1
|
Chen S, Sun J, Wen W, Chen Z, Yu Z. Integrative multi-omics summary-based mendelian randomization identifies key oxidative stress-related genes as therapeutic targets for atrial fibrillation and flutter. Front Genet 2024; 15:1447872. [PMID: 39359474 PMCID: PMC11445139 DOI: 10.3389/fgene.2024.1447872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Background Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with substantial morbidity and mortality. Oxidative stress (OS) has been implicated in the pathogenesis of AF, suggesting that targeting OS-related genes could offer novel therapeutic opportunities. This study aimed to identify causal OS-related genes contributing to AF through a comprehensive multi-omics Summary-based Mendelian Randomization (SMR) approach. Methods This study integrated data from genome-wide association studies (GWAS) with methylation quantitative trait loci (mQTL), expression QTL (eQTL), and protein QTL (pQTL) to explore the relationships between oxidative stress-related (OS-related) genes and AF risk. Genes associated with oxidative stress and AF were obtained from the Nielsen et al. study (discovery) and the FinnGen study (replication). The SMR analysis and HEIDI test were utilized to assess causal associations, followed by Bayesian co-localization analysis (PPH4 > 0.5) to confirm shared causal variants. Multi-omics data were employed to analyze the associations within mQTL-eQTL pathways. A two-sample MR analysis was conducted for sensitivity verification. The significance of findings was determined using a false discovery rate (FDR) < 0.05 and p_HEIDI > 0.01. Results At the DNA methylation level, 19 CpG sites near 7 unique genes were found to have causal effects on AF and strong co-localization evidence support (PPH4 > 0.70). At the gene expression level, six oxidative stress-related genes from eQTLGen and three from GTEx (v8), including TNFSF10, CDKN1A, ALOX15, TTN, PTK2, ALB, KCNJ5, and CASQ2, were found to have causal effects on AF in the sensitivity and co-localization analyses (PPH4 > 0.50). At the circulating protein level, both ALAD (OR 0.898, 95% CI 0.845-0.954, PPH4 = 0.67) and APOH (OR 0.896, 95% CI 0.844-0.952, PPH4 = 0.93) were associated with a lower risk of AF, and APOH was validated in the replication group. After integrating the multi-omics data between mQTL and eQTL, we identified two oxidative stress-related genes, TTN and CASQ2. The methylation of cg09915519 and cg10087519 in TTN was associated with higher expression of TTN and a lower risk of AF, which aligns with the negative effect of TTN gene expression on AF risk. TTN may play a protective role in AF. Conclusion This study identified several OS-related genes, particularly TTN, as having causal roles in AF, which were verified across three-omics pathways. The findings underscore the importance of these genes in AF pathogenesis and highlight their potential as therapeutic targets. The integration of multi-omics data provides a comprehensive understanding of the molecular mechanisms underlying AF, paving the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shijian Chen
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Junlong Sun
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Wen Wen
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Zhenfeng Chen
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Ziheng Yu
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Liu K, Chen Z, Liu L, Li T, Xing C, Han F, Mao H. Causal Effects of Oxidative Stress on Diabetes Mellitus and Microvascular Complications: Insights Integrating Genome-Wide Mendelian Randomization, DNA Methylation, and Proteome. Antioxidants (Basel) 2024; 13:903. [PMID: 39199149 PMCID: PMC11351708 DOI: 10.3390/antiox13080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Oxidative stress (OS) is involved in the development of diabetes, but the genetic mechanisms are not completely understood. We integrated multi-omics data in order to explore the genetic relations between OS-related genes, diabetes mellitus, and microvascular complications using Mendelian randomization and colocalization analysis. METHODS Summary-level data related to OS were acquired from respective studies of methylation, expression, and protein abundance quantitative trait loci. Genetic associations concerning diabetes, diabetic nephropathy (DN), and diabetic retinopathy (DR) were derived from the FinnGen study. Summary-data-based Mendelian randomization (SMR) analysis was conducted to evaluate the correlations between molecular features concerned with OS-related genes and diabetes mellitus, along with its microvascular complications. Additionally, we performed colocalization analysis to determine if the detected signal pairs shared a causal genetic variant. RESULTS At the genetic level, we identified ten potential causal associations of oxidative stress genes with diabetes, along with microvascular complications, through SMR and colocalization analysis. After integrating the DNA methylation quantitative trait loci (mQTL) and