1
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
2
|
Di Michele F, Chillón I, Feil R. Imprinted Long Non-Coding RNAs in Mammalian Development and Disease. Int J Mol Sci 2023; 24:13647. [PMID: 37686455 PMCID: PMC10487962 DOI: 10.3390/ijms241713647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.
Collapse
Affiliation(s)
- Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Isabel Chillón
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
3
|
Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation (N Y) 2023; 4:100434. [PMID: 37215528 PMCID: PMC10196708 DOI: 10.1016/j.xinn.2023.100434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various regulatory processes, including gene expression regulation, transposable element repression, and genomic imprinting. However, most studies on DNA methylation have been conducted in humans and other model species, whereas the dynamics of DNA methylation across mammals remain poorly explored, limiting our understanding of epigenomic evolution in mammals and the evolutionary impacts of conserved and lineage-specific DNA methylation. Here, we generated and gathered comparative epigenomic data from 13 mammalian species, including two marsupial species, to demonstrate that DNA methylation plays critical roles in several aspects of gene evolution and species trait evolution. We found that the species-specific DNA methylation of promoters and noncoding elements correlates with species-specific traits such as body patterning, indicating that DNA methylation might help establish or maintain interspecies differences in gene regulation that shape phenotypes. For a broader view, we investigated the evolutionary histories of 88 known imprinting control regions across mammals to identify their evolutionary origins. By analyzing the features of known and newly identified potential imprints in all studied mammals, we found that genomic imprinting may function in embryonic development through the binding of specific transcription factors. Our findings show that DNA methylation and the complex interaction between the genome and epigenome have a significant impact on mammalian evolution, suggesting that evolutionary epigenomics should be incorporated to develop a unified evolutionary theory.
Collapse
Affiliation(s)
- Yisi Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shenli Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
4
|
O'Geen H, Beitnere U, Garcia MS, Adhikari A, Cameron DL, Fenton TA, Copping NA, Deng P, Lock S, Halmai JANM, Villegas IJ, Liu J, Wang D, Fink KD, Silverman JL, Segal DJ. Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an Angelman syndrome mouse model. Mol Ther 2023; 31:1088-1105. [PMID: 36641623 PMCID: PMC10124086 DOI: 10.1016/j.ymthe.2023.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder caused by the loss of ubiquitin ligase E3A (UBE3A) gene expression in the brain. The UBE3A gene is paternally imprinted in brain neurons. Clinical features of AS are primarily due to the loss of maternally expressed UBE3A in the brain. A healthy copy of paternal UBE3A is present in the brain but is silenced by a long non-coding antisense transcript (UBE3A-ATS). Here, we demonstrate that an artificial transcription factor (ATF-S1K) can silence Ube3a-ATS in an adult mouse model of Angelman syndrome (AS) and restore endogenous physiological expression of paternal Ube3a. A single injection of adeno-associated virus (AAV) expressing ATF-S1K (AAV-S1K) into the tail vein enabled whole-brain transduction and restored UBE3A protein in neurons to ∼25% of wild-type protein. The ATF-S1K treatment was highly specific to the target site with no detectable inflammatory response 5 weeks after AAV-S1K administration. AAV-S1K treatment of AS mice showed behavioral rescue in exploratory locomotion, a task involving gross and fine motor abilities, similar to low ambulation and velocity in AS patients. The specificity and tolerability of a single injection of AAV-S1K therapy for AS demonstrate the use of ATFs as a promising translational approach for AS.
Collapse
Affiliation(s)
| | | | | | - Anna Adhikari
- MIND Institute, UC Davis Health System, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, UC Davis Health System, Sacramento, CA, USA
| | - David L Cameron
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Timothy A Fenton
- MIND Institute, UC Davis Health System, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, UC Davis Health System, Sacramento, CA, USA
| | - Nycole A Copping
- MIND Institute, UC Davis Health System, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, UC Davis Health System, Sacramento, CA, USA
| | - Peter Deng
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Samantha Lock
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Julian A N M Halmai
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Isaac J Villegas
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Jiajian Liu
- Genome Editing and Novel Modalities (GENM), MilliporeSigma, St. Louis, MO, USA
| | - Danhui Wang
- Genome Editing and Novel Modalities (GENM), MilliporeSigma, St. Louis, MO, USA
| | - Kyle D Fink
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Jill L Silverman
- MIND Institute, UC Davis Health System, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, UC Davis Health System, Sacramento, CA, USA
| | - David J Segal
- Genome Center, UC Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, UC Davis, Davis, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA.
