1
|
Qu W, Huang W, Chen C, Chen J, Zhao L, Jiang Y, Du X, Liu R, Chen Y, Hou K, Xu D, Wu W. AdNAC20 Regulates Lignin and Coumarin Biosynthesis in the Roots of Angelica dahurica var. Formosana. Int J Mol Sci 2024; 25:7998. [PMID: 39063240 PMCID: PMC11276817 DOI: 10.3390/ijms25147998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.Q.); (W.H.); (C.C.); (J.C.); (L.Z.); (Y.J.); (X.D.); (R.L.); (Y.C.); (K.H.); (D.X.)
| |
Collapse
|
2
|
Wang Y, Liao R, Pan H, Wang X, Wan X, Han B, Song C. Comparative metabolic profiling of the mycelium and fermentation broth of Penicillium restrictum from Peucedanum praeruptorum rhizosphere. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13286. [PMID: 38844388 PMCID: PMC11156492 DOI: 10.1111/1758-2229.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Ranran Liao
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Xuejun Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Xiaoting Wan
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Bangxing Han
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| |
Collapse
|
3
|
Meng L, Zhou R, Liang L, Zang X, Lin J, Wang Q, Wang L, Wang W, Li Z, Ren P. 4-Coumarate-CoA ligase (4-CL) enhances flavonoid accumulation, lignin synthesis, and fruiting body formation in Ganoderma lucidum. Gene 2024; 899:148147. [PMID: 38191099 DOI: 10.1016/j.gene.2024.148147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
It is now understood that 4-Coumarate-CoA ligases (4-CL) are pivotal in bridging the phenylpropanoid metabolic pathway and the lignin biosynthesis pathway in plants. However, limited information on 4-CL genes and their functions in fungi is available. In this study, we cloned the 4-CL gene (Gl21040) from Ganoderma lucidum, which spans 2178 bp and consists of 10 exons and 9 introns. We also developed RNA interference and overexpression vectors for Gl21040 to investigate its roles in G. lucidum. Our findings indicated that in the Gl21040 interference transformants, 4-CL enzyme activities decreased by 31 %-57 %, flavonoids contents decreased by 10 %-22 %, lignin contents decreased by 20 %-36 % compared to the wild-type (WT) strain. Conversely, in the Gl21040 overexpression transformants, 4-CL enzyme activity increased by 108 %-143 %, flavonoids contents increased by 8 %-37 %, lignin contents improved by 15 %-17 % compared to the WT strain. Furthermore, primordia formation was delayed by approximately 10 days in the Gl21040-interferenced transformants but occurred 3 days earlier in the Gl21040-overexpressed transformants compared to the WT strain. These results underscored the involvement of the Gl21040 gene in flavonoid synthesis, lignin synthesis, and fruiting body formation in G. lucidum.
Collapse
Affiliation(s)
- Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ruyue Zhou
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lidan Liang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xizhe Zang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jialong Lin
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhuang Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Pengfei Ren
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
4
|
Song C, Zhang Y, Manzoor MA, Wei P, Yi S, Chu S, Tong Z, Song X, Xu T, Wang F, Peng H, Chen C, Han B. A chromosome-scale genome of Peucedanum praeruptorum provide insights into Apioideae evolution and medicinal ingredient biosynthesis. Int J Biol Macromol 2024; 255:128218. [PMID: 37992933 DOI: 10.1016/j.ijbiomac.2023.128218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Peucedanum praeruptorum Dunn, a traditional Chinese medicine rich in coumarin, belongs to the Apiaceae family. A high-quality assembled genome of P. praeruptorum is lacking, which has posed obstacles to functional identification and molecular evolution studies of genes associated with coumarin production. Here, a chromosome-scale reference genome of P. praeruptorum, an important medicinal and aromatic plant, was first sequenced and assembled using Oxford Nanopore Technologies and Hi-C sequencing. The final assembled genome size was 1.83 Gb, with a contig N50 of 11.12 Mb. The entire BUSCO evaluation and second-generation read comparability rates were 96.0 % and 99.31 %, respectively. Furthermore, 99.91 % of the genome was anchored to 11 pseudochromosomes. The comparative genomic study revealed the presence of 18,593 orthogroups, which included 476 species-specific orthogroups and 1211 expanded gene families. Two whole-genome duplication (WGD) events and one whole-genome triplication (WGT) event occurred in P. praeruptorum. In addition to the γ-WGT shared by core eudicots or most eudicots, the first WGD was shared by Apiales, while the most recent WGD was unique to Apiaceae. Our study demonstrated that WGD events that occurred in Apioideae highlighted the important role of tandem duplication in the biosynthesis of coumarins and terpenes in P. praeruptorum. Additionally, the expansion of the cytochrome P450 monooxygenase, O-methyltransferase, ATP-binding cassette (ABC) transporter, and terpene synthase families may be associated with the abundance of coumarins and terpenoids. Moreover, we identified >170 UDP-glucosyltransferase members that may be involved in the glycosylation post-modification of coumarins. Significant gene expansion was observed in the ABCG, ABCB, and ABCC subgroups of the ABC transporter family, potentially facilitating the transmembrane transport of coumarins after bolting. The P. praeruptorum genome provides valuable insights into the machinery of coumarin biosynthesis and enhances our understanding of Apiaceae evolution.