expression QTL (eQTL) data, our analyses revealed a correlation between the methylation site cg26343298 and reduced expression of TP53INP1, supporting the protective role of cg26343298 methylation on type 2 diabetes (T2D) and diabetic nephropathy. Similarly, an inverse association was observed between gene methylation and expression in CHEK1 (cg07110182), confirming the beneficial effect of modification of CHEK1 by cg07110182 in diabetic retinopathy. In addition, upregulation of SUOX expression by cg22580629 was linked to a reduced risk of diabetic retinopathy. At circulating protein levels, genetically predicted a higher level of ICAM1 (OR 1.05, 95%CI 1.03-1.08) was positively connected with the risk of diabetic retinopathy. CONCLUSIONS This SMR study elucidated that the TP53INP1 gene was putatively associated with T2D and DN risk, while the SUOX and CHEK1 genes were associated with DR risk through oxidative stress mechanisms. Additionally, our study showed a positive correlation between the ICAM-1 protein and DR. These findings may enhance our understanding of their pathogenesis and suggest new therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Kang Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Zitong Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Lishan Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Ting Li
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Huijuan Mao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| |
Collapse
|
3
|
G J, A S. Identification of potential biomarkers for pancreatic ductal adenocarcinoma: a bioinformatics analysis. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 38773913 DOI: 10.1080/10255842.2024.2356648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024]
Abstract
PDA is an aggressive cancer with a 5-year survival rate, which is very low. There is no effective prognosis or therapy for PDA because of the lack of target biomarkers. The objective of this article is to identify the target biomarkers for PDA using a bioinformatics approach. In this work, we have analysed the three microarray datasets from the NCBI GEO database. We used the Geo2R tool to analyse the microarray data with the Benjamini and Hochberg false discovery rate method, and the significance level cut-off was set to 0.05. We have identified 659 DEGs from the datasets. There are a total of 15 hub genes that were selected from the PPI network constructed using the STRING application. Furthermore, these 15 genes were evaluated on PDA patients using TCGA and GTEx databases in (GEPIA). The online tool DAVID was used to analyse the functional annotation information for the DEGs. The functional pathway enrichment was performed on the GO and KEGG. The hub genes were mainly enriched for cell division, chromosome segregation, protein binding and microtubule binding. Further, the gene alteration study was performed using the cBioportal tool and screened out six hub genes (ASPM, CENPF, BIRC5, TTK, DLGAP5, and TOP2A) with a high alteration rate in PDA samples. Furthermore, Kaplan-Meier survival analysis was performed on the six hub genes and identified poor-survival outcomes that may be involved in tumorigenesis and PDA development. So, this study concludes that, these six hub genes may be potential prognostic biomarkers for PDA.
Collapse
Affiliation(s)
- JagadeeswaraRao G
- Research scholar, AUTDRH, Andhra University, Visakhapatnam, 530003, India
- Department of IT, Aditya Institute of Technology and Management, Tekkali, 532201, India
| | - SivaPrasad A
- Department of Computer Science, Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, 530003, India
| |
Collapse
|
4
|
Xu S, Li X, Zhang S, Qi C, Zhang Z, Ma R, Xiang L, Chen L, Zhu Y, Tang C, Bourgonje AR, Li M, He Y, Zeng Z, Hu S, Feng R, Chen M. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn's disease: a multi-omics Mendelian randomization study. BMC Med 2023; 21:179. [PMID: 37170220 PMCID: PMC10173549 DOI: 10.1186/s12916-023-02878-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) is a key pathophysiological mechanism in Crohn's disease (CD). OS-related genes can be affected by environmental factors, intestinal inflammation, gut microbiota, and epigenetic changes. However, the role of OS as a potential CD etiological factor or triggering factor is unknown, as differentially expressed OS genes in CD can be either a cause or a subsequent change of intestinal inflammation. Herein, we used a multi-omics summary data-based Mendelian randomization (SMR) approach to identify putative causal effects and underlying mechanisms of OS genes in CD. METHODS OS-related genes were extracted from the GeneCards database. Intestinal transcriptome datasets were collected from the Gene Expression Omnibus (GEO) database and meta-analyzed to identify differentially expressed genes (DEGs) related to OS in CD. Integration analyses of the largest CD genome-wide association study (GWAS) summaries with expression quantitative trait loci (eQTLs) and DNA methylation QTLs (mQTLs) from the blood were performed using