1
|
de Rezende CE, Perazza CA, Marçal DCP, Fernandes DCO, Reis Neto RV, de Freitas RTF, Hilsdorf AWS. Ultrasound-Based Phenotyping for Genetic Selection of Carcass Traits in Oreochromis niloticus: Integrating Imaging Technology Into Aquaculture Breeding. J Anim Breed Genet 2024. [PMID: 39422614 DOI: 10.1111/jbg.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Recent years have witnessed a remarkable global surge in fish production, with Nile tilapia (Oreochromis niloticus) emerging as a prominent contributor owing to its high demand as a nutritious food source. However, unlike terrestrial species, maintaining genealogical control and collecting phenotypic data in fish farming poses significant challenges, necessitating advancements to support genetic improvement programmes. While conventional methods, such as body measurements using rulers and photographs are prevalent in data collection, the potential of ultrasound-a less invasive and efficient tool for fish measurement-remains underexplored. This study assesses the viability of ultrasonography for genetically selecting carcass characteristics in Nile tilapia. The investigation encompasses data from 897 animals representing 53 full-sib tilapia families maintained in the genetic improvement programme at the Federal University of Lavras. To measure carcass traits, the animals were sedated with benzocaine and ultrasound images were obtained at three distinct points. Subsequently, the animals were euthanised through medullary sectioning for further carcass processing. After evisceration, filleting and skinning, all weights were meticulously recorded. (Co)variance components and genetic parameters of the measured traits were estimated using the Bayesian approach by Gibbs sampling implemented in MTGSAM (Multiple Trait Gibbs Sampling in Animal Models) software. Heritabilities estimated for the studied carcass traits were moderate, ranging from 0.23 to 0.33. Notably, phenotypes derived from ultrasound images demonstrated substantial genetic correlations with fillet yield (0.83-0.92). In conclusion, this study confirms that indirect selection based on ultrasound images is effective and holds promise for integration into tilapia breeding programmes aimed at enhancing carcass yield.
Collapse
Affiliation(s)
| | - Caio Augusto Perazza
- Integrated Center of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
- Department of Biological Oceanography, Institute of Oceanography, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - Rafael Vilhena Reis Neto
- Department of Fisheries Resources and Aquaculture, School of Agricultural Science of Vale Do Ribeira-Registro Campus, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | | | - Alexandre Wagner Silva Hilsdorf
- Department of Animal Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
- Integrated Center of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
2
|
Langille BL, Sae-Lim P, Boison S, Wiper PG, Garber AF. Genome-wide association identifies genomic regions influencing fillet color in Northwest Atlantic salmon ( Salmo salar Linnaeus 1758). Front Genet 2024; 15:1402927. [PMID: 39130751 PMCID: PMC11310022 DOI: 10.3389/fgene.2024.1402927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024] Open
Abstract
Atlantic salmon (Salmo salar) is an important source of food globally; however, fillet color can significantly affect consumer purchasing, leading to potential food waste. Fish diets can be supplemented with astaxanthin to increase the organic pigment, carotenoid, responsible for flesh coloration; however, there is variation in the amount of overall fillet coloration in response to feeding astaxanthin. The uptake of this pigment is influenced by the environment and genetics and has been shown to be heritable. Therefore, we set out to determine the genomic associations of two separate year classes of farmed North American Atlantic salmon with measured Minolta Chroma Meter (lightness, redness, and yellowness) and SalmoFan phenotypic traits. Using ASReml-R genome-wide association, two genetic markers on chromosome 26 were significantly associated with almost all color traits, and these two markers explained between 6.0% and 12.5% of the variances. The genomic region on chromosome 26 was importantly found to be associated with the beta-carotene oxygenase 1 (bco1) gene, which is essential in the conversion of beta-carotenoids to vitamin A, implying that this gene may also play an important role in flesh coloration in North American Atlantic salmon. Additionally, there were several genomic regions significantly associated with color traits, in which the accompanying genes had functions in line with thermogenesis, immune function, and pathogenic responses. Understanding how environmental and genetic factors work together to affect fillet quality traits will help inform genetic improvement.