| |
Collapse
|
5
|
Gámez S, Cobo J, Fernández-Lafitte M, Coronas R, Parra I, Oliva JC, Àlvarez A, Esteba-Castillo S, Giménez-Palop O, Corripio R, Palao DJ, Caixàs A. An Exploratory Analysis on the 2D:4D Digit Ratio and Its Relationship with Social Responsiveness in Adults with Prader-Willi Syndrome. J Clin Med 2023; 12:jcm12031155. [PMID: 36769803 PMCID: PMC9917981 DOI: 10.3390/jcm12031155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a genetic disorder produced by a lack of expression of paternally derived genes in the 15q11-13 region. Research has generally focused on its genetic and behavioral expression, but only a few studies have examined epigenetic influences. Prenatal testosterone or the maternal testosterone-to-estradiol ratio (MaTtEr) has been suggested to play an important role in the development of the 'social brain' during pregnancy. Some studies propose the 2D:4D digit ratio of the hand as an indirect MaTtEr measure. The relationship between social performance and MaTtEr has been studied in other neurodevelopmental conditions such as Autism Spectrum Disorder (ASD), but to our best knowledge, it has never been studied in PWS. Therefore, our study aims to clarify the possible existence of a relationship between social performance-as measured using the Social Responsiveness Scale (SRS)-and MaTtEr levels using the 2D:4D ratio. We found that, as a group, PWS individuals have shorter index and ring fingers than the control group, but no significant difference in the 2D:4D ratios. The 2D:4D ratio showed a correlation only with Restricted Interests and Repetitive Behavior Subscale, where a positive correlation only for male individuals with PWS was found. Considering only PWS with previous GH treatment during childhood/adolescence (PWS-GH), index and ring fingers did not show differences in length with the control group, but the 2D:4D ratio was significantly higher in the right or dominant hand compared to controls.
Collapse
Affiliation(s)
- Sara Gámez
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
| | - Jesus Cobo
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació i Innovació Parc Taulí (I3PT)—CERCA, 08208 Sabadell, Spain
- Correspondence: (J.C.); (A.C.)
| | - Meritxell Fernández-Lafitte
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
| | - Ramón Coronas
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
| | - Isabel Parra
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació i Innovació Parc Taulí (I3PT)—CERCA, 08208 Sabadell, Spain
| | - Joan Carles Oliva
- Statistics Unit, Fundació Parc Taulí—(I3PT)—CERCA, 08208 Sabadell, Spain
| | - Aida Àlvarez
- Department of Mental Health, Mutua Terrassa University Hospital, 08221 Terrassa, Spain
| | - Susanna Esteba-Castillo
- Specialized Mental Health and Intellectual Disability Department, Institut d’Assistència Sanitària, Parc Hospitalari Martí i Julià, 17190 Girona, Spain
- Neurodevelopment Group, Girona Biomedical Research Institute IDIBGI, Institut d’Assistència Sanitària, Parc Hospitalari Martí i Julià, 17190 Girona, Spain
| | - Olga Giménez-Palop
- Endocrinology and Nutrition Department, Hospital Universitari Parc Taulí, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona, 08202 Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Corripio
- Pediatric Endocrine Department, Parc Taulí Hospital Universitari, Institutd’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, 08202 Sabadell, Spain
| | - Diego J. Palao
- Mental Health Department, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona—CIBERSAM, 08202 Sabadell, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació i Innovació Parc Taulí (I3PT)—CERCA, 08208 Sabadell, Spain
| | - Assumpta Caixàs
- Endocrinology and Nutrition Department, Hospital Universitari Parc Taulí, Corporació Sanitària Parc Taulí—Universitat Autònoma de Barcelona, 08202 Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (J.C.); (A.C.)