SMR methods to prioritize putative blood OS genes and their regulatory elements associated with CD risk. Up-to-date intestinal eQTLs and fecal microbial QTLs (mbQTLs) were integrated to uncover potential interactions between host OS gene expression and gut microbiota through SMR and colocalization analysis. Two additional Mendelian randomization (MR) methods were used as sensitivity analyses. Putative results were validated in an independent multi-omics cohort from the First Affiliated Hospital of Sun Yat-sen University (FAH-SYS). RESULTS A meta-analysis from six datasets identified 438 OS-related DEGs enriched in intestinal enterocytes in CD from 817 OS-related genes. Five genes from blood tissue were prioritized as candidate CD-causal genes using three-step SMR methods: BAD, SHC1, STAT3, MUC1, and GPX3. Furthermore, SMR analysis also identified five putative intestinal genes, three of which were involved in gene-microbiota interactions through colocalization analysis: MUC1, CD40, and PRKAB1. Validation results showed that 88.79% of DEGs were replicated in the FAH-SYS cohort. Associations between pairs of MUC1-Bacillus aciditolerans and PRKAB1-Escherichia coli in the FAH-SYS cohort were consistent with eQTL-mbQTL colocalization. CONCLUSIONS This multi-omics integration study highlighted that OS genes causal to CD are regulated by DNA methylation and host-microbiota interactions. This provides evidence for future targeted functional research aimed at developing suitable therapeutic interventions and disease prevention.
Collapse
Affiliation(s)
- Shu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaozhi Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cancan Qi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine & TWINCORE, Joint Ventures Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ruiqi Ma
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liyuan Xiang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lianmin Chen
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yijun Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ce Tang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miaoxin Li
- Zhongshan School of Medicine, Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao He
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Department of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, Nanning, Guangxi, China.
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Li S, Xiao J, Huang C, Sun J. Identification and validation of oxidative stress and immune-related hub genes in Alzheimer's disease through bioinformatics analysis. Sci Rep 2023; 13:657. [PMID: 36635346 PMCID: PMC9837191 DOI: 10.1038/s41598-023-27977-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in aged population. Oxidative stress and neuroinflammation play important roles in the pathogenesis of AD. Investigation of hub genes for the development of potential therapeutic targets and candidate biomarkers is warranted. The differentially expressed genes (DEGs) in AD were screened in GSE48350 dataset. The differentially expressed oxidative stress genes (DEOSGs) were analyzed by intersection of DEGs and oxidative stress-related genes. The immune-related DEOSGs and hub genes were identified by weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) analysis, respectively. Enrichment analysis was performed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The diagnostic value of hub genes was assessed by receiver operating characteristic analysis and validated in GSE1297. The mRNA expression of diagnostic genes was determined by qRT-PCR analysis. Finally, we constructed the drug, transcription factors (TFs), and microRNA network of the diagnostic genes. A total of 1160 DEGs (259 up-regulated and 901 down-regulated) were screened in GSE48350. Among them 111 DEOSGs were identified in AD. Thereafter, we identified significant difference of infiltrated immune cells (effector memory CD8 T cell, activated B cell, memory B cell, natural killer cell, CD56 bright natural killer cell, natural killer T cell, plasmacytoid dendritic cell, and neutrophil) between AD and control samples. 27 gene modules were obtained through WGCNA and turquoise module was the most relevant module. We obtained 66 immune-related DEOSGs by intersecting turquoise module with the DEOSGs and identified 15 hub genes through PPI analysis. Among them, 9 hub genes (CCK, CNR1, GAD1, GAP43, NEFL, NPY, PENK, SST, and TAC1) were identified with good diagnostic values and verified in GSE1297. qRT-PCR analysis revealed the downregulation of SST, NPY, GAP43, CCK, and PENK and upregulation of NEFL in AD. Finally, we identified 76 therapeutic agents, 152 miRNAs targets, and 91 TFs regulatory networks. Our study identified 9 key genes associated with oxidative stress and immune reaction in AD pathogenesis. The findings may help to provide promising candidate biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China. .,Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China. .,Nanchang University, Nanchang, 330000, China.
