1
|
Sousa LPB, Pinto LFB, Cruz VAR, Oliveira GA, Rojas de Oliveira H, Chud TS, Pedrosa VB, Miglior F, Schenkel FS, Brito LF. Genome-wide association and functional genomic analyses for various hoof health traits in North American Holstein cattle. J Dairy Sci 2024; 107:2207-2230. [PMID: 37939841 DOI: 10.3168/jds.2023-23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Hoof diseases are a major welfare and economic issue in the global dairy cattle production industry, which can be minimized through improved management and breeding practices. Optimal genetic improvement of hoof health could benefit from a deep understanding of the genetic background and biological underpinning of indicators of hoof health. Therefore, the primary objectives of this study were to perform genome-wide association studies, using imputed high-density genetic markers data from North American Holstein cattle, for 8 hoof-related traits: digital dermatitis, sole ulcer, sole hemorrhage, white line lesion, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, and toe ulcer, and a hoof health index. De-regressed estimated breeding values from 25,580 Holstein animals were used as pseudo-phenotypes for the association analyses. The genomic quality control, genotype phasing, and genotype imputation were performed using the PLINK (version 1.9), Eagle (version 2.4.1), and Minimac4 software, respectively. The functional genomic analyses were performed using the GALLO R package and the DAVID platform. We identified 22, 34, 14, 22, 28, 33, 24, 43, and 15 significant markers for digital dermatitis, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, sole hemorrhage, sole ulcer, toe ulcer, white line lesion disease, and the hoof health index, respectively. The significant markers were located across all autosomes, except BTA10, BTA12, BTA20, BTA26, BTA27, and BTA28. Moreover, the genomic regions identified overlap with various previously reported quantitative trait loci for exterior, health, meat and carcass, milk, production, and reproduction traits. The enrichment analyses identified 44 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously associated with bone development, metabolism, and infectious and immunological diseases. These findings indicate that hoof health traits are highly polygenic and influenced by a wide range of biological processes.
Collapse
Affiliation(s)
- Luis Paulo B Sousa
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Luis Fernando B Pinto
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Valdecy A R Cruz
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Tatiane S Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; PEAK, Madison, WI 53718
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Lactanet Canada, Guelph, ON, N1K 1E5, Canada
| | - Flávio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
2
|
Li B, Barden M, Kapsona V, Sánchez-Molano E, Anagnostopoulos A, Griffiths BE, Bedford C, Dai X, Coffey M, Psifidi A, Oikonomou G, Banos G. Single-step genome-wide association analyses of claw horn lesions in Holstein cattle using linear and threshold models. Genet Sel Evol 2023; 55:16. [PMID: 36899300 PMCID: PMC9999328 DOI: 10.1186/s12711-023-00784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/08/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Lameness in dairy cattle is primarily caused by foot lesions including the claw horn lesions (CHL) of sole haemorrhage (SH), sole ulcers (SU), and white line disease (WL). This study investigated the genetic architecture of the three CHL based on detailed animal phenotypes of CHL susceptibility and severity. Estimation of genetic parameters and breeding values, single-step genome-wide association analyses, and functional enrichment analyses were performed. RESULTS The studied traits were under genetic control with a low to moderate heritability. Heritability estimates of SH and SU susceptibility on the liability scale were 0.29 and 0.35, respectively. Heritability of SH and SU severity were 0.12 and 0.07, respectively. Heritability of WL was relatively lower, indicating stronger environmental influence on the presence and development of WL than the other two CHL. Genetic correlations between SH and SU were high (0.98 for lesion susceptibility and 0.59 for lesion severity), whereas genetic correlations of SH and SU with WL also tended to be positive. Candidate quantitative trait loci (QTL) were identified for all CHL, including some on Bos taurus chromosome (BTA) 3 and 18 with potential pleiotropic effects associated with multiple foot lesion traits. A genomic window of 0.65 Mb on BTA3 explained 0.41, 0.50, 0.38, and 0.49% of the genetic variance for SH susceptibility, SH severity, WL susceptibility, and WL severity, respectively. Another window on BTA18 explained 0.66, 0.41, and 0.70% of the genetic variance for SH susceptibility, SU susceptibility, and SU severity, respectively. The candidate genomic regions associated with CHL harbour annotated genes that are linked to immune system function and inflammation responses, lipid metabolism, calcium ion activities, and neuronal excitability. CONCLUSIONS The studied CHL are complex traits with a polygenic mode of inheritance. Most traits exhibited genetic variation suggesting that animal resistance to CHL can be improved with breeding. The CHL traits were positively correlated, which will facilitate genetic improvement for resistance to CHL as a whole. Candidate genomic regions associated with lesion susceptibility and severity of SH, SU, and WL provide insights into a global profile of the genetic background underlying CHL and inform genetic improvement programmes aiming at enhancing foot health in dairy cattle.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Animal and Veterinary Sciences, The Roslin Institute Building, Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK.
| | - Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Vanessa Kapsona
- Department of Animal and Veterinary Sciences, The Roslin Institute Building, Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK
| | - Enrique Sánchez-Molano
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Alkiviadis Anagnostopoulos
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Bethany Eloise Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Cherril Bedford
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Xiaoxia Dai
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Mike Coffey
- Department of Animal and Veterinary Sciences, The Roslin Institute Building, Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Georgios Banos
- Department of Animal and Veterinary Sciences, The Roslin Institute Building, Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
3
|
Barden M, Anagnostopoulos A, Griffiths BE, Li B, Bedford C, Watson C, Psifidi A, Banos G, Oikonomou G. Genetic parameters of sole lesion recovery in Holstein cows. J Dairy Sci 2023; 106:1874-1888. [PMID: 36710182 PMCID: PMC9947741 DOI: 10.3168/jds.2022-22064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 01/29/2023]
Abstract
Sole hemorrhage and sole ulcers, referred to as sole lesions, are important causes of lameness in dairy cattle. The objective of this study was to estimate the genetic parameters of a novel trait reflecting how well cows recovered from sole lesions and the genetic correlation of this trait with overall susceptibility to sole lesions. A cohort of Holstein dairy cows was prospectively enrolled on 4 farms and assessed at 4 timepoints: before calving, immediately after calving, in early lactation, and in late lactation. At each timepoint, sole lesions were recorded at the claw level by veterinary surgeons and used to define 2 binary traits: (1) susceptibility to sole lesions-whether animals were affected with sole lesions at least once during the study or were unaffected at every assessment, and (2) sole lesion recovery-whether sole lesions healed between early and late lactation. Animals were genotyped and pedigree details extracted from the national database. Analyses were conducted with BLUPF90 software in a single-step framework; genetic parameters were estimated from animal threshold models using Gibbs sampling. The genetic correlation between both traits was approximated as the correlation between genomic estimated breeding values, adjusting for their reliabilities. A total of 2,025 animals were used to estimate the genetic parameters of sole lesion susceptibility; 44% of animals recorded a sole lesion at least once during the study period. The heritability of sole lesion susceptibility, on the liability scale, was 0.25 (95% highest density interval = 0.16-0.34). A total of 498 animals were used to estimate the genetic parameters of sole lesion recovery; 71% of animals had recovered between the early and late lactation assessments. The heritability of sole lesion recovery, on the liability scale, was 0.27 (95% highest density interval = 0.02-0.52). The approximate genetic correlation between each trait was -0.11 (95% confidence interval = -0.20 to -0.02). Our results indicate that recovery from sole lesions is heritable. If this finding is corroborated in further studies, it may be possible to use selective breeding to reduce the frequency of chronically lame cows. As sole lesion recovery appears to be weakly genetically related to sole lesion susceptibility, successful genetic improvement of sole lesion recovery would benefit from selection on this trait directly.
Collapse
Affiliation(s)
- Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Alkiviadis Anagnostopoulos
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Bethany E. Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Bingjie Li
- Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Cherry Bedford
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Chris Watson
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, United Kingdom
| | - Georgios Banos
- Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom.
| |
Collapse
|
4
|
Mészárosová M, Mészáros G, Moravčíková N, Pavlík I, Margetín M, Kasarda R. Within- and between-Breed Selection Signatures in the Original and Improved Valachian Sheep. Animals (Basel) 2022; 12:ani12111346. [PMID: 35681809 PMCID: PMC9179888 DOI: 10.3390/ani12111346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study explored the genomic diversity and selection signatures in two Slovakian national breeds, the Original Valachian and the Improved Valachian sheep. As they are an important animal genetic resource within the country, but with decreasing population size, our aim is to identify potentially valuable genomic regions. A total of 97 sheep (18 male and 79 female) from the Original Valachian, and 69 sheep (25 male and 44 female) from the Improved Valachian populations were genotyped using the GeneSeek GGP Ovine 50 K chip. The inbreeding levels were assessed with runs of homozygosity (ROH). The selection signatures within breeds were identified based on the top 1% of most homozygous regions within the breed, the so-called ROH islands. The selection signatures between breeds were assessed based on variance in linkage disequilibrium. Overall, we have identified selection signatures with quantitative trait loci (QTL) and genes pointing towards all three production purposes of the Valachian sheep, milk, meat, and wool, including their quality characteristics. Another group with apparent large importance was the various traits related to health and resistance to parasites, which is well in line with the sturdy nature of this breed.