| |
Collapse
|
6
|
Progress in Brain Magnetic Resonance Imaging of Individuals with Prader-Willi Syndrome. J Clin Med 2023; 12:jcm12031054. [PMID: 36769704 PMCID: PMC9917938 DOI: 10.3390/jcm12031054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Prader-Willi syndrome (PWS), a rare epigenetic disease mapping the imprinted chromosomal domain of 15q11.2-q13.3, manifests a regular neurodevelopmental trajectory in different phases. The current multimodal magnetic resonance imaging (MRI) approach for PWS focues on morphological MRI (mMRI), diffusion MRI (dMRI) and functional MRI (fMRI) to uncover brain alterations. This technique offers another perspective to understand potential neurodevelopmental and neuropathological processes of PWS, in addition to specific molecular gene expression patterns, various clinical manifestations and metabolic phenotypes. Multimodal MRI studies of PWS patients demonstrated common brain changes in the volume of gray matter, the integrity of the fiber tracts and the activation and connectivity of some networks. These findings mainly showed that brain alterations in the frontal reward circuit and limbic system were related to molecular genetics and clinical manifestations (e.g., overwhelming eating, obsessive compulsive behaviors and skin picking). Further exploration using a large sample size and advanced MRI technologies, combined with artificial intelligence algorithms, will be the main research direction to study the structural and functional changes and potential pathogenesis of PWS.
Collapse
|
7
|
Lazarus E, Bays HE. Cancer and Obesity: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 3:100026. [PMID: 37990728 PMCID: PMC10661911 DOI: 10.1016/j.obpill.2022.100026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) provides an overview of cancer and increased body fat. Methods The scientific information for this CPS is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results Topics include the increased risk of cancers among patients with obesity, cancer risk factor population-attributable fractions, genetic and epigenetic links between obesity and cancer, adiposopathic and mechanistic processes accounting for increased cancer risk among patients with obesity, the role of oxidative stress, and obesity-related cancers based upon Mendelian randomization and observational studies. Other topics include nutritional and physical activity principles for patients with obesity who either have cancer or are at risk for cancer, and preventive care as it relates to cancer and obesity. Conclusions Obesity is the second most common preventable cause of cancer and may be the most common preventable cause of cancer among nonsmokers. This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) on cancer is one of a series of OMA CPSs designed to assist clinicians in the care of patients with the disease of obesity. Patients with obesity are at greater risk of developing certain types of cancers, and treatment of obesity may influence the risk, onset, progression, and recurrence of cancer in patients with obesity.
Collapse
Affiliation(s)
- Ethan Lazarus
- Diplomate American Board of Obesity Medicine, Diplomate American Board of Family Medicine, President Obesity Medicine Association (2021- 2022); Delegate American Medical Association, Clinical Nutrition Center 5995 Greenwood Plaza Blvd, Ste 150, Greenwood Village, CO 80111
| | - Harold Edward Bays
- Diplomate of American Board of Obesity Medicine, Medical Director/President Louisville Metabolic and Atherosclerosis Research Center, Clinical Associate Professor/University of Louisville Medical School, 3288 Illinois Avenue, Louisville, KY, 40213, USA
| |
Collapse
|
8
|
Proteins and Proteases of Prader-Willi Syndrome: A Comprehensive Review and Perspectives. Biosci Rep 2022; 42:231361. [PMID: 35621394 PMCID: PMC9208313 DOI: 10.1042/bsr20220610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Prader–Willi Syndrome (PWS) is a rare complex genetic disease that is associated with pathological disorders that include endocrine disruption, developmental, neurological, and physical problems as well as intellectual, and behavioral dysfunction. In early stage, PWS is characterized by respiratory distress, hypotonia, and poor sucking ability, causing feeding concern and poor weight gain. Additional features of the disease evolve over time. These include hyperphagia, obesity, developmental, cognitive delay, skin picking, high pain threshold, short stature, growth hormone deficiency, hypogonadism, strabismus, scoliosis, joint laxity, or hip dysplasia. The disease is associated with a shortened life expectancy. There is no cure for PWS, although interventions are available for symptoms management. PWS is caused by genetic defects in chromosome 15q11.2-q13, and categorized into three groups, namely Paternal deletion, Maternal uniparental disomy, and Imprinting defect. PWS is confirmed through genetic testing and DNA-methylation analysis. Studies revealed that at least two key proteins namely MAGEL-2 and NECDIN along with two proteases PCSK1 and PCSK2 are linked to PWS. Herein, we summarize our current understanding and knowledge about the role of these proteins and enzymes in various biological processes associated with PWS. The review also describes how loss and/or impairment of functional activity of these macromolecules can lead to hormonal disbalance by promoting degradation of secretory granules and via inhibition of proteolytic maturation of precursor-proteins. The present review will draw attention of researchers, scientists, and academicians engaged in PWS study and will help to identify potential targets and molecular pathways for PWS intervention and treatment.
