1
|
Yang H, Zhu M, Wang M, Zhou H, Zheng J, Qiu L, Fan W, Yang J, Yu Q, Yang Y, Zhang W. Genome-wide comparative analysis reveals selection signatures for reproduction traits in prolific Suffolk sheep. Front Genet 2024; 15:1404031. [PMID: 38911299 PMCID: PMC11193351 DOI: 10.3389/fgene.2024.1404031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The identification of genome-wide selection signatures can reveal the potential genetic mechanisms involved in the generation of new breeds through natural or artificial selection. In this study, we screened the genome-wide selection signatures of prolific Suffolk sheep, a new strain of multiparous mutton sheep, to identify candidate genes for reproduction traits and unravel the germplasm characteristics and population genetic evolution of this new strain of Suffolk sheep. Whole-genome resequencing was performed at an effective sequencing depth of 20× for genomic diversity and population structure analysis. Additionally, selection signatures were investigated in prolific Suffolk sheep, Suffolk sheep, and Hu sheep using fixation index (F ST) and heterozygosity H) analysis. A total of 5,236.338 Gb of high-quality genomic data and 28,767,952 SNPs were obtained for prolific Suffolk sheep. Moreover, 99 selection signals spanning candidate genes were identified. Twenty-three genes were significantly associated with KEGG pathway and Gene Ontology terms related to reproduction, growth, immunity, and metabolism. Through selective signal analysis, genes such as ARHGEF4, CATIP, and CCDC115 were found to be significantly correlated with reproductive traits in prolific Suffolk sheep and were highly associated with the mTOR signaling pathway, the melanogenic pathway, and the Hippo signaling pathways, among others. These results contribute to the understanding of the evolution of artificial selection in prolific Suffolk sheep and provide candidate reproduction-related genes that may be beneficial for the establishment of new sheep breeds.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Mengting Zhu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Mingyuan Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Huaqian Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jingjing Zheng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lixia Qiu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Wenhua Fan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jinghui Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yonglin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Wenzhe Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| |
Collapse
|
2
|
Song X, Yao Z, Zhang Z, Lyu S, Chen N, Qi X, Liu X, Ma W, Wang W, Lei C, Jiang Y, Wang E, Huang Y. Whole-genome sequencing reveals genomic diversity and selection signatures in Xia'nan cattle. BMC Genomics 2024; 25:559. [PMID: 38840048 PMCID: PMC11151506 DOI: 10.1186/s12864-024-10463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.
Collapse
Affiliation(s)
- Xingya Song
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shijie Lyu
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Xingshan Qi
- Biyang County Xiananniu Technology Development Co., Ltd, Zhumadian, 463700, People's Republic of China
| | - Xian Liu
- Henan Provincial Livestock Technology Promotion Station, Zhengzhou, 450008, Henan, People's Republic of China
| | - Weidong Ma
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Shaanxi Fufeng, 722203, People's Republic of China
| | - Wusheng Wang
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Shaanxi Fufeng, 722203, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Guo S, Yu T, Wang X, Zhao S, Zhao E, Ainierlitu, Ba T, Gan M, Dong C, Naerlima, Yin L, Ke X, Dana D, Guo X. Whole-genome resequencing reveals the uniqueness of Subei yak. J Anim Sci 2024; 102:skae152. [PMID: 38832496 PMCID: PMC11217902 DOI: 10.1093/jas/skae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024] Open
Abstract
Subei yak is an essential local yak in the Gansu Province, which genetic resource has recently been discovered. It is a meat-milk dual-purpose variety with high fecundity and relatively stable population genetic structure. However, its population genetic structure and genetic diversity are yet to be reported. Therefore, this study aimed to identify molecular markers of Subei yak genome by whole-genome resequencing, and to analyze the population structure and genetic diversity of Subei yak. This study screened 12,079,496 single nucleotide polymorphism (SNP) molecular markers in the 20 Subei yaks genome using whole-genome resequencing technology. Of these SNPs, 32.09% were located in the intronic region of the genome. Principal component analysis, phylogenetic analysis, and population structure analysis revealed that the Subei yak belonged to an independent group in the domestic yak population. A selective clearance analysis was carried out on Subei yak and other domestic yaks, and the genes under positive selection were annotated. The functional enrichment analysis showed that Subei yak possessed prominent selection characteristics in terms of external environment perception, hypoxia adaptation, and muscle development. Furthermore, Subei yak showed excellent muscle fat deposition and meat quality traits. Thus, this study will serve as a reference for discovering population structure, genetic evolution, and other unique traits of Subei yak and for expanding the genetic variation catalog of yaks.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Tianjun Yu
