1
|
Liu M, Qiao G, Wang Y, Liu S, Wang X, Yue Y, Peng S. Unveiling the Molecular Mechanisms Regulating Muscle Elasticity in the Large Yellow Croaker: Insights from Transcriptomics and Metabolomics. Int J Mol Sci 2024; 25:10924. [PMID: 39456707 PMCID: PMC11507341 DOI: 10.3390/ijms252010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The large yellow croaker (Larimichthys crocea) is an important economic fish in China. However, intensive farming practices, such as high stocking densities, suboptimal water quality, and imbalanced nutrition, have led to a decline in muscle quality. Muscle elasticity is a key texture property influencing muscle quality. Herein, transcriptomic and metabolomic analyses were performed on four groups: male high muscle elasticity (MEHM), female high muscle elasticity (MEHF), male low muscle elasticity (MELM), and female low muscle elasticity (MELF), to explore the molecular regulation underlying muscle elasticity in the large yellow croaker. Transcriptomics identified 2594 differentially expressed genes (DEGs) across the four groups, while metabolomics revealed 969 differentially expressed metabolites (DEMs). Association analysis indicated that the valine, leucine, and isoleucine biosynthesis pathways were significantly enriched between the MELF and MEHF groups; 2-Oxoisovalerate and L-Valine were DEMs; and the gene encoding L-threonine ammonia-lyase was a DEG. In the MELM and MEHM groups, pathways such as arginine biosynthesis; arginine and proline metabolism; and valine, leucine, and isoleucine degradation were significantly enriched. 4-guanidinobutanoate, L-aspartate, N-acetylornithine, and L-leucine were among the DEMs, while the DEGs included glul, gls, srm, hmgcs, and aacs. These findings provide insights into the molecular mechanisms controlling muscle elasticity, representing a theoretical foundation to breed high-quality large yellow croakers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiming Peng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
2
|
Wang T, Zhang Y, Jia L, Li Y, Wang L, Zhu Y, Jiang Y, Zhao F, Wang S, Song D. LC-MS/MS-based bioanalysis of branched-chain and aromatic amino acids in human serum. Bioanalysis 2024; 16:693-704. [PMID: 39157863 PMCID: PMC11389736 DOI: 10.1080/17576180.2024.2387467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Aim: Branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) were suggested as potential biomarkers in liver disease. This study aimed to develop and validate a simple and rapid LC-MS/MS method to simultaneously measure serum BCAAs and AAAs levels in patients with liver injury, and further establish reference intervals of Chinese healthy adult populations.Patients & methods: Samples were prepared by a one-step protein precipitation and analysis time was 4 min per run.Results: The validation results showed good linearity (r2 >0.9969), satisfactory accuracy (94.44% - 107.75%) and precision (0.10% - 5.90%).Conclusion: This method proved to be suitable for high-throughput routine clinical use and could be a valuable adjunct diagnosis tool for liver injury and other clinical applications.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of GCP, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Yalian Zhang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Luan Jia
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Ying Li
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Lu Wang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Yanru Zhu
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Yuxin Jiang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P.R. China
| | - Furong Zhao
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P.R. China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, P.R. China
| | - Shuang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, P.R. China
| | - Dan Song
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
3
|
Cao X, Cui H, Ji X, Li B, Lu R, Zhang Y, Chen J. Determining the Potential Roles of Branched-Chain Amino Acids in the Regulation of Muscle Growth in Common Carp ( Cyprinus carpio) Based on Transcriptome and MicroRNA Sequencing. AQUACULTURE NUTRITION 2023; 2023:7965735. [PMID: 37303609 PMCID: PMC10257547 DOI: 10.1155/2023/7965735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Branched-chain amino acids (BCAAs) can be critically involved in skeletal muscle growth and body energy homeostasis. Skeletal muscle growth is a complex process; some muscle-specific microRNAs (miRNAs) are involved in the regulation of muscle thickening and muscle mass. Additionally, the regulatory network between miRNA and messenger RNA (mRNA) in the modulation of the role of BCAAs on skeletal muscle growth in fish has not been studied. In this study, common carp was starved for 14 days, followed by a 14-day gavage therapy with BCAAs, to investigate some of the miRNAs and genes that contribute to the regulation of normal growth and maintenance of skeletal muscle in response to short-term BCAA starvation stress. Subsequently, the transcriptome and small RNAome sequencing of carp skeletal muscle were performed. A total of 43,414 known and 1,112 novel genes were identified, in addition to 142 known and 654 novel miRNAs targeting 22,008 and 33,824 targets, respectively. Based on their expression profiles, 2,146 differentially expressed