Collapse
Affiliation(s)
| | | | | | - Philip G. Wiper
- The Huntsman Marine Science Centre, Saint Andrews, NB, Canada
| | - Amber F. Garber
- The Huntsman Marine Science Centre, Saint Andrews, NB, Canada
| |
Collapse
|
3
|
Shen X, Hu J, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Shao L, Guo X, Shao Y, Huerlimann R, Li C, Goulden E, Anderson K, Fan G, Domingos JA. Exploring the cobia (Rachycentron canadum) genome: unveiling putative male heterogametic regions and identification of sex-specific markers. Gigascience 2024; 13:giae034. [PMID: 38995143 PMCID: PMC11240236 DOI: 10.1093/gigascience/giae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | | | | | | | - Libin Shao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xinyu Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yunchang Shao
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Geogia Tech Shenzhen Institute (GTSI), Tianjin University, Shen Zhen 518067, China
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Chengze Li
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Evan Goulden
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Kelli Anderson
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jose A Domingos
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
4
|
Lagarde H, Lallias D, Patrice P, Dehaullon A, Prchal M, François Y, D'Ambrosio J, Segret E, Acin-Perez A, Cachelou F, Haffray P, Dupont-Nivet M, Phocas F. Genetic architecture of acute hyperthermia resistance in juvenile rainbow trout (Oncorhynchus mykiss) and genetic correlations with production traits. Genet Sel Evol 2023; 55:39. [PMID: 37308823 DOI: 10.1186/s12711-023-00811-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Selective breeding is a promising solution to reduce the vulnerability of fish farms to heat waves, which are predicted to increase in intensity and frequency. However, limited information about the genetic architecture of acute hyperthermia resistance in fish is available. Two batches of sibs from a rainbow trout commercial line were produced: the first (N = 1382) was phenotyped for acute hyperthermia resistance at nine months of age and the second (N = 1506) was phenotyped for main production traits (growth, body length, muscle fat content and carcass yield) at 20 months of age. Fish were genotyped on a 57 K single nucleotide polymorphism (SNP) array and their genotypes were imputed to high-density based on the parent's genotypes from a 665 K SNP array. RESULTS The heritability estimate of resistance to acute hyperthermia was 0.29 ± 0.05, confirming the potential of selective breeding for this trait. Since genetic correlations of acute hyperthermia resistance with the main production traits near harvest age were all close to zero, selecting for acute hyperthermia resistance should not impact the main production traits, and vice-versa. A genome-wide association study revealed that resistance to acute hyperthermia is a highly polygenic trait, with six quantitative trait loci (QTL) detected, but explaining less than 5% of the genetic variance. Two of these QTL, including the most significant one, may explain differences in acute hyperthermia resistance across INRAE isogenic lines of rainbow trout. Differences in mean acute hyperthermia resistance phenotypes between homozygotes at the most significant SNP was 69% of the phenotypic standard deviation, showing promising potential for marker-assisted selection. We identified 89 candidate genes within the QTL regions, among which the most convincing functional candidates are dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx and acly. CONCLUSIONS This study provides valuable insight into the genetic architecture of acute hyperthermia resistance in juvenile rainbow trout. We show that the selection potential for this trait is substantial and selection for this trait should not be too detrimental to improvement of other traits of interest. Identified functional candidate genes provide new knowledge on the physiological mechanisms involved in acute hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis maintenance and cell survival.
Collapse
Affiliation(s)
- Henri Lagarde
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Delphine Lallias
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pierre Patrice
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Audrey Dehaullon
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Martin Prchal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Yoannah François
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Jonathan D'Ambrosio
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Emilien Segret
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | - Ana Acin-Perez
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | | | - Pierrick Haffray
