrich, which lives in variable environments in tropical and subtropical Africa. Both heat and cold tolerance were under selection and heritable, indicating the potential for evolutionary responses to mean temperature change. However, we found evidence for a negative, genetic correlation between heat and cold tolerance that should limit the potential for adaptation to fluctuating temperatures. Genetic constraints between heat and cold tolerance appear a crucial, yet underappreciated, factor influencing responses to climate change.
Collapse
Affiliation(s)
- Mads F. Schou
- Department of Biology, Lund University, Lund, Sweden
| | - Anel Engelbrecht
- Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa
| | - Zanell Brand
- Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa
| | | | - Schalk Cloete
- Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa
- Department of Animal Sciences, University of Stellenbosch, Matieland, South Africa
| | | |
Collapse
|
13
|
Bronikowski AM, Meisel RP, Biga PR, Walters J, Mank JE, Larschan E, Wilkinson GS, Valenzuela N, Conard AM, de Magalhães JP, Duan J, Elias AE, Gamble T, Graze R, Gribble KE, Kreiling JA, Riddle NC. Sex-specific aging in animals: Perspective and future directions. Aging Cell 2022; 21:e13542. [PMID: 35072344 PMCID: PMC8844111 DOI: 10.1111/acel.13542] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peggy R. Biga
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James R. Walters
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Judith E. Mank
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BioscienceUniversity of ExeterPenrynUK
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | | | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Ashley Mae Conard
- Department of Computer ScienceCenter for Computational and Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Amy E. Elias
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Rita M. Graze
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Nicole C. Riddle
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
14
|
Walsh BS, Parratt SR, Snook RR, Bretman A, Atkinson D, Price TA. Female fruit flies cannot protect stored sperm from high temperature damage. J Therm Biol 2022; 105:103209. [DOI: 10.1016/j.jtherbio.2022.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022]
|
15
|
Rodrigues LR, Zwoinska MK, Axel W Wiberg R, Snook RR. The genetic basis and adult reproductive consequences of developmental thermal plasticity. J Anim Ecol 2022; 91:1119-1134. [PMID: 35060127 PMCID: PMC9373847 DOI: 10.1111/1365-2656.13664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Increasing temperature and thermal variability generate profound selection on populations. Given the fast rate of environmental change, understanding the role of plasticity and genetic adaptation in response to increasing temperatures is critical. This may be especially true for thermal effects on reproductive traits in which thermal fertility limits at high temperatures may be lower than for survival traits. Consequences of changing environments during development on adult phenotypes may be particularly problematic for core traits such as reproduction that begin early in development. Here we examine the consequences of developmental thermal plasticity on subsequent adult reproductive traits and its genetic basis. We used a panel of Drosophila melanogaster (the Drosophila Genetic Reference Panel; DGRP) in which male fertility performance was previously defined as either showing relatively little (status = ‘high’‐performing lines) or substantial (‘low’‐performing lines) decline when exposed to increasing developmental temperatures. We used a thermal reaction norm approach to quantify variation in the consequences of developmental thermal plasticity on multiple adult reproductive traits, including sex‐specific responses, and to identify candidate genes underlying such variation. Developmental thermal stress impacted the means and thermal reaction norms of all reproductive traits except offspring sex ratio. Mating success declined as temperature increased with no difference between high and low lines, whereas increasing temperature resulted in declines for both male and female fertility and productivity but depended on line status. Fertility and offspring number were positively correlated within and between the sexes across lines, but males were more affected than females. We identified 933 SNPs with significant evolved genetic differentiation between high and low lines. In all, 54 of these lie within genomic windows of overall high differentiation, have significant effects of genotype on the male thermal reaction norm for productivity and are associated with 16 genes enriched for phenotypes affecting reproduction, stress responses and autophagy in Drosophila and other organisms. Our results illustrate considerable plasticity in male thermal limits on several reproductive traits following development at high temperature, and we identify differentiated loci with relevant phenotypic effects that may contribute to this population variation. While our work is on a single population, phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males. Such large fitness costs may have both short‐ and long‐term consequences for the evolution of populations in response to a warming world.
