1
|
Wang X, Meng Y, Zhang S, Wang Z, Zhang K, Gao T, Ma Y. Characterization of bZIP Transcription Factors in Transcriptome of Chrysanthemum mongolicum and Roles of CmbZIP9 in Drought Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2064. [PMID: 39124182 PMCID: PMC11314283 DOI: 10.3390/plants13152064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
bZIP transcription factors play important roles in regulating plant development and stress responses. Although bZIPs have been identified in many plant species, there is little information on the bZIPs in Chrysanthemum. In this study, bZIP TFs were identified from the leaf transcriptome of C. mongolicum, a plant naturally tolerant to drought. A total of 28 full-length bZIP family members were identified from the leaf transcriptome of C. mongolicum and were divided into five subfamilies based on their phylogenetic relationships with the bZIPs from Arabidopsis. Ten conserved motifs were detected among the bZIP proteins of C. mongolicum. Subcellular localization assays revealed that most of the CmbZIPs were predicted to be localized in the nucleus. A novel bZIP gene, designated as CmbZIP9, was cloned based on a sequence of the data of the C. mongolicum transcriptome and was overexpressed in tobacco. The results indicated that the overexpression of CmbZIP9 reduced the malondialdehyde (MDA) content and increased the peroxidase (POD) and superoxide dismutase (SOD) activities as well as the expression levels of stress-related genes under drought stress, thus enhancing the drought tolerance of transgenic tobacco lines. These results provide a theoretical basis for further exploring the functions of the bZIP family genes and lay a foundation for stress resistance improvement in chrysanthemums in the future.
Collapse
Affiliation(s)
- Xuan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Yuan Meng
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Shaowei Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Zihan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Kaimei Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Tingting Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Yueping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| |
Collapse
|
2
|
Lu L, Yang W, Dong Z, Tang L, Liu Y, Xie S, Yang Y. Integrated Transcriptomic and Metabolomics Analyses Reveal Molecular Responses to Cold Stress in Coconut ( Cocos nucifera L.) Seedlings. Int J Mol Sci 2023; 24:14563. [PMID: 37834015 PMCID: PMC10572742 DOI: 10.3390/ijms241914563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Coconut is an important tropical and subtropical fruit and oil crop severely affected by cold temperature, limiting its distribution and application. Thus, studying its low-temperature reaction mechanism is required to expand its cultivation range. We used growth morphology and physiological analyses to characterize the response of coconuts to 10, 20, and 30 d of low temperatures, combined with transcriptome and metabolome analysis. Low-temperature treatment significantly reduced the plant height and dry weight of coconut seedlings. The contents of soil and plant analyzer development (SPAD), soluble sugar (SS), soluble protein (SP), proline (Pro), and malondialdehyde (MDA) in leaves were significantly increased, along with the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the endogenous hormones abscisic acid (ABA), auxin (IAA), zeatin (ZR), and gibberellin (GA) contents. A large number of differentially expressed genes (DEGs) (9968) were detected under low-temperature conditions. Most DEGs were involved in mitogen-activated protein kinase (MAPK) signaling pathway-plant, plant hormone signal transduction, plant-pathogen interaction, biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism, carbon metabolism, starch and sucrose metabolism, purine metabolism, and phenylpropanoid biosynthesis pathways. Transcription factors (TFs), including WRKY, AP2/ERF, HSF, bZIP, MYB, and bHLH families, were induced to significantly differentially express under cold stress. In addition, most genes associated with major cold-tolerance pathways, such as the ICE-CBF-COR, MAPK signaling, and endogenous hormones and their signaling pathways, were significantly up-regulated. Under low temperatures, a total of 205 differentially accumulated metabolites (DAMs) were enriched; 206 DAMs were in positive-ion mode and 97 in negative-ion mode, mainly including phenylpropanoids and polyketides, lipids and lipid-like molecules, benzenoids, organoheterocyclic compounds, organic oxygen compounds, organic acids and derivatives, nucleosides, nucleotides, and analogues. Comprehensive metabolome and transcriptome analysis revealed that the related genes and metabolites were mainly enriched in amino acid, flavonoid, carbohydrate, lipid, and nucleotide metabolism pathways under cold stress. Together, the results of this study provide important insights into the response of coconuts to cold stress, which will reveal the underlying molecular mechanisms and help in coconut screening and breeding.