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | | | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Hasan MM, Raadsma HW, Thomson PC, Wade NM, Jerry DR, Khatkar MS. Genetic parameters of color phenotypes of black tiger shrimp (Penaeus monodon). Front Genet 2022; 13:1002346. [PMID: 36263423 PMCID: PMC9573983 DOI: 10.3389/fgene.2022.1002346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Black tiger shrimp (Penaeus monodon) is the second most important aquaculture species of shrimp in the world. In addition to growth traits, uncooked and cooked body color of shrimp are traits of significance for profitability and consumer acceptance. This study investigated for the first time, the phenotypic and genetic variances and relationships for body weight and body color traits, obtained from image analyses of 838 shrimp, representing the progeny from 55 sires and 52 dams. The color of uncooked shrimp was subjectively scored on a scale from 1 to 4, with “1” being the lightest/pale color and “4” being the darkest color. For cooked shrimp color, shrimp were graded firstly by subjective scoring using a commercial grading score card, where the score ranged from 1 to 12 representing light to deep coloration which was subsequently found to not be sufficiently reliable with poor repeatability of measurement (r = 0.68–0.78) Therefore, all images of cooked color were regraded on a three-point scale from brightest and lightest colored cooked shrimp, to darkest and most color-intense, with a high repeatability (r = 0.80–0.92). Objective color of both cooked and uncooked color was obtained by measurement of RGB intensities (values range from 0 to 255) for each pixel from each shrimp. Using the “convertColor” function in “R”, the RGB values were converted to L*a*b* (CIE Lab) systems of color properties. This system of color space was established in 1976, by the International Commission of Illumination (CIE) where “L*” represents the measure of degree of lightness, values range from 0 to 100, where 0 = pure black and 100 = pure white. The value “a*” represents red to green coloration, where a positive value represents the color progression towards red and a negative value towards green. The value “b*” represents blue to yellow coloration, where a positive value refers to more yellowish and negative towards the blue coloration. In total, eight color-related traits were investigated. An ordinal mixed (threshold) model was adopted for manually (subjectively) scored color phenotypes, whereas all other traits were analyzed by linear mixed models using ASReml software to derive variance components and estimated breeding values (EBVs). Moderate to low heritability estimates (0.05–0.35) were obtained for body color traits. For subjectively scored cooked and uncooked color, EBV-based selection would result in substantial genetic improvement in these traits. The genetic correlations among cooked, uncooked and body weight traits were high and ranged from −0.88 to 0.81. These suggest for the first time that 1) cooked color can be improved indirectly by genetic selection based on color of uncooked/live shrimp, and 2) intensity of coloration is positively correlated with body weight traits and hence selection for body weight will also improve color traits in this population.
Collapse
Affiliation(s)
- Md. Mehedi Hasan
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Camden, NSW, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD, Australia
- *Correspondence: Md. Mehedi Hasan,
| | - Herman W. Raadsma
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Camden, NSW, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD, Australia
| | - Peter C. Thomson
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Camden, NSW, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD, Australia
| | - Nicholas M. Wade
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, QLD, Australia
| | - Dean R Jerry
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Mehar S. Khatkar
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Camden, NSW, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD, Australia
| |
Collapse
|
6
|
Ahmed RO, Ali A, Al-Tobasei R, Leeds T, Kenney B, Salem M. Weighted Single-Step GWAS Identifies Genes Influencing Fillet Color in Rainbow Trout. Genes (Basel) 2022; 13:genes13081331. [PMID: 35893068 PMCID: PMC9332390 DOI: 10.3390/genes13081331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
The visual appearance of the fish fillet is a significant determinant of consumers' purchase decisions. Depending on the rainbow trout diet, a uniform bright white or reddish/pink fillet color is desirable. Factors affecting fillet color are complex, ranging from the ability of live fish to accumulate carotenoids in the muscle to preharvest environmental conditions, early postmortem muscle metabolism, and storage conditions. Identifying genetic markers of fillet color is a desirable goal but a challenging task for the aquaculture industry. This study used weighted, single-step GWAS to explore the genetic basis of fillet color variation in rainbow trout. We identified several SNP windows explaining up to 3.5%, 2.5%, and 1.6% of the additive genetic variance for fillet redness, yellowness, and whiteness, respectively. SNPs are located within genes implicated in carotenoid metabolism (β,β-carotene 15,15'-dioxygenase, retinol dehydrogenase) and myoglobin homeostasis (ATP synthase subunit β, mitochondrial (ATP5F1B)). These genes are involved in processes that influence muscle pigmentation and postmortem flesh coloration. Other identified genes are involved in the maintenance of muscle structural integrity (kelch protein 41b (klh41b), collagen α-1(XXVIII) chain (COL28A1), and cathepsin K (CTSK)) and protection against lipid oxidation (peroxiredoxin, superoxide dismutase 2 (SOD2), sestrin-1, Ubiquitin carboxyl-terminal hydrolase-10 (USP10)). A-to-G single-nucleotide polymorphism in β,β-carotene 15,15'-dioxygenase, and USP10 result in isoleucine-to-valine and proline-to-leucine non-synonymous amino acid substitutions, respectively. Our observation confirms that fillet color is a complex trait regulated by many genes involved in carotenoid metabolism, myoglobin homeostasis, protection against lipid oxidation, and maintenance of muscle structural integrity. The significant SNPs identified in this study could be prioritized via genomic selection in breeding programs to improve fillet color in rainbow trout.
