1
|
Bates HJ, Pike J, Price RJ, Jenkins S, Connell J, Legg A, Armitage A, Harrison RJ, Clarkson JP. Comparative genomics and transcriptomics reveal differences in effector complement and expression between races of Fusarium oxysporum f.sp. lactucae. FRONTIERS IN PLANT SCIENCE 2024; 15:1415534. [PMID: 39450076 PMCID: PMC11499160 DOI: 10.3389/fpls.2024.1415534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
This study presents the first genome and transcriptome analyses for Fusarium oxysporum f. sp. lactucae (Fola) which causes Fusarium wilt disease of lettuce. Long-read genome sequencing of three race 1 (Fola1) and three race 4 (Fola4) isolates revealed key differences in putative effector complement between races and with other F. oxysporum ff. spp. following mimp-based bioinformatic analyses. Notably, homologues of Secreted in Xylem (SIX) genes, also present in many other F. oxysporum ff. spp, were identified in Fola, with both SIX9 and SIX14 (multiple copies with sequence variants) present in both Fola1 and Fola4. All Fola4 isolates also contained an additional single copy of SIX8. RNAseq of lettuce following infection with Fola1 and Fola4 isolates identified highly expressed effectors, some of which were homologues of those reported in other F. oxysporum ff. spp. including several in F. oxysporum f. sp. apii. Although SIX8, SIX9 and SIX14 were all highly expressed in Fola4, of the two SIX genes present in Fola1, only SIX9 was expressed as further analysis revealed that SIX14 gene copies were disrupted by insertion of a transposable element. Two variants of Fola4 were also identified based on different genome and effector-based analyses. This included two different SIX8 sequence variants which were divergently transcribed from a shared promoter with either PSE1 or PSL1 respectively. In addition, there was evidence of two independent instances of HCT in the different Fola4 variants. The involvement of helitrons in Fola genome rearrangement and gene expression is discussed.
Collapse
Affiliation(s)
| | - Jamie Pike
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | - Sascha Jenkins
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | - Andrew Legg
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | | | - John P. Clarkson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| |
Collapse
|
2
|
Gyawali N, Hao Y, Lin G, Huang J, Bika R, Daza L, Zheng H, Cruppe G, Caragea D, Cook D, Valent B, Liu S. Using recurrent neural networks to detect supernumerary chromosomes in fungal strains causing blast diseases. NAR Genom Bioinform 2024; 6:lqae108. [PMID: 39165675 PMCID: PMC11333962 DOI: 10.1093/nargab/lqae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
The genomes of the fungus Magnaporthe oryzae that causes blast diseases on diverse grass species, including major crops, have indispensable core-chromosomes and may contain supernumerary chromosomes, also known as mini-chromosomes. These mini-chromosomes are speculated to provide effector gene mobility, and may transfer between strains. To understand the biology of mini-chromosomes, it is valuable to be able to detect whether a M. oryzae strain possesses a mini-chromosome. Here, we applied recurrent neural network models for classifying DNA sequences as arising from core- or mini-chromosomes. The models were trained with sequences from available core- and mini-chromosome assemblies, and then used to predict the presence of mini-chromosomes in a global collection of M. oryzae isolates using short-read DNA sequences. The model predicted that mini-chromosomes were prevalent in M. oryzae isolates. Interestingly, at least one mini-chromosome was present in all recent wheat isolates, but no mini-chromosomes were found in early isolates collected before 1991, indicating a preferential selection for strains carrying mini-chromosomes in recent years. The model was also used to identify assembled contigs derived from mini-chromosomes. In summary, our study has developed a reliable method for categorizing DNA sequences and showcases an application of recurrent neural networks in predictive genomics.