Collapse
Affiliation(s)
- Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Peipei Wei
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Shanyong Yi
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhenzhen Tong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangwen Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Tao Xu
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Fang Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cunwu Chen
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| |
Collapse
|
5
|
Zhang X, Li C, Hao Z, Liu Y. Transcriptome analysis provides insights into coumarin biosynthesis in the medicinal plant Angelica dahurica cv. Yubaizhi. Gene 2023; 888:147757. [PMID: 37661027 DOI: 10.1016/j.gene.2023.147757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Angelica dahurica roots have a long history of use in traditional Chinese medicine due to their high coumarin content. To address the increasing demand for these roots, a synthetic biology approach has been proposed. Nevertheless, our comprehension of coumarin biosynthesis and its regulation remains limited. In this study, we utilized Hiseq2500 sequencing to analyze the transcriptomes of A. dahurica at different growth stages while concurrently quantifying coumarin content. Differentially expressed gene (DEG) analysis was employed to identify key genes involved in coumarin and terpenoid backbone biosynthesis. Weighted gene co-expression network analysis (WGCNA) was applied to identify gene modules strongly associated with coumarin content, elucidating the regulatory relationships between transcription factors (TFs) and pathway genes. Furthermore, KEGG enrichment analysis was used to explore essential pathways governing coumarin biosynthesis, with the identification of hub genes. Our results indicated that total coumarin content was highest in the roots, followed by leaves and stems, across all three developmental stages. Transcriptome analysis identified a total of 92,478 genes, among which 215 and 30 genes were implicated in coumarin and terpenoid backbone biosynthesis, respectively. Within the 73 identified gene modules by WGCNA, three modules-namely aquamarine1 (comprising two OMTs, one CSE, one AACT, one HDS, two PSs, one 2OGO, four UGTs, and seven CYP450s), darkmagenta (containing one UGT and one HDR), and navajowhite2 (consisting of one HCT, three UGTs, one CYP71A25, one OMT, one CSE, one HDS, and one PT)-were strongly associated with imperatorin, oxypeucedanin, and isoimperatorin content, respectively. KEGG enrichment analysis highlighted significant enrichment of cytochrome P450, transporter, and ubiquitin system pathways. Moreover, TF-gene regulatory analysis unveiled the complexity of coumarin biosynthesis, with 17 TF families regulating 17 genes in the aquamarine1 module, 8 TF families regulating 2 genes in the darkmagenta module, and 8 TF families regulating 7 genes in the navajowhite2 module. These comprehensive findings provide valuable insights into coumarin biosynthesis in A. dahurica, facilitating future research and potential applications in traditional Chinese medicine and synthetic biology strategies.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China.
| | - Caixia Li
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, China.
| | - Zhanchao Hao
- Yuzhou Traditional Chinese Medicine Standardization Center, Yuzhou 461600, China.
| | - Yongjiang Liu
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China.