Collapse
Affiliation(s)
| | | | | | - Rhonda R Snook
- Department of Zoology Stockholm University Stockholm Sweden
| |
Collapse
|
16
|
Walsh BS, Parratt SR, Mannion NLM, Snook RR, Bretman A, Price TAR. Plastic responses of survival and fertility following heat stress in pupal and adult Drosophila virilis. Ecol Evol 2021; 11:18238-18247. [PMID: 35003670 PMCID: PMC8717264 DOI: 10.1002/ece3.8418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/03/2022] Open
Abstract
The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life history stage impacts fertility. We then tested the capacity for heat-hardening to mitigate heat-induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but become sterile within seven days. We also found evidence that while heat-hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat-hardening, which limits a species' ability to quickly and effectively reduce fertility loss in the face of short-term high temperature events.
Collapse
Affiliation(s)
| | | | | | | | - Amanda Bretman
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Tom A. R. Price
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
17
|
Rodrigues LR, McDermott HA, Villanueva I, Djukarić J, Ruf LC, Amcoff M, Snook RR. Fluctuating heat stress during development exposes reproductive costs and putative benefits. J Anim Ecol 2021; 91:391-403. [PMID: 34775602 DOI: 10.1111/1365-2656.13636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Temperature and thermal variability are increasing worldwide, with well-known survival consequences. However, effects on other potentially more thermally sensitive reproductive traits are less understood, especially when considering thermal variation. Studying the consequences of male reproduction in the context of climate warming and ability to adapt is becoming increasingly relevant. Our goals were to test how exposure to different average temperatures that either fluctuated or remained constant impacts different male reproductive performance traits and to assess adaptive potential to future heat stress. We took advantage of a set of Drosophila melanogaster isogenic lines of different genotypes, exposing them to four different thermal conditions. These conditions represented a benign and a stressful mean temperature, applied either constantly or fluctuating around the mean and experienced during development when heat stress avoidance is hindered because of restricted mobility. We measured subsequent male reproductive performance for mating success, fertility, number of offspring produced and offspring sex ratio, and calculated the influence of thermal stress on estimated heritability and evolvability of these reproductive traits. Both costs and benefits to different thermal conditions on reproductive performance were found, with some responses varying between genotypes. Mating success improved under fluctuating benign temperature conditions and declined as temperature stress increased regardless of genotype. Fertility and productivity were severely reduced at fluctuating mean high temperature for all genotypes, but some genotypes were unaffected at constant high mean temperature. These more thermally robust genotypes showed a slight increase in productivity under the fluctuating benign condition compared to constant high temperature, despite both thermal conditions sharing the same temperature for 6 hr daily. Increasing thermal stress resulted in higher heritability and evolvability. Overall, the effects of temperature on reproductive performance depended on the trait and genotype; performance of some traits slightly increased when high temperatures were experienced for short periods but decreased substantially even when experiencing a benign temperature for a portion of each day. While thermal stress increased genetic variation that could provide adaptive potential against climate warming, this is unlikely to compensate for the overall severe negative effect on reproductive performance as mean temperature and variance increase.
Collapse
Affiliation(s)
| | | | | | - Jana Djukarić
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Lena C Ruf
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Walsh BS, Mannion NLM, Price TAR, Parratt SR. Sex-specific sterility caused by extreme temperatures is likely to create cryptic changes to the operational sex ratio in Drosophila virilis. Curr Zool 2021; 67:341-343. [PMID: 34616928 PMCID: PMC8489007 DOI: 10.1093/cz/zoaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Benjamin S Walsh
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Natasha L M Mannion
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Tom A R Price
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Steven R Parratt
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| |
Collapse
|
19
|
Pilakouta N, Ålund M. Editorial: Sexual selection and environmental change: what do we know and what comes next? Curr Zool 2021; 67:293-298. [PMID: 34616921 PMCID: PMC8488989 DOI: 10.1093/cz/zoab021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Natalie Pilakouta
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D 75236 Uppsala, Sweden
| |
Collapse
|
20
|
Vasudeva R, Deeming DC, Eady PE. Age‐specific sensitivity of sperm length and testes size to developmental temperature in the bruchid beetle. J Zool (1987) 2021. [DOI: 10.1111/jzo.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- R. Vasudeva
- School of Biological Sciences Norwich Research Park University of East Anglia Norwich UK
| | - D. C. Deeming
- School of Life Sciences University of Lincoln Lincoln Lincolnshire UK
| | - P. E. Eady
- School of Life Sciences University of Lincoln Lincoln Lincolnshire UK
| |
Collapse
|
21
|
Male fertility thermal limits predict vulnerability to climate warming. Nat Commun 2021; 12:2214. [PMID: 33850157 PMCID: PMC8044094 DOI: 10.1038/s41467-021-22546-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Forecasting which species/ecosystems are most vulnerable to climate warming is essential to guide conservation strategies to minimize extinction. Tropical/mid-latitude species are predicted to be most at risk as they live close to their upper critical thermal limits (CTLs). However, these assessments assume that upper CTL estimates, such as CTmax, are accurate predictors of vulnerability and ignore the potential for evolution to ameliorate temperature increases. Here, we use experimental evolution to assess extinction risk and adaptation in tropical and widespread Drosophila species. We find tropical species succumb to extinction before widespread species. Male fertility thermal limits, which are much lower than CTmax, are better predictors of species' current distributions and extinction in the laboratory. We find little evidence of adaptive responses to warming in any species. These results suggest that species are living closer to their upper thermal limits than currently presumed and evolution/plasticity are unlikely to rescue populations from extinction.