Collapse
Affiliation(s)
- Lilan Lu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| | - Weibo Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| | - Zhiguo Dong
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| | - Longxiang Tang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| | - Yingying Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China;
| | - Shuyun Xie
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China;
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.L.); (W.Y.); (Z.D.); (L.T.)
| |
Collapse
|
3
|
Tajo SM, Pan Z, Jia Y, He S, Chen B, Sadau SB, KM Y, Ajadi AA, Nazir MF, Auta U, Geng X, Du X. Silencing of GhORP_A02 enhances drought tolerance in Gossypium hirsutum. BMC Genomics 2023; 24:7. [PMID: 36624379 PMCID: PMC9830788 DOI: 10.1186/s12864-022-09099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND ORP (Oxysterol-binding protein-related proteins) genes play a role in lipid metabolism, vesicular transferring and signaling, and non-vesicular sterol transport. However, no systematic identification and analysis of ORP genes have been reported in cotton. RESULT In this study, we identified 14, 14, 7, and 7 ORP genes in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. Phylogenetic analysis showed that all ORP genes could be classified into four groups. Gene structure and conserved motif analysis suggest that the function of this gene family was conserved. The Ka/Ks analysis showed that this gene family was exposed to purifying selection during evolution. Transcriptome data showed that four ORP genes, especially GhORP_A02, were induced by abiotic stress treatment. The cis-acting elements in the ORP promoters were responsive to phytohormones and various abiotic stresses. The silenced plants of GhORP_A02 were more sensitive to drought stress when compared to control. CONCLUSION The major finding of this study shed light on the potential role of ORP genes in abiotic stress and provided a fundamental resource for further analysis in cotton.
Collapse
Affiliation(s)
- Sani Muhammad Tajo
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Zhaoe Pan
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Yinhua Jia
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Shoupu He
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Baojun Chen
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Salisu Bello Sadau
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Yusuf KM
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| | | | - Mian Faisal Nazir
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Umar Auta
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| | - Xiaoli Geng
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Xiongming Du
- grid.464267.5State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| |
Collapse
|
4
|
Guo C, Liu L, Sun H, Wang N, Zhang K, Zhang Y, Zhu J, Li A, Bai Z, Liu X, Dong H, Li C. Predicting F v /F m and evaluating cotton drought tolerance using hyperspectral and 1D-CNN. FRONTIERS IN PLANT SCIENCE 2022; 13:1007150. [PMID: 36330250 PMCID: PMC9623111 DOI: 10.3389/fpls.2022.1007150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The chlorophyll fluorescence parameter Fv/Fm is significant in abiotic plant stress. Current acquisition methods must deal with the dark adaptation of plants, which cannot achieve rapid, real-time, and high-throughput measurements. However, increased inputs on different genotypes based on hyperspectral model recognition verified its capabilities of handling large and variable samples. Fv/Fm is a drought tolerance index reflecting the best drought tolerant cotton genotype. Therefore, Fv/Fm hyperspectral prediction of different cotton varieties, and drought tolerance evaluation, are worth exploring. In this study, 80 cotton varieties were studied. The hyperspectral cotton data were obtained during the flowering, boll setting, and boll opening stages under normal and drought stress conditions. Next, One-dimensional convolutional neural networks (1D-CNN), Categorical Boosting (CatBoost), Light Gradient Boosting Machines (LightBGM), eXtreme Gradient Boosting (XGBoost), Decision Trees (DT), Random Forests (RF), Gradient elevation decision trees (GBDT), Adaptive Boosting (AdaBoost), Extra Trees (ET), and K-Nearest Neighbors (KNN) were modeled with F v /F m. The Savitzky-Golay + 1D-CNN model had the best robustness and accuracy (RMSE = 0.016, MAE = 0.009, MAPE = 0.011). In addition, the F v /F m prediction drought tolerance coefficient and the manually measured drought tolerance coefficient were similar. Therefore, cotton varieties with different drought tolerance degrees can be monitored using hyperspectral full band technology to establish a 1D-CNN model. This technique is non-destructive, fast and accurate in assessing the drought status of cotton, which promotes smart-scale agriculture.