genes (DEGs) and 84 differentially expressed miRNA (DEMs) were evaluated. Kyoto Encyclopedia of Genes and Genome pathways, including the proteasome, phagosome, autophagy in animals, proteasome activator complex, and ubiquitin-dependent protein catabolic process, were enriched for these DEGs and DEMs. Our findings revealed the role of atg5, map1lc3c, ctsl, cdc53, psma6, psme2, myl9, and mylk in skeletal muscle growth, protein synthesis, and catabolic metabolism. Furthermore, miR-135c, miR-192, miR-194, and miR-203a may play key roles in maintaining the normal activities of the organism by regulating genes related to muscle growth, protein synthesis, and catabolism. This study on transcriptome and miRNA reveals the potential molecular mechanisms underlying the regulation of muscle protein deposition and provides new insights into genetic engineering techniques to improve common carp muscle development.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Ji
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Baohua Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Ling X, Wang Q, Zhang J, Zhang G. Genome-Wide Analysis of the KLF Gene Family in Chicken: Characterization and Expression Profile. Animals (Basel) 2023; 13:ani13091429. [PMID: 37174466 PMCID: PMC10177326 DOI: 10.3390/ani13091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The kruppel-like factor (KLF) gene family is a group of transcription factors containing highly conserved zinc-finger motifs, which play a crucial role in cell proliferation and differentiation. Chicken has been widely used as a model animal for analyzing gene function, however, little is known about the function of the KLF gene family in chickens. In this study, we performed genome-wide studies of chicken KLF genes and analyzed their biological and expression characteristics. We identified 13 KLF genes from chickens. Our phylogenetic, motif, and conserved domain analyses indicate that the KLF gene family has remained conserved through evolution. Synteny analysis showed the collinear relationship among KLFs, which indicated that they had related biomolecular functions. Interaction network analysis revealed that KLFs worked with 20 genes in biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that KLF2 was involved in Apelin and Forkhead Box O (FOXO) signaling pathways. Moreover, qPCR showed that 13 KLF genes were expressed in the nine selected tissues and displayed various gene expression patterns in chickens. RNA-seq showed that KLF3 and KLF10 genes were differentially expressed in the normal and high-fat diet fed groups, and KLF4, KLF5, KLF6, KLF7, KLF9, KLF12, and KLF13 genes were differentially expressed between undifferentiated and differentiated chicken preadipocytes. Besides, RNA-seq also showed that KLF genes displayed different expression patterns in muscle at 11 and 16 embryonic days old, and in 1-day-old chickens. These results indicated that the KLF genes were involved in the development of muscle and fat in chickens. Our findings provide some valuable reference points for the subsequent study of the function of KLF genes.
Collapse
Affiliation(s)
- Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Qifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
5
|
The circadian rhythm regulates branched-chain amino acids metabolism in fast muscle of Chinese perch ( Siniperca chuatsi) during short-term fasting by Clock-KLF15-Bcat2 pathway. Br J Nutr 2022:1-12. [PMID: 36373572 DOI: 10.1017/s0007114522003646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.
Collapse
|
6
|
Codon Usage Bias and Cluster Analysis of the MMP-2 and MMP-9 Genes in Seven Mammals. Genet Res (Camb) 2022; 2022:2823356. [PMID: 36118275 PMCID: PMC9467794 DOI: 10.1155/2022/2823356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Matrix metalloproteinase (MMP)-2 and MMP-9 are a family of Zn2+ and Ca2+-dependent gelatinase MMPs that regulate muscle development and disease treatment, and they are highly conservative during biological evolution. Despite increasing knowledge of MMP genes, their evolutionary mechanism for functional adaption remains unclear. Moreover, analysis of codon usage bias (CUB) is reliable to understand evolutionary associations. However, the distribution of CUB of MMP-2 and MMP-9 genes in mammals has not been revealed clearly. Multiple analytical software was used to study the genetic evolution, phylogeny, and codon usage pattern of these two genes in seven species of mammals. Results showed that the MMP-2 and MMP-9 genes have CUB. By comparing the content of synonymous codon bases amongst seven mammals, we found that MMP-2 and MMP-9 were low-expression genes in mammals with high codon conservation, and their third codon preferred the G/C base. RSCU analysis revealed that these two genes preferred codons encoding delicious amino acids. Analysing what factors influence CUB showed that the third base distributors of these two genes were C/A and C/T, and GC3S had a wide distribution range on the ENC plot reference curve under no selection or mutational pressure. Thus, mutational pressure is an important factor in CUB. This study revealed the usage characteristics of the MMP-2 and MMP-9 gene codons in different mammals and provided basic data for further study towards enhancing meat flavour, treating muscle disease, and optimizing codons.