Collapse
Affiliation(s)
- Nikesh Gyawali
- Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA
| | - Yangfan Hao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Jun Huang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ravi Bika
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Lidia Calderon Daza
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Huakun Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Giovana Cruppe
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Doina Caragea
- Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
3
|
Li B. Telomere maintenance in African trypanosomes. Front Mol Biosci 2023; 10:1302557. [PMID: 38074093 PMCID: PMC10704157 DOI: 10.3389/fmolb.2023.1302557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Telomere maintenance is essential for genome integrity and chromosome stability in eukaryotic cells harboring linear chromosomes, as telomere forms a specialized structure to mask the natural chromosome ends from DNA damage repair machineries and to prevent nucleolytic degradation of the telomeric DNA. In Trypanosoma brucei and several other microbial pathogens, virulence genes involved in antigenic variation, a key pathogenesis mechanism essential for host immune evasion and long-term infections, are located at subtelomeres, and expression and switching of these major surface antigens are regulated by telomere proteins and the telomere structure. Therefore, understanding telomere maintenance mechanisms and how these pathogens achieve a balance between stability and plasticity at telomere/subtelomere will help develop better means to eradicate human diseases caused by these pathogens. Telomere replication faces several challenges, and the "end replication problem" is a key obstacle that can cause progressive telomere shortening in proliferating cells. To overcome this challenge, most eukaryotes use telomerase to extend the G-rich telomere strand. In addition, a number of telomere proteins use sophisticated mechanisms to coordinate the telomerase-mediated de novo telomere G-strand synthesis and the telomere C-strand fill-in, which has been extensively studied in mammalian cells. However, we recently discovered that trypanosomes lack many telomere proteins identified in its mammalian host that are critical for telomere end processing. Rather, T. brucei uses a unique DNA polymerase, PolIE that belongs to the DNA polymerase A family (E. coli DNA PolI family), to coordinate the telomere G- and C-strand syntheses. In this review, I will first briefly summarize current understanding of telomere end processing in mammals. Subsequently, I will describe PolIE-mediated coordination of telomere G- and C-strand synthesis in T. brucei and implication of this recent discovery.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Ichida H, Murata H, Hatakeyama S, Yamada A, Ohta A. Near-complete de novo assembly of Tricholoma bakamatsutake chromosomes revealed the structural divergence and differentiation of Tricholoma genomes. G3 (BETHESDA, MD.) 2023; 13:jkad198. [PMID: 37659058 PMCID: PMC10627285 DOI: 10.1093/g3journal/jkad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Tricholoma bakamatsutake, which is an edible ectomycorrhizal fungus associated with Fagaceae trees, may have diverged before the other species in Tricholoma section Caligata. We generated a highly contiguous whole-genome sequence for T. bakamatsutake SF-Tf05 isolated in an Oak (Quercus salicina) forest in Japan. The assembly of high-fidelity long reads, with a median read length of 12.3 kb, resulted in 13 chromosome-sized contigs comprising 142,068,211 bases with an average guanine and cytosine (GC) content of 43.94%. The 13 chromosomes were predicted to encode 11,060 genes. A contig (122,566 bases) presumably containing the whole circular mitochondrial genome was also recovered. The chromosome-wide comparison of T. bakamatsutake and Tricholoma matsutake (TMA_r1.0) indicated that the basic number of chromosomes (13) was conserved, but the structures of the corresponding chromosomes diverged, with multiple inversions and translocations. Gene conservation and cluster analyses revealed at least 3 phylogenetic clades in Tricholoma section Caligata. Specifically, all T. bakamatsutake strains belonged to the "bakamatsutake" clade, which is most proximal to the "caligatum" clade consisting of Tricholoma caligatum and Tricholoma fulvocastaneum. The constructed highly contiguous nearly telomere-to-telomere genome sequence of a T. bakamatsutake isolate will serve as a fundamental resource for future research on the evolution and differentiation of Tricholoma species.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- Ion Beam Breeding Group, RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
| | - Hitoshi Murata
- Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Tsukuba, Ibaraki 305-8687, Japan
| | - Shin Hatakeyama
- Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Akiyoshi Yamada
- Faculty of Agriculture, Shinshu University, Minami-minowa, Nagano 399-4598, Japan
| | - Akira Ohta
- Kansai Research Center, FFPRI, Kyoto, Kyoto 612-0855, Japan
| |
Collapse
|
5
|
Coelho MA, Ianiri G, David-Palma M, Theelen B, Goyal R, Narayanan A, Lorch JM, Sanyal K, Boekhout T, Heitman J. Frequent transitions in mating-type locus chromosomal organization in Malassezia and early steps in sexual reproduction. Proc Natl Acad Sci U S A 2023; 120:e2305094120. [PMID: 37523560 PMCID: PMC10410736 DOI: 10.1073/pnas.2305094120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Fungi in the basidiomycete genus Malassezia are the most prevalent eukaryotic microbes resident on the skin of human and other warm-blooded animals and have been implicated in skin diseases and systemic disorders. Analysis of Malassezia genomes revealed that key adaptations to the skin microenvironment have a direct genomic basis, and the identification of mating/meiotic genes suggests a capacity to reproduce sexually, even though no sexual cycle has yet been observed. In contrast to other bipolar or tetrapolar basidiomycetes that have either two