| | - Jinting Xiao
- grid.452422.70000 0004 0604 7301Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China
| | - Chuanjiang Huang
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China ,grid.415002.20000 0004 1757 8108Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000 China ,grid.260463.50000 0001 2182 8825Nanchang University, Nanchang, 330000 China
| | - Jikui Sun
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China
| |
Collapse
|
6
|
Hossen MB, Islam MA, Reza MS, Kibria MK, Horaira MA, Tuly KF, Faruqe MO, Kabir F, Mollah MNH. Robust identification of common genomic biomarkers from multiple gene expression profiles for the prognosis, diagnosis, and therapies of pancreatic cancer. Comput Biol Med 2023; 152:106411. [PMID: 36502691 DOI: 10.1016/j.compbiomed.2022.106411] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related death globally. So, identification of potential molecular signatures is required for diagnosis, prognosis, and therapies of PC. In this study, we detected 71 common differentially expressed genes (cDEGs) between PC and control samples from four microarray gene-expression datasets (GSE15471, GSE16515, GSE71989, and GSE22780) by using robust statistical and machine learning approaches, since microarray gene-expression datasets are often contaminated by outliers due to several steps involved in the data generating processes. Then we detected 8 cDEGs (ADAM10, COL1A2, FN1, P4HB, ITGB1, ITGB5, ANXA2, and MYOF) as the PC-causing key genes (KGs) by the protein-protein interaction (PPI) network analysis. We validated the expression patterns of KGs between case and control samples by box plot analysis with the TCGA and GTEx databases. The proposed KGs showed high prognostic power with the random forest (RF) based prediction model and Kaplan-Meier-based survival probability curve. The KGs regulatory network analysis detected few transcriptional and post-transcriptional regulators for KGs. The cDEGs-set enrichment analysis revealed some crucial PC-causing molecular functions, biological processes, cellular components, and pathways that are associated with KGs. Finally, we suggested KGs-guided five repurposable drug molecules (Linsitinib, CX5461, Irinotecan, Timosaponin AIII, and Olaparib) and a new molecule (NVP-BHG712) against PC by molecular docking. The stability of the top three protein-ligand complexes was confirmed by molecular dynamic (MD) simulation studies. The cross-validation and some literature reviews also supported our findings. Therefore, the finding of this study might be useful resources to the researchers and medical doctors for diagnosis, prognosis and therapies of PC by the wet-lab validation.
Collapse
Affiliation(s)
- Md Bayazid Hossen
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ariful Islam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Selim Reza
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Kaderi Kibria
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Horaira
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khanis Farhana Tuly
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Firoz Kabir
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Md Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
7
|
Lu W, Yin C, Zhang T, Wu Y, Huang S. An oxidative stress-related prognostic signature for indicating the immune status of oral squamous cell carcinoma and guiding clinical treatment. Front Genet 2022; 13:977902. [PMID: 36212161 PMCID: PMC9538189 DOI: 10.3389/fgene.2022.977902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the eighth most common cancer worldwide and presents high mortality. Oxidative stress, caused by reactive oxygen species accumulation, plays a crucial role in tumorigenesis, cancer progression, and drug resistance. Nevertheless, the specific prognostic and clinical values of oxidative stress-related genes (OSGs) in OSCC remain unclear. Here, we developed an oxidative stress-related prognostic signature according to mRNA expression data from The Cancer Genome Atlas (TCGA) database and evaluated its connections with the prognosis, clinical features, immune status, immunotherapy, and drug sensitivity of OSCC through a series of bioinformatics analyses. Finally, we filtered out six prognostic OSGs to construct a prognostic signature. On the basis of both TCGA-OSCC and GSE41613 cohorts, the signature was proven to be an independent prognostic factor with high accuracy and was confirmed to be an impactful indicator for predicting the prognosis and immune status of patients with OSCC. Additionally, we found that patients with high-risk scores may obtain greater benefit from immune checkpoint therapy compared to those with low-risk scores, and the risk score presented a close interaction with the tumor microenvironment and chemotherapy sensitivity. The prognostic signature may provide a valid and robust predictive tool that could predict the prognosis and immune status and guide clinicians to develop personalized therapeutic strategies for patients with OSCC.