Collapse
|
22
|
Le Lann C, van Baaren J, Visser B. Dealing with predictable and unpredictable temperatures in a climate change context: the case of parasitoids and their hosts. J Exp Biol 2021; 224:224/Suppl_1/jeb238626. [PMID: 33627468 DOI: 10.1242/jeb.238626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Earth's climate is changing at a rapid pace. To survive in increasingly fluctuating and unpredictable environments, species can either migrate or evolve through rapid local adaptation, plasticity and/or bet-hedging. For small ectotherm insects, like parasitoids and their hosts, phenotypic plasticity and bet-hedging could be critical strategies for population and species persistence in response to immediate, intense and unpredictable temperature changes. Here, we focus on studies evaluating phenotypic responses to variable predictable thermal conditions (for which phenotypic plasticity is favoured) and unpredictable thermal environments (for which bet-hedging is favoured), both within and between host and parasitoid generations. We then address the effects of fluctuating temperatures on host-parasitoid interactions, potential cascading effects on the food web, as well as biological control services. We conclude our review by proposing a road map for designing experiments to assess if plasticity and bet-hedging can be adaptive strategies, and to disentangle how fluctuating temperatures can affect the evolution of these two strategies in parasitoids and their hosts.
Collapse
Affiliation(s)
- Cécile Le Lann
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Joan van Baaren
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
23
|
Cortés AJ, López-Hernández F, Osorio-Rodriguez D. Predicting Thermal Adaptation by Looking Into Populations' Genomic Past. Front Genet 2020; 11:564515. [PMID: 33101385 PMCID: PMC7545011 DOI: 10.3389/fgene.2020.564515] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular evolution offers an insightful theory to interpret the genomic consequences of thermal adaptation to previous events of climate change beyond range shifts. However, disentangling often mixed footprints of selective and demographic processes from those due to lineage sorting, recombination rate variation, and genomic constrains is not trivial. Therefore, here we condense current and historical population genomic tools to study thermal adaptation and outline key developments (genomic prediction, machine learning) that might assist their utilization for improving forecasts of populations' responses to thermal variation. We start by summarizing how recent thermal-driven selective and demographic responses can be inferred by coalescent methods and in turn how quantitative genetic theory offers suitable multi-trait predictions over a few generations via the breeder's equation. We later assume that enough generations have passed as to display genomic signatures of divergent selection to thermal variation and describe how these footprints can be reconstructed using genome-wide association and selection scans or, alternatively, may be used for forward prediction over multiple generations under an infinitesimal genomic prediction model. Finally, we move deeper in time to comprehend the genomic consequences of thermal shifts at an evolutionary time scale by relying on phylogeographic approaches that allow for reticulate evolution and ecological parapatric speciation, and end by envisioning the potential of modern machine learning techniques to better inform long-term predictions. We conclude that foreseeing future thermal adaptive responses requires bridging the multiple spatial scales of historical and predictive environmental change research under modern cohesive approaches such as genomic prediction and machine learning frameworks.
Collapse
Affiliation(s)
- Andrés J Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia.,Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|