Collapse
Affiliation(s)
- Ridwan O. Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV 25430, USA;
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA;
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
- Correspondence:
| |
Collapse
|
7
|
Bernard M, Dehaullon A, Gao G, Paul K, Lagarde H, Charles M, Prchal M, Danon J, Jaffrelo L, Poncet C, Patrice P, Haffray P, Quillet E, Dupont-Nivet M, Palti Y, Lallias D, Phocas F. Development of a High-Density 665 K SNP Array for Rainbow Trout Genome-Wide Genotyping. Front Genet 2022; 13:941340. [PMID: 35923696 PMCID: PMC9340366 DOI: 10.3389/fgene.2022.941340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Single nucleotide polymorphism (SNP) arrays, also named « SNP chips », enable very large numbers of individuals to be genotyped at a targeted set of thousands of genome-wide identified markers. We used preexisting variant datasets from USDA, a French commercial line and 30X-coverage whole genome sequencing of INRAE isogenic lines to develop an Affymetrix 665 K SNP array (HD chip) for rainbow trout. In total, we identified 32,372,492 SNPs that were polymorphic in the USDA or INRAE databases. A subset of identified SNPs were selected for inclusion on the chip, prioritizing SNPs whose flanking sequence uniquely aligned to the Swanson reference genome, with homogenous repartition over the genome and the highest Minimum Allele Frequency in both USDA and French databases. Of the 664,531 SNPs which passed the Affymetrix quality filters and were manufactured on the HD chip, 65.3% and 60.9% passed filtering metrics and were polymorphic in two other distinct French commercial populations in which, respectively, 288 and 175 sampled fish were genotyped. Only 576,118 SNPs mapped uniquely on both Swanson and Arlee reference genomes, and 12,071 SNPs did not map at all on the Arlee reference genome. Among those 576,118 SNPs, 38,948 SNPs were kept from the commercially available medium-density 57 K SNP chip. We demonstrate the utility of the HD chip by describing the high rates of linkage disequilibrium at 2–10 kb in the rainbow trout genome in comparison to the linkage disequilibrium observed at 50–100 kb which are usual distances between markers of the medium-density chip.
Collapse
Affiliation(s)
- Maria Bernard
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, SIGENAE, Jouy-en-Josas, France
| | - Audrey Dehaullon
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Guangtu Gao
- USDA, REE, ARS, NEA, NCCCWA, Kearneysville, WV, United States
| | - Katy Paul
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Henri Lagarde
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathieu Charles
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, SIGENAE, Jouy-en-Josas, France
| | - Martin Prchal
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, Vodňany, Czechia
| | - Jeanne Danon
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | - Charles Poncet
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | | | | | - Edwige Quillet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Yniv Palti
- USDA, REE, ARS, NEA, NCCCWA, Kearneysville, WV, United States
| | - Delphine Lallias
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florence Phocas
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- *Correspondence: Florence Phocas,
| |
Collapse
|
8
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
9
|
Blay C, Haffray P, D'Ambrosio J, Prado E, Dechamp N, Nazabal V, Bugeon J, Enez F, Causeur D, Eklouh-Molinier C, Petit V, Phocas F, Corraze G, Dupont-Nivet M. Genetic architecture and genomic selection of fatty acid composition predicted by Raman spectroscopy in rainbow trout. BMC Genomics 2021; 22:788. [PMID: 34732127 PMCID: PMC8564959 DOI: 10.1186/s12864-021-08062-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
Background In response to major challenges regarding the supply and sustainability of marine ingredients in aquafeeds, the aquaculture industry has made a large-scale shift toward plant-based substitutions for fish oil and fish meal. But, this also led to lower levels of healthful n−3 long-chain polyunsaturated fatty acids (PUFAs)—especially eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids—in flesh. One potential solution is to select fish with better abilities to retain or synthesise PUFAs, to increase the efficiency of aquaculture and promote the production of healthier fish products. To this end, we aimed i) to estimate the genetic variability in fatty acid (FA) composition in visceral fat quantified by Raman spectroscopy, with respect to both individual FAs and groups under a feeding regime with limited n-3 PUFAs; ii) to study the genetic and phenotypic correlations between FAs and processing yields- and fat-related traits; iii) to detect QTLs associated with FA composition and identify candidate genes; and iv) to assess the efficiency of genomic selection compared to pedigree-based BLUP selection. Results Proportions of the various FAs in fish were indirectly estimated using Raman scattering spectroscopy. Fish were genotyped using the 57 K SNP Axiom™ Trout Genotyping Array. Following quality control, the final analysis contained 29,652 SNPs from 1382 fish. Heritability estimates for traits ranged from 0.03 ± 0.03 (n-3 PUFAs) to 0.24 ± 0.05 (n-6 PUFAs), confirming the potential for genomic selection. n-3 PUFAs are positively correlated to a decrease in fat deposition in the fillet and in the viscera but negatively correlated to body weight. This highlights the potential interest to combine selection on FA and against fat deposition to improve nutritional merit of aquaculture products. Several QTLs were identified for FA composition, containing multiple candidate genes with indirect links to FA metabolism. In particular, one region on Omy1 was associated with n-6 PUFAs, monounsaturated FAs, linoleic acid, and EPA, while a region on Omy7 had effects on n-6 PUFAs, EPA, and linoleic acid. When we compared the effectiveness of breeding programmes based on genomic selection (using a reference population of 1000 individuals related to selection candidates) or on pedigree-based selection, we found that the former yielded increases in selection accuracy of 12 to 120% depending on the FA trait. Conclusion This study reveals the polygenic genetic architecture for FA composition in rainbow trout and confirms that genomic selection has potential to improve EPA and DHA proportions in aquaculture species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08062-7.