linked mating-type-determining (MAT) loci or two MAT loci on separate chromosomes, in Malassezia species studied thus far the two MAT loci are arranged in a pseudobipolar configuration (linked on the same chromosome but capable of recombining). By generating additional chromosome-level genome assemblies, and an improved Malassezia phylogeny, we infer that the pseudobipolar arrangement was the ancestral state of this group and revealed six independent transitions to tetrapolarity, seemingly driven by centromere fission or translocations in centromere-flanking regions. Additionally, in an approach to uncover a sexual cycle, Malassezia furfur strains were engineered to express different MAT alleles in the same cell. The resulting strains produce hyphae reminiscent of early steps in sexual development and display upregulation of genes associated with sexual development as well as others encoding lipases and a protease potentially relevant for pathogenesis of the fungus. Our study reveals a previously unseen genomic relocation of mating-type loci in fungi and provides insight toward the identification of a sexual cycle in Malassezia, with possible implications for pathogenicity.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso86100, Italy
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht3584 CT, The Netherlands
| | - Rohit Goyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru560064, India
| | - Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru560064, India
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI53711
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru560064, India
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht3584 CT, The Netherlands
- College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
6
|
Coelho MA, Ianiri G, David-Palma M, Theelen B, Goyal R, Narayanan A, Lorch JM, Sanyal K, Boekhout T, Heitman J. Frequent transitions in mating-type locus chromosomal organization in Malassezia and early steps in sexual reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534224. [PMID: 36993584 PMCID: PMC10055393 DOI: 10.1101/2023.03.25.534224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fungi in the basidiomycete genus Malassezia are the most prevalent eukaryotic microbes resident on the skin of human and other warm-blooded animals and have been implicated in skin diseases and systemic disorders. Analysis of Malassezia genomes revealed that key adaptations to the skin microenvironment have a direct genomic basis, and the identification of mating/meiotic genes suggests a capacity to reproduce sexually, even though no sexual cycle has yet been observed. In contrast to other bipolar or tetrapolar basidiomycetes that have either two linked mating-type-determining ( MAT ) loci or two MAT loci on separate chromosomes, in Malassezia species studied thus far the two MAT loci are arranged in a pseudobipolar configuration (linked on the same chromosome but capable of recombining). By incorporating newly generated chromosome-level genome assemblies, and an improved Malassezia phylogeny, we infer that the pseudobipolar arrangement was the ancestral state of this group and revealed six independent transitions to tetrapolarity, seemingly driven by centromere fission or translocations in centromere- flanking regions. Additionally, in an approach to uncover a sexual cycle, Malassezia furfur strains were engineered to express different MAT alleles in the same cell. The resulting strains produce hyphae reminiscent of early steps in sexual development and display upregulation of genes associated with sexual development as well as others encoding lipases and a protease potentially relevant for pathogenesis of the fungus. Our study reveals a previously unseen genomic relocation of mating-type loci in fungi and provides insight towards the discovery of a sexual cycle in Malassezia , with possible implications for pathogenicity. Significance Statement Malassezia , the dominant fungal group of the mammalian skin microbiome, is associated with numerous skin disorders. Sexual development and yeast-to-hyphae transitions, governed by genes at two mating-type ( MAT ) loci, are thought to be important for fungal pathogenicity. However, Malassezia sexual reproduction has never been observed. Here, we used chromosome-level assemblies and comparative genomics to uncover unforeseen transitions in MAT loci organization within Malassezia , possibly related with fragility of centromeric-associated regions. Additionally, by expressing different MAT alleles in the same cell, we show that Malassezia can undergo hyphal development and this phenotype is associated with increased expression of key mating genes along with other genes known to be virulence factors, providing a possible connection between hyphal development, sexual reproduction, and pathogenicity.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso 86100, Italy
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
| | - Rohit Goyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Hybrid de novo genome assembly and comparative genomics of three different isolates of Gnomoniopsis castaneae. Sci Rep 2023; 13:3356. [PMID: 36849528 PMCID: PMC9971261 DOI: 10.1038/s41598-023-30496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
The first genome assemblies of Gnomoniopsis castaneae (syn. G. smithogilvyi), the causal agent of chestnut brown rot of kernels, shoot blight and cankers, are provided here. Specifically, the complete genome of the Italian ex-type MUT401 isolate was compared to the draft genome of a second Italian isolate (GN01) and to the ICMP 14040 isolate from New Zealand. The three genome sequences were obtained through a hybrid assembly using both short Illumina reads and long Nanopore reads, their coding sequences were annotated and compared with each other and with other Diaporthales. The information offered by the genome assembly of the three isolates represents the base of data for further application related to -omics strategies of the fungus and to develop markers for population studies at a local and global scale.
