1
|
Digby B, Finn S, Ó Broin P. Computational approaches and challenges in the analysis of circRNA data. BMC Genomics 2024; 25:527. [PMID: 38807085 PMCID: PMC11134749 DOI: 10.1186/s12864-024-10420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algorithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addition to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases for rich circRNA annotation.
Collapse
Affiliation(s)
- Barry Digby
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
| | - Stephen Finn
- Discipline of Histopathology, School of Medicine, Trinity College Dublin and Cancer Molecular Diagnostic Laboratory, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Yuan Y, Tang X, Li H, Lang X, Song Y, Yang Y, Zhou Z. BiLSTM- and CNN-Based m6A Modification Prediction Model for circRNAs. Molecules 2024; 29:2429. [PMID: 38893304 PMCID: PMC11173551 DOI: 10.3390/molecules29112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
m6A methylation, a ubiquitous modification on circRNAs, exerts a profound influence on RNA function, intracellular behavior, and diverse biological processes, including disease development. While prediction algorithms exist for mRNA m6A modifications, a critical gap remains in the prediction of circRNA m6A modifications. Therefore, accurate identification and prediction of m6A sites are imperative for understanding RNA function and regulation. This study presents a novel hybrid model combining a convolutional neural network (CNN) and a bidirectional long short-term memory network (BiLSTM) for precise m6A methylation site prediction in circular RNAs (circRNAs) based on data from HEK293 cells. This model exploits the synergy between CNN's ability to extract intricate sequence features and BiLSTM's strength in capturing long-range dependencies. Furthermore, the integrated attention mechanism empowers the model to pinpoint critical biological information for studying circRNA m6A methylation. Our model, exhibiting over 78% prediction accuracy on independent datasets, offers not only a valuable tool for scientific research but also a strong foundation for future biomedical applications. This work not only furthers our understanding of gene expression regulation but also opens new avenues for the exploration of circRNA methylation in biological research.
Collapse
Affiliation(s)
- Yuqian Yuan
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Y.); (H.L.); (X.L.); (Y.S.)
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Hongyan Li
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Y.); (H.L.); (X.L.); (Y.S.)
| | - Xufeng Lang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Y.); (H.L.); (X.L.); (Y.S.)
| | - Yihua Song
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Y.); (H.L.); (X.L.); (Y.S.)
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Zuojian Zhou
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Y.); (H.L.); (X.L.); (Y.S.)
| |
Collapse
|
3
|
Li F, Li PF, Hao XD. Circular RNAs in ferroptosis: regulation mechanism and potential clinical application in disease. Front Pharmacol 2023; 14:1173040. [PMID: 37332354 PMCID: PMC10272566 DOI: 10.3389/fphar.2023.1173040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Ferroptosis, an iron-dependent non-apoptotic form of cell death, is reportedly involved in the pathogenesis of various diseases, particularly tumors, organ injury, and degenerative pathologies. Several signaling molecules and pathways have been found to be involved in the regulation of ferroptosis, including polyunsaturated fatty acid peroxidation, glutathione/glutathione peroxidase 4, the cysteine/glutamate antiporter system Xc-, ferroptosis suppressor protein 1/ubiquinone, and iron metabolism. An increasing amount of evidence suggests that circular RNAs (circRNAs), which have a stable circular structure, play important regulatory roles in the ferroptosis pathways that contribute to disease progression. Hence, ferroptosis-inhibiting and ferroptosis-stimulating circRNAs have potential as novel diagnostic markers or therapeutic targets for cancers, infarctions, organ injuries, and diabetes complications linked to ferroptosis. In this review, we summarize the roles that circRNAs play in the molecular mechanisms and regulatory networks of ferroptosis and their potential clinical applications in ferroptosis-related diseases. This review furthers our understanding of the roles of ferroptosis-related circRNAs and provides new perspectives on ferroptosis regulation and new directions for the diagnosis, treatment, and prognosis of ferroptosis-related diseases.