Collapse
Affiliation(s)
- Carole Blay
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Jonathan D'Ambrosio
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,SYSAAF, Station LPGP-INRAE, Rennes, France
| | - Enora Prado
- University of Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, Rennes, France
| | - Nicolas Dechamp
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Virginie Nazabal
- University of Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, Rennes, France
| | | | | | - David Causeur
- Laboratoire de Mathématiques Appliquées, IRMAR, Agrocampus Ouest, Rennes, France
| | | | | | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Geneviève Corraze
- INRAE, University of Pau & Pays Adour, E2S UPPA, UMR1419 NuMéA, St Pée sur, Nivelle, France
| | | |
Collapse
|
10
|
Paul K, D'Ambrosio J, Phocas F. Temporal and region‐specific variations in genome‐wide inbreeding effects on female size and reproduction traits of rainbow trout. Evol Appl 2021; 15:645-662. [PMID: 35505890 PMCID: PMC9046919 DOI: 10.1111/eva.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/11/2021] [Accepted: 09/14/2021] [Indexed: 02/01/2023] Open
Abstract
Recent studies have shown that current levels of inbreeding, estimated by runs of homozygosity (ROH), are moderate to high in farmed rainbow trout lines. Based on ROH metrics, the aims of our study were to (i) quantify inbreeding effects on female size (postspawning body weight, fork length) and reproduction traits (spawning date, coelomic fluid weight, spawn weight, egg number, average egg weight) in rainbow trout, and (ii) identify both the genomic regions and inbreeding events affecting performance. We analysed the performance of 1346 females under linear animal models including random additive and dominance genetics effects, with fixed covariates accounting for inbreeding effects at different temporal and genomic scales. A significant effect of genome‐wide inbreeding (F) was only observed for spawning date and egg weight, with performance variations of +12.3% and −3.8%, respectively, for 0.1 unit increase in F level. At different local genomic scales, we observed highly variable inbreeding effects on the seven traits under study, ranging from increasing to decreasing trait values. As widely reported in the literature, the main scenario observed during this study was a negative impact of recent inbreeding. However, other scenarios such as positive effects of recent inbreeding or negative impacts of old inbreeding were also observed. Although partial dominance appeared to be the main hypothesis explaining inbreeding depression for all the traits studied, the overdominance hypothesis might also play a significant role in inbreeding depression affecting fecundity (egg number and mass) traits in rainbow trout. These findings suggest that region‐specific inbreeding can strongly impact performance without necessarily observing genome‐wide inbreeding effects. They shed light on the genetic architecture of inbreeding depression and its evolution along the genome over time. The use of region‐specific metrics may enable breeders to more accurately manage the trade‐off between genetic merit and the undesirable side effects associated with inbreeding.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
| | - Jonathan D'Ambrosio
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
- SYSAAFStation INRAE‐LPGPCampus de Beaulieu Rennes France
| | - Florence Phocas
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
| |
Collapse
|
11
|
Comparative Transcriptome Analysis Revealed Genes Involved in Sexual and Polyploid Growth Dimorphisms in Loach ( Misgurnus anguillicaudatus). BIOLOGY 2021; 10:biology10090935. [PMID: 34571812 PMCID: PMC8468957 DOI: 10.3390/biology10090935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Misgurnus anguillicaudatus not only exhibits sexual size dimorphism, but also shows polyploid size dimorphism. Here, we performed comparative transcriptome integration analysis of multiple tissues of diploid and tetraploid M. anguillicaudatus of both sexes. We found that differences in energy metabolism and steroid hormone synthesis levels may be the main causes of sexual and polyploidy growth dimorphisms of M. anguillicaudatus. Fast-growing M. anguillicaudatus (tetraploids, females) have higher levels of energy metabolism and lower steroid hormone synthesis