Collapse
Affiliation(s)
- Wei Lu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Changwei Yin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tianqi Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yihua Wu
- Department of Oral Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shengyun Huang,
| |
Collapse
|
8
|
Zhang M, Du G, Li Z, Li D, Li W, Li H, Gao X, Tang Z. An Oxidative Stress-Related Genes Signature for Predicting Survival in Bladder Cancer: Based on TCGA Database and Bioinformatics. Int J Gen Med 2022; 15:2645-2667. [PMID: 35300137 PMCID: PMC8922338 DOI: 10.2147/ijgm.s348945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Oxidative stress (OS) responses have been linked to oncogenesis and tumor progression and have recently been regarded as a potential strategy for tumor therapy. However, OS-related therapeutic targets have not been identified to date in the bladder cancer (BC). Methods The mRNA expression and clinical data of BC were downloaded from the public database. Prognostic risk score signature was constructed using LASSO Cox regression analysis. External validation was performed in GSE15307 cohort. ESTIMATE, CIBERSORT, and ssGSEA algorithm were used to analyze immune cell infiltration and immune microenvironment. Next, functional enrichment analysis was performed to elucidate the mechanism underlying the signature. Additionally, we performed a nomogram to forecast the survival rate of individual BC patients. Results An OS-related genes (OSRGs) signature was constructed. Overall survival was lower in the high-risk group than in the low-risk group, according to survival analyses. The area under the curve (AUC) of ROC curves further validated the prognostic signature’s strong prediction performance in these two cohorts. The risk score was verified as an independent risk factor for BC by independent prognostic analysis. Moreover, as compared to TNM stage alone, a nomogram that integrated the risk score with TNM stage showed a much superior predictive value. Immune infiltration and tumor microenvironment studies indicated that immune cells and functions may play a significant role in carcinogenesis and development. The levels of expression of prognostic genes were shown to be substantially linked with drug sensitivity. Conclusion We developed a novel OSRGs signature for predicting overall survival and impacting the immune status in patients with BC. New nomogram can help clinicians predict the survival rate of BC patients. These findings shed new light on the potential usage of OSRGs signature in BC patients.
Collapse
Affiliation(s)
- Min Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Zhengtian Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Dehui Li
- Department of Burns and Plastic, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Weichao Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Hening Li
- Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xingxin Gao
- Department of Burns and Plastic, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Zhanhong Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Correspondence: Zhanhong Tang; Xingxin Gao, Email ;
| |
Collapse
|
9
|
Wang X, Dou X, Ren X, Rong Z, Sun L, Deng Y, Chen P, Li Z. A Ductal-Cell-Related Risk Model Integrating Single-Cell and Bulk Sequencing Data Predicts the Prognosis of Patients With Pancreatic Adenocarcinoma. Front Genet 2022; 12:763636. [PMID: 35047000 PMCID: PMC8762279 DOI: 10.3389/fgene.2021.763636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous malignancy. Single-cell sequencing (scRNA-seq) technology enables quantitative gene expression measurements that underlie the phenotypic diversity of cells within a tumor. By integrating PDAC scRNA-seq and bulk sequencing data, we aim to extract relevant biological insights into the ductal cell features that lead to different prognoses. Firstly, differentially expressed genes (DEGs) of ductal cells between normal and tumor tissues were identified through scRNA-seq data analysis. The effect of DEGs on PDAC survival was then assessed in the bulk sequencing data. Based on these DEGs (LY6D, EPS8, DDIT4, TNFSF10, RBP4, NPY1R, MYADM, SLC12A2, SPCS3, NBPF15) affecting PDAC survival, a risk score model was developed to classify patients into high-risk and low-risk groups. The results showed that the overall survival was significantly longer in the low-risk group (p < 0.05). The model also revealed reliable predictive power in different subgroups of patients. The high-risk group had a higher tumor mutational burden (TMB) (p < 0.05), with significantly higher mutation frequencies in KRAS and ADAMTS12 (p < 0.05). Meanwhile, the high-risk group had a higher tumor stemness score (p < 0.05). However, there was no significant difference in the immune cell infiltration scores between the two groups. Lastly, drug candidates targeting risk model genes were identified, and seven compounds might act against PDAC through different mechanisms. In conclusion, we have developed a validated survival assessment model, which acted as an independent risk factor for PDAC.