Collapse
Affiliation(s)
- Congcong Guo
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jijie Zhu
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Anchang Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoqing Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hezhong Dong
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, Hebei, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
6
|
Hao DC, Song Y, Xiao P, Zhong Y, Wu P, Xu L. The genus Chrysanthemum: Phylogeny, biodiversity, phytometabolites, and chemodiversity. FRONTIERS IN PLANT SCIENCE 2022; 13:973197. [PMID: 36035721 PMCID: PMC9403765 DOI: 10.3389/fpls.2022.973197] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The ecologically and economically important genus Chrysanthemum contains around 40 species and many hybrids and cultivars. The dried capitulum of Chrysanthemum morifolium (CM) Ramat. Tzvel, i.e., Flos Chrysanthemi, is frequently used in traditional Chinese medicine (TCM) and folk medicine for at least 2,200 years. It has also been a popular tea beverage for about 2,000 years since Han Dynasty in China. However, the origin of different cultivars of CM and the phylogenetic relationship between Chrysanthemum and related Asteraceae genera are still elusive, and there is a lack of comprehensive review about the association between biodiversity and chemodiversity of Chrysanthemum. This article aims to provide a synthetic summary of the phylogeny, biodiversity, phytometabolites and chemodiversity of Chrysanthemum and related taxonomic groups, focusing on CM and its wild relatives. Based on extensive literature review and in light of the medicinal value of chrysanthemum, we give some suggestions for its relationship with some genera/species and future applications. Mining chemodiversity from biodiversity of Chrysanthemum containing subtribe Artemisiinae, as well as mining therapeutic efficacy and other utilities from chemodiversity/biodiversity, is closely related with sustainable conservation and utilization of Artemisiinae resources. There were eight main cultivars of Flos Chrysanthemi, i.e., Hangju, Boju, Gongju, Chuju, Huaiju, Jiju, Chuanju and Qiju, which differ in geographical origins and processing methods. Different CM cultivars originated from various hybridizations between multiple wild species. They mainly contained volatile oils, triterpenes, flavonoids, phenolic acids, polysaccharides, amino acids and other phytometabolites, which have the activities of antimicrobial, anti-viral, antioxidant, anti-aging, anticancer, anti-inflammatory, and closely related taxonomic groups could also be useful as food, medicine and tea. Despite some progresses, the genetic/chemical relationships among varieties, species and relevant genera have yet to be clarified; therefore, the roles of pharmacophylogeny and omics technology are highlighted.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environment and Chemical Engineering, Biotechnology Institute, Dalian Jiaotong University, Dalian, China
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yi Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Lin L, Wang J, Wang Q, Ji M, Hong S, Shang L, Zhang G, Zhao Y, Ma Q, Gu C. Transcriptome Approach Reveals the Response Mechanism of Heimia myrtifolia (Lythraceae, Myrtales) to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:877913. [PMID: 35874015 PMCID: PMC9305661 DOI: 10.3389/fpls.2022.877913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major environmental condition that inhibits the development and cultivation of Heimia myrtifolia. The molecular processes of drought resistance in H. myrtifolia remain unknown, which has limited its application. In our study, transcriptome analyzes were compared across three treatment groups (CK, T1, and T2), to investigate the molecular mechanism of drought resistance. Plant leaves wilted and drooped as the duration of drought stress increased. The relative water content of the leaves declined dramatically, and relative electrolyte leakage rose progressively. Using an RNA-Seq approach, a total of 62,015 unigenes with an average length of 1730 bp were found, with 86.61% of them annotated to seven databases, and 14,272 differentially expressed genes (DEGs) were identified in drought stress. GO and KEGG enrichment analyzes of the DEGs revealed significantly enriched KEGG pathways, including photosynthesis, photosynthetic antenna proteins, plant hormone signal transduction, glutathione metabolism, and ascorbate and aldarate metabolism. Abscisic acid signal transduction was the most prevalent in the plant hormone signal transduction pathway, and other plant hormone signal transductions were also involved in the drought stress response. The transcription factors (including MYB, NAC, WRKY, and bHLH) and related differential genes on significantly enriched pathways all played important roles in the drought process, such as photosynthesis-related genes and antioxidant enzyme genes. In conclusion, this study will provide several genetic resources for further investigation of the molecular processes that will be beneficial to H. myrtifolia cultivation and breeding.
Collapse
Affiliation(s)
- Lin Lin
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jie Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Qun Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Mengcheng Ji
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Sidan Hong
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Linxue Shang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Cuihua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
8
|
Comprehensive Genomic Analysis of G2-like Transcription Factor Genes and Their Role in Development and Abiotic Stresses in Arabidopsis. DIVERSITY 2022. [DOI: 10.3390/d14030228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GOLDEN2-LIKE (GLK) transcription factors are a subfamily of GARP family transcription factors, which play an essential function in plant growth and development as well as stress response during abiotic and biotic stress conditions. This study reports GLK genes in the Arabidopsis thaliana genome in-depth and identified 55 AtGLK genes in the Arabidopsis genome. Phylogenetic analyses resolved these GLK gene clusters into seven groups. A Ka/Ks ratios analysis indicated that they had experienced purifying selection. Many essential cis elements are present in the promoter regions of AtGLK genes associated with plant hormones, light, and stress. The expression profile from RNA-Seq data revealed that 29.1% of them had relatively high expression in all tested tissues or organs, indicating their crucial housekeeping function in plant growth and development. However, many other GLK members were selectively expressed in particular tissues or organs. In silico study of the transcriptional regulation of AtGLKs indicated that it is strongly regulated by cold, drought, osmotic, salt, and metal ion stressors. Our research provides essential information for the functional studies of each GLK gene in different species in the future.