Collapse
|
4
|
Li B, Tian Y, Tian Y, Zhang S, Zhang X. Predicting Cancer Lymph-Node Metastasis From LncRNA Expression Profiles Using Local Linear Reconstruction Guided Distance Metric Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3179-3189. [PMID: 35139024 DOI: 10.1109/tcbb.2022.3149791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lymph-node metastasis is the most perilous cancer progressive state, where long non-coding RNA (lncRNA) has been confirmed to be an important genetic indicator in cancer prediction. However, lncRNA expression profile is often characterized of large features and small samples, it is urgent to establish an efficient judgment to deal with such high dimensional lncRNA data, which will aid in clinical targeted treatment. Thus, in this study, a local linear reconstruction guided distance metric learning is put forward to handle lncRNA data for determination of cancer lymph-node metastasis. In the original locally linear embedding (LLE) approach, any point can be approximately linearly reconstructed using its nearest neighborhood points, from which a novel distance metric can be learned by satisfying both nonnegative and sum-to-one constraints on the reconstruction weights. Taking the defined distance metric and lncRNA data supervised information into account, a local margin model will be deduced to find a low dimensional subspace for lncRNA signature extraction. At last, a classifier is constructed to predict cancer lymph-node metastasis, where the learned distance metric is also adopted. Several experiments on lncRNA data sets have been carried out, and experimental results show the performance of the proposed method by making comparisons with some other related dimensionality reduction methods and the classical classifier models.
Collapse
|
5
|
Recent Deep Learning Methodology Development for RNA–RNA Interaction Prediction. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genetic regulation of organisms involves complicated RNA–RNA interactions (RRIs) among messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA). Detecting RRIs is beneficial for discovering biological mechanisms as well as designing new drugs. In recent years, with more and more experimentally verified RNA–RNA interactions being deposited into databases, statistical machine learning, especially recent deep-learning-based automatic algorithms, have been widely applied to RRI prediction with remarkable success. This paper first gives a brief introduction to the traditional machine learning methods applied on RRI prediction and benchmark databases for training the models, and then provides a recent methodology overview of deep learning models in the prediction of microRNA (miRNA)–mRNA interactions and long non-coding RNA (lncRNA)–miRNA interactions.
Collapse
|
6
|
Attention-Based Deep Multiple-Instance Learning for Classifying Circular RNA and Other Long Non-Coding RNA. Genes (Basel) 2021; 12:genes12122018. [PMID: 34946967 PMCID: PMC8701965 DOI: 10.3390/genes12122018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Circular RNA (circRNA) is a distinguishable circular formed long non-coding RNA (lncRNA), which has specific roles in transcriptional regulation, multiple biological processes. The identification of circRNA from other lncRNA is necessary for relevant research. In this study, we designed attention-based multi-instance learning (MIL) network architecture fed with a raw sequence, to learn the sparse features of RNA sequences and to accomplish the circRNAs identification task. The model outperformed the state-of-art models. Moreover, following the validation of the attention mechanism effectiveness by the handwritten digit dataset, the key sequence loci underlying circRNA’s recognition were obtained based on the corresponding attention score. Then, motif enrichment analysis identified some of the key motifs for circRNA formation. In conclusion, we designed deep learning network architecture suitable for learning gene sequences with sparse features and implemented it for the circRNA identification task, and the model has strong representation capability in the indication of some key loci.
Collapse
|
7
|
Staem5: A novel computational approachfor accurate prediction of m5C site. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1027-1034. [PMID: 34786208 PMCID: PMC8571400 DOI: 10.1016/j.omtn.2021.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022]
Abstract
5-Methylcytosine (m5C) is an important post-transcriptional modification that has been extensively found in multiple types of RNAs. Many studies have shown that m5C plays vital roles in many biological functions, such as RNA structure stability and metabolism. Computational approaches act as an efficient way to identify m5C sites from high-throughput RNA sequence data and help interpret the functional mechanism of this important modification. This study proposed a novel species-specific computational approach, Staem5, to accurately predict RNA m5C sites in Mus musculus and Arabidopsis thaliana. Staem5 was developed by employing feature fusion tactics to leverage informatic sequence profiles, and a stacking ensemble learning framework combined five popular machine learning algorithms. Extensive benchmarking tests demonstrated that Staem5 outperformed state-of-the-art approaches in both cross-validation and independent tests. We provide the source code of Staem5, which is publicly available at https://github.com/Cxd-626/Staem5.git.