and fatty acid degradation abilities than slow-growing M. anguillicaudatus (diploids, males). Abstract Sexual and polyploidy size dimorphisms are widespread phenomena in fish, but the molecular mechanisms remain unclear. Loach (Misgurnus anguillicaudatus) displays both sexual and polyploid growth dimorphism phenomena, and are therefore ideal models to study these two phenomena. In this study, RNA-seq was used for the first time to explore the differentially expressed genes (DEGs) between both sexes of diploid and tetraploid loaches in four tissues (brain, gonad, liver, and muscle). Results showed that 21,003, 17, and 1 DEGs were identified in gonad, liver, and muscle tissues, respectively, between females and males in both diploids and tetraploids. Regarding the ploidy levels, 4956, 1496, 2187, and 1726 DEGs were identified in the brain, gonad, liver, and muscle tissues, respectively, between tetraploids and diploids of the same sex. When both sexual and polyploid size dimorphisms were considered simultaneously in the four tissues, only 424 DEGs were found in the gonads, indicating that these gonadal DEGs may play an important regulatory role in regulating sexual and polyploid size dimorphisms. Regardless of the sex or ploidy comparison, the significant DEGs involved in glycolysis/gluconeogenesis and oxidative phosphorylation pathways were upregulated in faster-growing individuals, while steroid hormone biosynthesis-related genes and fatty acid degradation and elongation-related genes were downregulated. This suggests that fast-growing loaches (tetraploids, females) have higher energy metabolism levels and lower steroid hormone synthesis and fatty acid degradation abilities than slow-growing loaches (diploids, males). Our findings provide an archive for future systematic research on fish sexual and polyploid dimorphisms.
Collapse
|
12
|
Difford GF, Díaz-Gil C, Sánchez-Moya A, Aslam ML, Horn SS, Ruyter B, Herlin M, Lopez M, Sonesson AK. Genomic and Phenotypic Agreement Defines the Use of Microwave Dielectric Spectroscopy for Recording Muscle Lipid Content in European Seabass ( Dicentrarchus labrax). Front Genet 2021; 12:671491. [PMID: 34527016 PMCID: PMC8435770 DOI: 10.3389/fgene.2021.671491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Recording the fillet lipid percentage in European seabass is crucial to control lipid deposition as a means toward improving production efficiency and product quality. The reference method for recording lipid content is solvent lipid extraction and is the most accurate and precise method available. However, it is costly, requires sacrificing the fish and grinding the fillet sample which limits the scope of applications, for example grading of fillets, recording live fish or selective breeding of fish with own phenotypes are all limited. We tested a rapid, cost effective and non-destructive handheld microwave dielectric spectrometer (namely the Distell fat meter) against the reference method by recording both methods on 313 European seabass (Dicentrarchus labrax). The total method agreement between the dielectric spectrometer and the reference method was assessed by Lin’s concordance correlation coefficient (CCC), which was low to moderate CCC = 0.36–0.63. We detected a significant underestimation in accuracy of lipid percentage 22–26% by the dielectric spectrometer and increased imprecision resulting in the coefficient of variation (CV) doubling for dielectric spectrometer CV = 40.7–46% as compared to the reference method 27–31%. Substantial genetic variation for fillet lipid percentage was found for both the reference method (h2 = 0.59) and dielectric spectroscopy (h2 = 0.38–0.58), demonstrating that selective breeding is a promising method for controlling fillet lipid content. Importantly, the genetic correlation (rg) between the dielectric spectrometer and the reference method was positive and close to unity (rg = 0.96), demonstrating the dielectric spectrometer captures practically all the genetic variation in the reference method. These findings form the basis of defining the scope of applications and experimental design for using dielectric spectroscopy for recording fillet lipid content in European seabass and validate its use for selective breeding.
Collapse
Affiliation(s)
| | | | - Albert Sánchez-Moya
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|