Collapse
Affiliation(s)
- Xitao Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Dou
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoxian Rong
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Gao Y, Liu J, Cai B, Chen Q, Wang G, Lu Z, Jiang K, Miao Y. Development of epithelial-mesenchymal transition-related lncRNA signature for predicting survival and immune microenvironment in pancreatic cancerwithexperiment validation. Bioengineered 2021; 12:10553-10567. [PMID: 34854360 PMCID: PMC8809919 DOI: 10.1080/21655979.2021.2000197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) have crucial function in epithelial–mesenchymal transition (EMT) in pancreatic cancer. It is necessary to comprehensively analyze the potential role of EMT-related lncRNA in pancreatic cancer. In the present study, genomic data of pancreatic cancer from the TCGA database were downloaded and we found 368 EMT-related lncRNAs. According to the expression characteristics of prognostic-related lncRNAs, all samples could be divided into two clusters with different clinical outcomes and different tumor microenvironments. Moreover, an eleven EMT-related lncRNAs signature was established and verified. Patients with pancreatic cancer in the high-risk group had a shorter overall survival than those in the low-risk group and the signature could act as an independent prognostic factor. Further analysis suggested that the EMT-related lncRNAs might affect the prognosis of patients through immune mechanisms. All findings indicated that the signature and eleven lncRNAs might serve as potential prognostic biomarkers and therapeutic targets in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yong Gao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Baobao Cai
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Wang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zipeng Lu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kuirong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Pancreas Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Zhang C, Zou Y, Zhu Y, Liu Y, Feng H, Niu F, He P, Liu H. Three Immune-Related Prognostic mRNAs as Therapeutic Targets for Pancreatic Cancer. Front Med (Lausanne) 2021; 8:649326. [PMID: 33869254 PMCID: PMC8047149 DOI: 10.3389/fmed.2021.649326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: Pancreatic cancer is a highly lethal malignancy globally. This study aimed to probe and validate immune-related prognostic mRNAs as therapeutic targets for pancreatic cancer. Methods: Gene transcriptome data of pancreatic cancer and normal pancreas were retrieved from TCGA-GTEx projects. Two thousand four hundred and ninety-eight immune-related genes were obtained from the IMMUPORT database. Abnormally expressed immune-related genes were then identified. Under univariate and multivariate cox models, a gene signature was constructed. Its predictive efficacy was assessed via ROCs. The interactions between the 21 genes were analyzed by Spearson analysis and PPI network. Using the GEPIA and The Human Protein Atlas databases, their expression and prognostic value were evaluated. The TIMER database was utilized to determine the relationships between MET, OAS1, and OASL mRNAs and immune infiltrates. Finally, their mRNA expression was externally verified in the GSE15471 and GSE62452 datasets. Results: An immune-related 21-gene signature was developed for predicting patients' prognosis. Following verification, this signature exhibited the well predictive performance. There were physical and functional interactions between them. MET, OAS1, and OASL mRNAs were all up-regulated in pancreatic cancer and associated with unfavorable prognosis. They showed strong correlations with tumor progression. Furthermore, the three mRNAs were distinctly associated with immune infiltrates. Their up-regulation was confirmed in the two external datasets. Conclusion: These findings identified three immune-related prognostic mRNAs MET, OAS1, and OASL, which may assist clinicians to choose targets for immunotherapy and make personalized treatment strategy for pancreatic cancer patients.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yueji Zou
- Department of Imaging, Penglai Traditional Chinese Medicine Hospital, Penglai, China
| | - Yanan Zhu
- Jiangsu ALF Biotechnology Co., Ltd., Nanjing, China
| | - Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haibo Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|