Collapse
|
7
|
Coding and Noncoding Genes Involved in Atrophy and Compensatory Muscle Growth in Nile Tilapia. Cells 2022; 11:cells11162504. [PMID: 36010581 PMCID: PMC9406742 DOI: 10.3390/cells11162504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Improvements in growth-related traits reduce fish time and production costs to reach market size. Feed deprivation and refeeding cycles have been introduced to maximize aquaculture profits through compensatory growth. However, the molecular compensatory growth signature is still uncertain in Nile tilapia. In this study, fish were subjected to two weeks of fasting followed by two weeks of refeeding. The growth curve in refed tilapia was suggestive of a partial compensatory response. Transcriptome profiling of starved and refed fish was conducted to identify genes regulating muscle atrophy and compensatory growth. Pairwise comparisons revealed 5009 and 478 differentially expressed (differential) transcripts during muscle atrophy and recovery, respectively. Muscle atrophy appears to be mediated by the ubiquitin-proteasome and autophagy/lysosome systems. Autophagy-related 2A, F-box and WD repeat domain containing 7, F-box only protein 32, miR-137, and miR-153 showed exceptional high expression suggesting them as master regulators of muscle atrophy. On the other hand, the muscle compensatory growth response appears to be mediated by the continuous stimulation of muscle hypertrophy which exceeded normal levels found in control fish. For instance, genes promoting ribosome biogenesis or enhancing the efficiency of translational machinery were upregulated in compensatory muscle growth. Additionally, myogenic microRNAs (e.g., miR-1 and miR-206), and hypertrophy-associated microRNAs (e.g., miR-27a-3p, miR-29c, and miR-29c) were reciprocally expressed to favor hypertrophy during muscle recovery. Overall, the present study provided insights into the molecular mechanisms regulating muscle mass in fish. The study pinpoints extensive growth-related gene networks that could be used to inform breeding programs and also serve as valuable genomic resources for future mechanistic studies.
Collapse
|
8
|
Zhou H, Lin S, Hu Y, Guo D, Wang Y, Li X. miR‑125a‑5p and miR‑7 inhibits the proliferation, migration and invasion of vascular smooth muscle cell by targeting EGFR. Mol Med Rep 2021; 24:708. [PMID: 34396443 PMCID: PMC8383035 DOI: 10.3892/mmr.2021.12347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
The ectopic proliferation, migration and invasion of vascular smooth muscle cells (VSMCs) contributes to the progression of various human vascular diseases. Accumulating evidence has demonstrated that microRNAs (miRs) exert vital functions in the proliferation and invasion of VSMCs. The current study aimed to elucidate the functions of miR-125a-5p and miR-7 in VSMCs and investigate the associated molecular mechanisms. The results of EdU and reverse transcription-quantitative PCR assays revealed that platelet-derived growth factor (PDGF)-BB enhanced the proliferation of VSMCs and significantly reduced the expression of miR-125a-5p and miR-7. miR-125a-5p or miR-7 overexpression significantly ameliorated PDGF-BB-induced proliferation, migration and invasion of VSMCs. Furthermore, the results demonstrated that epidermal growth factor receptor (EGFR) may be a target mRNA of miR-125a-5p and miR-7 in VSMCs. The results of western blot analysis indicated that co-transfection of miR-125a-5p mimics or miR-7 mimics distinctly decreased the protein expression of EGFR in EGFR-overexpressed VSMCs. Moreover, rescue experiments indicated that EGFR overexpression alleviated the suppressive impact of the miR-125a-5p and miR-7 s on the growth, migration and invasion of VSMCs. In conclusion, the current study identified that miR-125a-5p and miR-7 repressed the growth, migration and invasion of PDGF-BB-stimulated VSMCs by, at least partially, targeting EGFR. The current study verified that miR-125a-5p and miR-7 may be used as feasible therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Hualan Zhou
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Sen Lin
- Clinical Laboratory, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Youdong Hu
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Dianxuan Guo
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Yun Wang
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Xia Li
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
9
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
10
|
Koganti P, Yao J, Cleveland BM. Molecular Mechanisms Regulating Muscle Plasticity in Fish. Animals (Basel) 2020; 11:ani11010061. [PMID: 33396941 PMCID: PMC7824542 DOI: 10.3390/ani11010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Growth rates in fish are largely dependent on genetic and environmental factors, of which the latter can be highly variable throughout development. For this reason, muscle growth in fish is particularly dynamic as muscle structure and function can be altered by environmental conditions, a concept referred to as muscle plasticity. Myogenic regulatory factors (MRFs) like Myogenin, MyoD, and Pax7 control the myogenic mechanisms regulating quiescent muscle cell maintenance, proliferation, and differentiation, critical processes central for muscle plasticity. This review focuses on recent advancements in molecular mechanisms involving microRNAs (miRNAs) and DNA methylation that regulate the expression and activity of MRFs in fish. Findings provide overwhelming support that these mechanisms are significant regulators of muscle plasticity, particularly in response to environmental factors like temperature and nutritional challenges. Genetic variation in DNA methylation and miRNA expression also correlate with variation in body weight and growth, suggesting that genetic markers related to these mechanisms may be useful for genomic selection strategies. Collectively, this knowledge improves the understanding of mechanisms regulating muscle plasticity and can contribute to the development of husbandry and breeding strategies that improve growth performance and the ability of the fish to respond to environmental challenges.
Collapse
Affiliation(s)
- Prasanthi Koganti
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA; (P.K.); (J.Y.)
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA; (P.K.); (J.Y.)
| | - Beth M. Cleveland
- USDA ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
- Correspondence: ; Tel.: +1-304-724-8340 (ext. 2133)
| |
Collapse
|