Collapse
|
8
|
Niu M, Ju Y, Lin C, Zou Q. Characterizing viral circRNAs and their application in identifying circRNAs in viruses. Brief Bioinform 2021; 23:6377516. [PMID: 34585234 DOI: 10.1093/bib/bbab404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/19/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing mechanism, which play an important role in a variety of biological activities. Viruses can encode circRNA, and viral circRNAs have been found in multiple single-stranded and double-stranded viruses. However, the characteristics and functions of viral circRNAs remain unknown. Sequence alignment showed that viral circRNAs are less conserved than circRNAs in animal, indicating that the viral circRNAs may evolve rapidly. Through the analysis of the sequence characteristics of viral circRNAs and circRNAs in animal, it was found that viral circRNAs and animals circRNAs are similar in nucleic acid composition, but have obvious differences in secondary structure and autocorrelation characteristics. Based on these characteristics of viral circRNAs, machine learning algorithms were employed to construct a prediction model to identify viral circRNA. Additionally, analysis of the interaction between viral circRNA and miRNAs showed that viral circRNA is expected to interact with 518 human miRNAs, and preliminary analysis of the role of viral circRNA. And it has been also found that viral circRNAs may be involved in many KEGG pathways related to nervous system and cancer. We curated an online server, and the data and code are available: http://server.malab.cn/viral-CircRNA/.
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| |
Collapse
|
9
|
Asim MN, Ibrahim MA, Imran Malik M, Dengel A, Ahmed S. Advances in Computational Methodologies for Classification and Sub-Cellular Locality Prediction of Non-Coding RNAs. Int J Mol Sci 2021; 22:8719. [PMID: 34445436 PMCID: PMC8395733 DOI: 10.3390/ijms22168719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Apart from protein-coding Ribonucleic acids (RNAs), there exists a variety of non-coding RNAs (ncRNAs) which regulate complex cellular and molecular processes. High-throughput sequencing technologies and bioinformatics approaches have largely promoted the exploration of ncRNAs which revealed their crucial roles in gene regulation, miRNA binding, protein interactions, and splicing. Furthermore, ncRNAs are involved in the development of complicated diseases like cancer. Categorization of ncRNAs is essential to understand the mechanisms of diseases and to develop effective treatments. Sub-cellular localization information of ncRNAs demystifies diverse functionalities of ncRNAs. To date, several computational methodologies have been proposed to precisely identify the class as well as sub-cellular localization patterns of RNAs). This paper discusses different types of ncRNAs, reviews computational approaches proposed in the last 10 years to distinguish coding-RNA from ncRNA, to identify sub-types of ncRNAs such as piwi-associated RNA, micro RNA, long ncRNA, and circular RNA, and to determine sub-cellular localization of distinct ncRNAs and RNAs. Furthermore, it summarizes diverse ncRNA classification and sub-cellular localization determination datasets along with benchmark performance to aid the development and evaluation of novel computational methodologies. It identifies research gaps, heterogeneity, and challenges in the development of computational approaches for RNA sequence analysis. We consider that our expert analysis will assist Artificial Intelligence researchers with knowing state-of-the-art performance, model selection for various tasks on one platform, dominantly used sequence descriptors, neural architectures, and interpreting inter-species and intra-species performance deviation.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Imran Malik
- National Center for Artificial Intelligence (NCAI), National University of Sciences and Technology, Islamabad 44000, Pakistan;
- School of Electrical Engineering & Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- DeepReader GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Function of Circular RNAs in Fish and Their Potential Application as Biomarkers. Int J Mol Sci 2021; 22:ijms22137119. [PMID: 34281172 PMCID: PMC8268770 DOI: 10.3390/ijms22137119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are an emerging class of regulatory RNAs with a covalently closed-loop structure formed during pre-mRNA splicing. Recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of novel approaches to their identification and functional characterization. CircRNAs are stable, developmentally regulated, and show tissue- and cell-type-specific expression across different taxonomic groups. They play a crucial role in regulating various biological processes at post-transcriptional and translational levels. However, the involvement of circRNAs in fish immunity has only recently been recognized. There is also broad evidence in mammals that the timely expression of circRNAs in muscle plays an essential role in growth regulation but our understanding of their expression and function in teleosts is still very limited. Here, we discuss the available knowledge about circRNAs and their role in growth and immunity in vertebrates from a comparative perspective, with emphasis on cultured teleost fish. We expect that the interest in teleost circRNAs will increase substantially soon, and we propose that they may be used as biomarkers for selective breeding of farmed fish, thus contributing to the sustainability of the aquaculture sector.
Collapse
|