Collapse
|
9
|
Epimutation in inherited metabolic disorders: the influence of aberrant transcription in adjacent genes. Hum Genet 2022; 141:1309-1325. [PMID: 35190856 DOI: 10.1007/s00439-021-02414-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Epigenetic diseases can be produced by a stable alteration, called an epimutation, in DNA methylation, in which epigenome alterations are directly involved in the underlying molecular mechanisms of the disease. This review focuses on the epigenetics of two inherited metabolic diseases, epi-cblC, an inherited metabolic disorder of cobalamin (vitamin B12) metabolism, and alpha-thalassemia type α-ZF, an inherited disorder of α2-globin synthesis, with a particular interest in the role of aberrant antisense transcription of flanking genes in the generation of epimutations in CpG islands of gene promoters. In both disorders, the epimutation is triggered by an aberrant antisense transcription through the promoter, which produces an H3K36me3 histone mark involved in the recruitment of DNA methyltransferases. It results from diverse genetic alterations. In alpha-thalassemia type α-ZF, a deletion removes HBA1 and HBQ1 genes and juxtaposes the antisense LUC7L gene to the HBA2 gene. In epi-cblC, the epimutation in the MMACHC promoter is produced by mutations in the antisense flanking gene PRDX1, which induces a prolonged antisense transcription through the MMACHC promoter. The presence of the epimutation in sperm, its transgenerational inheritance via the mutated PRDX1, and the high expression of PRDX1 in spermatogonia but its nearly undetectable transcription in spermatids and spermatocytes, suggest that the epimutation could be maintained during germline reprogramming and despite removal of aberrant transcription. The epivariation seen in the MMACHC promoter (0.95 × 10-3) is highly frequent compared to epivariations affecting other genes of the Online Catalog of Human Genes and Genetic Disorders in an epigenome-wide dataset of 23,116 individuals. This and the comparison of epigrams of two monozygotic twins suggest that the aberrant transcription could also be influenced by post-zygotic environmental exposures.
Collapse
|
10
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Neumann E, Schreeck F, Herberg J, Jacqz Aigrain E, Maitland-van der Zee AH, Pérez-Martínez A, Hawcutt DB, Schaeffeler E, Rane A, de Wildt SN, Schwab M. How paediatric drug development and use could benefit from OMICs: a c4c expert group white paper. Br J Clin Pharmacol 2022; 88:5017-5033. [PMID: 34997627 DOI: 10.1111/bcp.15216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
The safety and efficacy of pharmacotherapy in children, particularly preterms, neonates, and infants, is limited by a paucity of good quality data from prospective clinical drug trials. A specific challenge is the establishment of valid biomarkers. OMICs technologies may support these efforts, by complementary information about targeted and non-targeted molecules through systematic characterization and quantitation of biological samples. OMICs technologies comprise at least genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics in addition to the patient's phenotype. OMICs technologies are in part hypothesis-generating allowing an in depth understanding of disease pathophysiology and pharmacological mechanisms. Application of OMICs technologies in paediatrics faces major challenges before routine adoption. First, developmental processes need to be considered, including a sub-division into specific age groups as developmental changes clearly impact OMICs data. Second, compared to the adult population, the number of patients is limited as well as type and amount of necessary biomaterial, especially in neonates and preterms. Thus, advanced trial designs and biostatistical methods, non-invasive biomarkers, innovative biobanking concepts including data and samples from healthy children, as well as analytical approaches (e.g. liquid biopsies) should be addressed to overcome these obstacles. The ultimate goal is to link OMICs technologies with innovative analysis tools, like artificial intelligence at an early stage. The use of OMICs data based on a feasible approach will contribute to identify complex phenotypes and subpopulations of patients to improve development of medicines for children with potential economic advantages.