Collapse
|
9
|
Characterization of Host-Specific Genes from Pine- and Grass-Associated Species of the Fusarium fujikuroi Species Complex. Pathogens 2022; 11:pathogens11080858. [PMID: 36014979 PMCID: PMC9415769 DOI: 10.3390/pathogens11080858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Fusarium fujikuroi species complex (FFSC) includes socioeconomically important pathogens that cause disease for numerous crops and synthesize a variety of secondary metabolites that can contaminate feedstocks and food. Here, we used comparative genomics to elucidate processes underlying the ability of pine-associated and grass-associated FFSC species to colonize tissues of their respective plant hosts. We characterized the identity, possible functions, evolutionary origins, and chromosomal positions of the host-range-associated genes encoded by the two groups of fungi. The 72 and 47 genes identified as unique to the respective genome groups were potentially involved in diverse processes, ranging from transcription, regulation, and substrate transport through to virulence/pathogenicity. Most genes arose early during the evolution of Fusarium/FFSC and were only subsequently retained in some lineages, while some had origins outside Fusarium. Although differences in the densities of these genes were especially noticeable on the conditionally dispensable chromosome of F. temperatum (representing the grass-associates) and F. circinatum (representing the pine-associates), the host-range-associated genes tended to be located towards the subtelomeric regions of chromosomes. Taken together, these results demonstrate that multiple mechanisms drive the emergence of genes in the grass- and pine-associated FFSC taxa examined. It also highlighted the diversity of the molecular processes potentially underlying niche-specificity in these and other Fusarium species.
Collapse
|
10
|
Peng L, Liu CF, Wu H, Jin H, Deng XY, Zeng LT, Xiao Y, Deng C, Yang ZK. Complete Genome Sequencing and Comparative Analysis of the Clinically-Derived Apiotrichum mycotoxinivorans Strain GMU1709. Front Cell Infect Microbiol 2022; 12:834015. [PMID: 35186802 PMCID: PMC8855340 DOI: 10.3389/fcimb.2022.834015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, Apiotrichum mycotoxinivorans has been recognized globally as a source of opportunistic infections. It is a yeast-like fungus, and its association as an uncommon pulmonary pathogen with cystic fibrosis patients has been previously reported. Immunocompromised patients are at the highest risk of A. mycotoxinivorans infections. Therefore, to investigate the genetic basis for the pathogenicity of A. mycotoxinivorans, we performed whole-genome sequencing and comparative genomic analysis of A. mycotoxinivorans GMU1709 that was isolated from sputum specimens of a pneumonia patient receiving cardiac repair surgery. The assembly of Oxford Nanopore reads from the GMU1709 strain and its subsequent correction using Illumina paired-end reads yielded a high-quality complete genome with a genome size of 30.5 Mb in length, which comprised six chromosomes and one mitochondrion. Subsequently, 8,066 protein-coding genes were predicted based on multiple pieces of evidence, including transcriptomes. Phylogenomic analysis indicated that A. mycotoxinivorans exhibited the closest evolutionary affinity to A. veenhuisii, and both the A. mycotoxinivorans strains and the formerly Trichosporon cutaneum ACCC 20271 strain occupied the same phylogenetic position. Further comparative analysis supported that the ACCC 20271 strain belonged to A. mycotoxinivorans. Comparisons of three A. mycotoxinivorans strains indicated that the differences between clinical and non-clinical strains in pathogenicity and drug resistance may be little or none. Based on the comparisons with strains of other species in the Trichosporonaceae family, we identified potential key genetic factors associated with A. mycotoxinivorans infection or pathogenicity. In addition, we also deduced that A. mycotoxinivorans had great potential to inactivate some antibiotics (e.g., tetracycline), which may affect the efficacy of these drugs in co-infection. In general, our analyses provide a better understanding of the classification and phylogeny of the Trichosporonaceae family, uncover the underlying genetic basis of A. mycotoxinivorans infections and associated drug resistance, and provide clues into potential targets for further research and the therapeutic intervention of infections.
Collapse
Affiliation(s)
- Liang Peng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chen-Fei Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong Wu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai Jin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yan Deng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Li-Ting Zeng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Xiao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Kai Yang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Zhi-Kai Yang,
| |
Collapse
|