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| | - Shuangquan Zhao
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Erjun Zhao
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Ainierlitu
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Teer Ba
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Manyu Gan
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Cunmei Dong
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Naerlima
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Lian Yin
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xikou Ke
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Dawuti Dana
- Center of Animal Husbandry and Veterinary Technology Services in Subei Mongolian Autonomous County of Gansu Province, Subei, 736300, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, 730050, China
| |
Collapse
|
4
|
Al Abri M, Alfoudari A, Mohammad Z, Almathen F, Al-Marzooqi W, Al-Hajri S, Al-Amri M, Bahbahani H. Assessing genetic diversity and defining signatures of positive selection on the genome of dromedary camels from the southeast of the Arabian Peninsula. Front Vet Sci 2023; 10:1296610. [PMID: 38098998 PMCID: PMC10720651 DOI: 10.3389/fvets.2023.1296610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Dromedary camels (Camelus dromedarius) are members of the Camelini tribe within the Camelidae family. They are distributed throughout North Africa, the Arabian Peninsula and Southeast Asia. This domestic species is characterized by its superior adaptability to the harsh desert environment. In this study, whole autosomal data of 29 dromedary samples from the Southeast Arabian Peninsula in Oman; 10 from Muscat, 14 from Al-Batinah, and 5 from Al-Sharqiya, were investigated to assess their genetic relationship and to define candidate signatures of positive selection. A minimal genetic distinction that separates Muscat dromedaries from the other two populations was observed, with a degree of genetic admixture between them. Using the de-correlated composite of multiple signals (DCMS) approach, a total of 47 candidate regions within the autosomes of these dromedary populations were defined with signatures of positive selection. These candidate regions harbor a total of 154 genes that are mainly associated with functional categories related to immune response, lipid metabolism and energy expenditure, optical and auditory functions, and long-term memory. Different functional genomic variants were called on the candidate regions and respective genes that warrant further investigation to find possible association with the different favorable phenotypes in dromedaries. The output of this study paves the way for further research efforts aimed at defining markers for use in genomic breeding programs, with the goal of conserving the genetic diversity of the species and enhancing its productivity.
Collapse
Affiliation(s)
- Mohammad Al Abri
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ahmad Alfoudari
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zainab Mohammad
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Camel Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Waleed Al-Marzooqi
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Muscat, Oman
| | - Salim Al-Hajri
- Laboratories and Research Administration, Directorate General of Veterinary Services, Royal Court Affairs, Muscat, Oman
| | - Mahmood Al-Amri
- Laboratories and Research Administration, Directorate General of Veterinary Services, Royal Court Affairs, Muscat, Oman
| | - Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| |
Collapse
|
5
|
Wang J, Suo J, Yang R, Zhang CL, Li X, Han Z, Zhou W, Liu S, Gao Q. Genetic diversity, population structure, and selective signature of sheep in the northeastern Tarim Basin. Front Genet 2023; 14:1281601. [PMID: 38028584 PMCID: PMC10666172 DOI: 10.3389/fgene.2023.1281601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Local sheep in the northeastern Tarim Basin can adapt to dry and low-rainfall regional environments. In this study, three local sheep breeds in the northeastern Tarim Basin, LOP (LOP) sheep, Bayinbuluke (BYK) sheep, and Kunlun (KUN, also known as the Qiemo sheep) sheep, and three introduced sheep breeds, Suffolk (SUF) sheep, Dorset (APD) sheep, and Texel (TEX) sheep, were analyzed for genetic diversity, population structure, and selective signature using the Illumina OvineSNP50K BeadChip. We found that LOP, BYK, and KUN had lower observed heterozygosity and expected heterozygosity than TEX, SUF, and ADP, which were differentiated based on geographic distribution. We performed fixation index (FST) analysis on three local sheep breeds in the northeastern Tarim Basin (LOP, BYK, and KUN) and introduced sheep breeds (TEX, SUF, and ADP) to measure genetic differentiation. Nucleotide diversity (PI) analysis was performed on single-nucleotide polymorphism (SNP) data of LOP, BYK, and KUN. A total of 493 candidate genes were obtained by taking the intersection at a threshold of 5%. Among them, SMAD2, ESR2, and HAS2 were related to reproductive traits. PCDH15, TLE4, and TFAP2B were related to growth traits. SOD1, TSHR, and DNAJB5 were related to desert environmental adaptation. Analyzing the genetic patterns of local sheep in the northeastern Tarim Basin can protect the germplasm resources of local sheep and promote the development and utilization of sheep genetic resources.