Collapse
Affiliation(s)
- Eva Neumann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Filippa Schreeck
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Jethro Herberg
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Evelyne Jacqz Aigrain
- Pediatric Pharmacology and Pharmacogenetics, Hopital Universitaire Saint-Louis, Paris, France.,Clinical Investigation Center CIC1426, Hôpital Robert Debre, Paris, France.,Pharmacology, University of Paris, Paris, France
| | | | - Antonio Pérez-Martínez
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, UK.,NIHR Alder Hey Clinical Research Facility, Alder Hey Children's Hospital, Liverpool, UK
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany.,Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Tarani L, Rasio D, Tarani F, Parlapiano G, Valentini D, Dylag KA, Spalice A, Paparella R, Fiore M. Pediatrics for Disability: A Comprehensive Approach to Children with Syndromic Psychomotor Delay. Curr Pediatr Rev 2022; 18:110-120. [PMID: 34844545 DOI: 10.2174/1573396317666211129093426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
Intellectual disability is the impairment of cognitive, linguistic, motor and social skills that occurs in the pediatric age and is also described by the term "mental retardation". Intellectual disability occurs in 3-28 % of the general population due to a genetic cause, including chromosome aberrations. Among people with intellectual disabilities, the cause of the disability was identified as a single gene disorder in up to 12 %, multifactorial disorders in up to 4 %, and genetic disorders in up to 8.5 %. Children affected by a malformation syndrome associated with mental retardation or intellectual disability represent a care challenge for the pediatrician. A multidisciplinary team is essential to manage the patient, thereby controlling the complications of the syndrome and promoting the correct psychophysical development. This requires continuous follow-up of these children by the pediatrician, which is essential for both the clinical management of the syndrome and facilitating the social integration of these children.
Collapse
Affiliation(s)
- Luigi Tarani
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Debora Rasio
- Department of Pediatry, Sarn Raffaele Hospital, Rome, Italy
| | - Francesca Tarani
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Giovanni Parlapiano
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | | | - Katarzyna Anna Dylag
- Department of Pediatric Nephrology, Jagiellonian University Medical College, Krakow, Poland.,St. Louis Children Hospital, Krakow, Poland
| | - Alberto Spalice
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Roberto Paparella
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
13
|
Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021; 9:730014. [PMID: 34760887 PMCID: PMC8573313 DOI: 10.3389/fcell.2021.730014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting is a term used for an intergenerational epigenetic inheritance and involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted genes are expressed preferentially from either the paternally or maternally inherited allele. Long non-coding RNAs play essential roles in regulating this allele-specific expression. In several well-studied imprinting clusters, long non-coding RNAs have been found to be essential in regulating temporal- and spatial-specific establishment and maintenance of imprinting patterns. Furthermore, recent insights into the epigenetic pathological mechanisms underlying human genomic imprinting disorders suggest that allele-specific expressed imprinted long non-coding RNAs serve as an upstream regulator of the expression of other protein-coding or non-coding imprinted genes in the same cluster. Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing of neighboring imprinted genes. Here, we review the emerging roles of long non-coding RNAs in regulating the expression of imprinted genes, especially in human imprinting disorders, and discuss three strategies targeting the central long non-coding RNA UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader-Willi syndrome and Angelman syndrome. In summary, a better understanding of long non-coding RNA-related mechanisms is key to the development of potential therapeutic targets for human imprinting disorders.
Collapse
Affiliation(s)
- Tingxuan Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|