Collapse
|
9
|
Liu J, Mehari TG, Xu Y, Umer MJ, Hou Y, Wang Y, Peng R, Wang K, Cai X, Zhou Z, Liu F. GhGLK1 a Key Candidate Gene From GARP Family Enhances Cold and Drought Stress Tolerance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:759312. [PMID: 34992618 PMCID: PMC8725998 DOI: 10.3389/fpls.2021.759312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Drought and low-temperature stresses are the most prominent abiotic stresses affecting cotton. Wild cotton being exposed to harsh environments has more potential to cope with both biotic and abiotic stresses. Exploiting wild cotton material to induce resistant germplasm would be of greater interest. The candidate gene was identified in the BC2F2 population among Gossypium tomentosum and Gossypium hirsutum as wild male donor parent noted for its drought tolerance and the recurrent parent and a high yielding but drought susceptible species by genotyping by sequencing (GBS) mapping. Golden2-like (GLK) gene, which belongs to the GARP family, is a kind of plant-specific transcription factor (TF) that was silenced by virus-induced gene silencing (VIGS). Silencing of GhGLK1 in cotton results in more damage to plants under drought and cold stress as compared with wild type (WT). The overexpression of GhGLK1 in Arabidopsis thaliana showed that the overexpressing plants showed more adaptability than the WT after drought and cold treatments. The results of trypan blue and 3,3'-diaminobenzidine (DAB) staining showed that after drought and cold treatment, the leaf damage in GhGLK1 overexpressed plants was less as compared with the WT, and the ion permeability was also lower. This study suggested that the GhGLK1 gene may be involved in the regulation of drought and cold stress response in cotton. Our current research findings add significantly to the existing knowledge of cold and drought stress tolerance in cotton.
Collapse
Affiliation(s)
- Jiangna Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Qiu J, Guo R, Li Y, Zhang Y, Jia K, Lei Y, Zan L, Li A. De Novo Transcriptome Assembly, Functional Annotation and SSR Marker Discovery of Qinling Takin ( Budorcas taxicolor bedfordi). Animals (Basel) 2021; 11:2366. [PMID: 34438823 PMCID: PMC8388659 DOI: 10.3390/ani11082366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The takin (Budorcas taxicolor) is an endemic ruminant species belonging to the bovine family. The International Union for Conservation of Nature (IUCN) has listed it as an endangered and vulnerable species. However, little is known about its molecular characterization since it lacks a reference genome. This study used RNA sequencing followed by de novo assembly, annotation and simple sequence repeats (SSRs) prediction to assess the transcriptome of Qinling takin (Budorcas taxicolor bedfordi) muscles. In total, 21,648 unigenes with an N50 and mean length of 1388 bp and 817 bp, respectively, were successfully detected and annotated against the public databases (NR, GO, KEGG, and EggNOG). Furthermore, 6222 SSRs were identified using the MIcroSAtellite (MISA) identification tool software. Taken together, these findings will provide valuable information for genetic, genomic, and evolutionary studies on takin.
Collapse
Affiliation(s)
- Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.Q.); (R.G.); (Y.L.); (Y.Z.); (L.Z.)
| | - Rui Guo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.Q.); (R.G.); (Y.L.); (Y.Z.); (L.Z.)
| | - Yidan Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.Q.); (R.G.); (Y.L.); (Y.Z.); (L.Z.)
| | - Yuyao Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.Q.); (R.G.); (Y.L.); (Y.Z.); (L.Z.)
| | - Kangsheng Jia
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry, Xi'an 710402, China; (K.J.); (Y.L.)
| | - Yinghu Lei
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry, Xi'an 710402, China; (K.J.); (Y.L.)
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.Q.); (R.G.); (Y.L.); (Y.Z.); (L.Z.)
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry, Xi'an 710402, China; (K.J.); (Y.L.)
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.Q.); (R.G.); (Y.L.); (Y.Z.); (L.Z.)
| |
Collapse
|