Collapse
Affiliation(s)
- Mária Mészárosová
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
| | - Gábor Mészáros
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria;
| | - Nina Moravčíková
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
- Correspondence:
| | - Ivan Pavlík
- Research Institute of Animal Production—NPPC Slovakia, Hlohovecká 2, 95141 Nitra—Lužianky, Slovakia;
| | - Milan Margetín
- Faculty of Agrobiology and Food Resources, Institute of Animal Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Radovan Kasarda
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
| |
Collapse
|
5
|
Watson C, Barden M, Griffiths BE, Anagnostopoulos A, Higgins HM, Bedford C, Carter S, Psifidi A, Banos G, Oikonomou G. Prospective cohort study of the association between early lactation mastitis and the presence of sole ulcers in dairy cows. Vet Rec 2022; 190:e1387. [PMID: 35122435 DOI: 10.1002/vetr.1387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND The objective of this study was to investigate the association between (sub)clinical mastitis (CM) in the first 30 days in milk (DIM) and the presence of sole ulcers (SU) later in lactation. METHODS Holstein cows and heifers were examined for presence of sole haemorrhage and SU before calving, in the first 14 days postcalving and in early lactation (after 30 DIM). CM episodes and somatic cell counts (SCC) measurements were obtained from farm records. Multivariable logistic regression was used for data analysis. RESULTS Odds of SU in early lactation were 2.44 times greater (95% confidence interval [CI] 0.97-5.54) in cows that had CM in the first 30 DIM compared to cows that did not have CM in the first 30 DIM. When cows that had SU precalving or at the calving check were excluded from the dataset, an association of CM in the first 30 DIM with later presence of SU was no longer statistically significant but the same numeric trend still existed (odds ratio [OR] 2.25, 95% CI 0.81-5.34). The odds of SU in early lactation were 1.70 times greater in cows that had high SCC compared to cows that did not have high SCC in the first 100 DIM (95% CI 1.13-2.55). CONCLUSION An association was found between CM in the first 30 DIM and presence of SU in early lactation (after 30 DIM). Elucidating the mechanism behind this relationship could improve our understanding of the aetiopathogenesis of both diseases and lead to new preventive strategies.
Collapse
Affiliation(s)
- Christopher Watson
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, UK
| | - Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, UK
| | - Bethany E Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, UK
| | - Alkiviadis Anagnostopoulos
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, UK
| | - Helen M Higgins
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, UK
| | - Cherrill Bedford
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, UK
| | - Stuart Carter
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, UK
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Georgios Banos
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, UK
| |
Collapse
|
6
|
Lai E, Danner AL, Famula TR, Oberbauer AM. Pleiotropic Loci Associated With Foot Disorders and Common Periparturient Diseases in Holstein Cattle. Front Genet 2021; 12:742934. [PMID: 34938311 PMCID: PMC8685441 DOI: 10.3389/fgene.2021.742934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lameness is an animal welfare issue that incurs substantial financial and environmental costs. This condition is commonly caused by digital dermatitis (DD), sole ulcers (SU), and white line disease (WLD). Susceptibility to these three foot disorders is due in part to genetics, indicating that genomic selection against these foot lesions can be used to reduce lameness prevalence. It is unclear whether selection against foot lesions will lead to increased susceptibility to other common diseases such as mastitis and metritis. Thus, the aim of this study was to determine the genetic correlation between causes of lameness and other common health disorders to identify loci contributing to the correlation. Genetic correlation estimates between SU and DD and between SU and WLD were significantly different from zero (p < 0.05), whereas estimates between DD and mastitis, DD and milk fever, and SU and metritis were suggestive (p < 0.1). All five of these genetic correlation estimates were positive. Two-trait genome-wide association studies (GWAS) for each of these five pairs of traits revealed common regions of association on BTA1 and BTA8 for pairs that included DD or SU as one of the traits, respectively. Other regions of association were unique to the pair of traits and not observed in GWAS for other pairs of traits. The positive genetic correlation estimates between foot disorders and other health disorders imply that selection against foot disorders may also decrease susceptibility to other health disorders. Linkage disequilibrium blocks defined around significant and suggestive SNPs from the two-trait GWAS included genes and QTL that were functionally relevant, supporting that these regions included pleiotropic loci.
Collapse
Affiliation(s)
| | | | | | - Anita M. Oberbauer
- Animal Science Department, University of California, Davis, Davis, CA, United States
| |
Collapse
|