Collapse
Affiliation(s)
- Jieru Wang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Jiajia Suo
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Ruizhi Yang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-Long Zhang
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Xiaopeng Li
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Zhipeng Han
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Wen Zhou
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Shudong Liu
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Qinghua Gao
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| |
Collapse
|
6
|
Zhao X, Zheng T, Gao T, Song N. Whole-genome resequencing reveals genetic diversity and selection signals in warm temperate and subtropical Sillago sinica populations. BMC Genomics 2023; 24:547. [PMID: 37715145 PMCID: PMC10503073 DOI: 10.1186/s12864-023-09652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Genetic diversity and heterogeneous genomic signatures in marine fish populations may result from selection pressures driven by the strong effects of environmental change. Nearshore fishes are often exposed to complex environments and human activities, especially those with small ranges. However, studies on genetic diversity and population selection signals in these species have mostly been based on a relatively small number of genetic markers. As a newly recorded species of Sillaginidae, the population genetics and genomic selection signals of Sillago sinica are fragmented or even absent. RESULTS To address this theoretical gap, we performed whole-genome resequencing of 43 S. sinica individuals from Dongying (DY), Qingdao (QD) and Wenzhou (WZ) populations and obtained 4,878,771 high-quality SNPs. Population genetic analysis showed that the genetic diversity of S. sinica populations was low, but the genetic diversity of the WZ population was higher than that of the other two populations. Interestingly, the three populations were not strictly clustered within the group defined by their sampling location but showed an obvious geographic structure signal from the warm temperate to the subtropics. With further analysis, warm-temperate populations exhibited strong selection signals in genomic regions related to nervous system development, sensory function and immune function. However, subtropical populations showed more selective signalling for environmental tolerance and stress signal transduction. CONCLUSIONS Genome-wide SNPs provide high-quality data to support genetic studies and localization of selection signals in S. sinica populations. The reduction in genetic diversity may be related to the bottleneck effect. Considering that low genetic diversity leads to reduced environmental adaptability, conservation efforts and genetic diversity monitoring of this species should be increased in the future. Differences in genomic selection signals between warm temperate and subtropical populations may be related to human activities and changes in environmental complexity. This study deepened the understanding of population genetics and genomic selection signatures in nearshore fishes and provided a theoretical basis for exploring the potential mechanisms of genomic variation in marine fishes driven by environmental selection pressures.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China
| | - Tianlun Zheng
- Zhejiang Fisheries Technical Extension Center, Hangzhou, 310023, Zhejiang, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| | - Na Song
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China.
| |
Collapse
|
7
|
Cesarani A, Gaspa G, Correddu F, Dimauro C, Macciotta NPP. Unravelling the effect of environment on the genome of Sarda breed ewes using Runs of Homozygosity. J Anim Breed Genet 2022; 139:292-306. [PMID: 34984736 DOI: 10.1111/jbg.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
Natural adaptation and artificial selection have shaped the genome of modern livestock breeds. Among SNP-based metrics that are used to detect signatures of selection at genome-wide level, runs of homozygosity (ROH) are getting increasing popularity. In this paper, ROH distribution and features of a sample of 823 Sarda breed ewes farmed at different levels of altitude are analysed to investigate the effect of the environment on the patterns of homozygosity. A total of 46,829 (33,087 unique) ROH were detected. OAR2 exhibited the largest average number of ROH per animal. The most frequent ROH (OAR27, 38.9-44.2 Mb) was shared by 327. ROH length was statistically affected (p < 0.001) by both the altitude and temperature of the place where the flock was located. The highest probability of a SNP falling in a ROH was observed for hill ewes, whereas the smallest one for mountain. A total of 457 SNP exceeded the 99th percentile of the ROH count per SNP distribution and were considered significant. These markers mapped in eight chromosomes and they clustered into 17 ROH islands, where 80 candidate genes were mapped. Results of this study highlighted differences in the ROH distribution and features among sheep farmed in flocks located at different levels of altitude, confirming the role of environmental adaptability in shaping the genome of this breed.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Fabio Correddu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | | |
Collapse
|
8
|
Orlov YL, Anashkina AA. Life: Computational Genomics Applications in Life Sciences. Life (Basel) 2021; 11:life11111211. [PMID: 34833087 PMCID: PMC8622464 DOI: 10.3390/life11111211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/19/2023] Open
Affiliation(s)
- Yuriy L. Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- Life Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Correspondence:
| | - Anastasia A. Anashkina
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|