| |
Collapse
|
6
|
Wang Q, Ding L, Wang R, Liang Z. A Review on the Morphology, Cultivation, Identification, Phytochemistry, and Pharmacology of Kitagawia praeruptora (Dunn) Pimenov. Molecules 2023; 28:8153. [PMID: 38138641 PMCID: PMC10745425 DOI: 10.3390/molecules28248153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Kitagawia praeruptora (Dunn) Pimenov, commonly known as Qianhu in China, is a widely used folk Chinese herbal medicine. This article reviews its botanical traits, ethnopharmacology, cultivation techniques, identification, phytochemical compositions, and pharmacological effects. Over 70 coumarin compounds, including simple coumarins, pyranocoumarins, and furanocoumarins, have been isolated within this plant. Additionally, K. praeruptora contains other components such as flavonoids, fatty acids, benzoic acids, and sterols. This information highlights the importance of utilizing active ingredients and excavating pharmacological effects. With its remarkable versatility, K. praeruptora exhibits a wide range of pharmacological effects. It has been found to possess expectorant and bronchodilator properties, cardiovascular protection, antimicrobial and antioxidant activities, anti-tumor effects, and even antidiabetic properties. It is recommended to focus on the development of new drugs that leverage the active ingredients of K. praeruptora and explore its potential for new clinical applications and holistic utilization.
Collapse
Affiliation(s)
| | | | - Ruihong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Q.W.); (L.D.)
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Q.W.); (L.D.)
| |
Collapse
|
7
|
Song C, Zhang Y, Zhang Y, Yi S, Pan H, Liao R, Wang Y, Han B. Genome sequencing-based transcriptomic analysis reveals novel genes in Peucedanum praeruptorum. BMC Genom Data 2023; 24:53. [PMID: 37723451 PMCID: PMC10506206 DOI: 10.1186/s12863-023-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Peucedanum praeruptorum Dunn, a traditional Chinese herbal medicine, contains coumarin and volatile oil components that have clinical application value. However, early bolting often occurs in the medicinal materials of Apiaceae plants. The rhizomes of the medicinal parts are gradually lignified after bolting, resulting in a sharp decrease in the content of coumarins. At present, the link between coumarin biosynthesis and early bolting in P. praeruptorum has not been elucidated. RESULTS Combining the genome sequencing and the previous transcriptome sequencing results, we reanalyzed the differential transcripts of P. praeruptorum before and after bolting. A total of 62,088 new transcripts were identified, of which 31,500 were unknown transcripts. Functional classification and annotation showed that many genes were involved in the regulation of transcription, defense response, and carbohydrate metabolic processes. The main domains are the pentatricopeptide repeat, protein kinase, RNA recognition motif, leucine-rich repeat, and ankyrin repeat domains, indicating their pivotal roles in protein modification and signal transduction. Gene structure analysis showed that skipped exon (SE) was the most dominant alternative splicing, followed by the alternative 3' splice site (A3SS) and the alternative 5' splice site (A5SS). Functional enrichment of differentially expressed genes showed that these differentially expressed genes mainly include transmembrane transporters, channel proteins, DNA-binding proteins, polysaccharide-binding proteins, etc. In addition, genes involved in peroxisome, hexose phosphate pathway, phosphatidylinositol signaling system, and inositol phosphate metabolism pathway were greatly enriched. A protein-protein interaction network analysis discoverd 1,457 pairs of proteins that interact with each other. The expression levels of six UbiA genes, three UGT genes, and four OMT genes were higher during the bolting stage. This observation suggests their potential involvement in the catalytic processes of prenylation, glycosylation, and methylation of coumarins, respectively. A total of 100 peroxidase (PRX) genes were identified being involved in lignin polymerization, but only nine PRX genes were highly expressed at the bolting stage. It is worth noting that 73 autophagy-related genes (ATGs) were first identified from the KEGG pathway-enriched genes. Some ATGs, such as BHQH00009837, BHQH00013830, and novel8944, had higher expression levels after bolting. CONCLUSIONS Comparative transcriptome analysis and large-scale genome screening provide guidance and new opinions for the identification of bolting-related genes in P. praeruptorum.
Collapse
Affiliation(s)
- Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Yunpeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Shanyong Yi
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Ranran Liao
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuanyuan Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
8
|
Xie J, Tang X, Xie C, Wang Y, Huang J, Jin J, Liu H, Zhong C, Zhou R, Ren G, Zhang S. Comparative analysis of root anatomical structure, chemical components and differentially expressed genes between early bolting and unbolting in Peucedanum praeruptorum Dunn. Genomics 2023; 115:110557. [PMID: 36610559 DOI: 10.1016/j.ygeno.2023.110557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Early bolting of Peucedanum praeruptorum Dunn severely affects its quality. In this study, we compared with the root structure of P. praeruptorum and its four coumarins content between early bolting (CT) and unbolting (WT) at different growth stages. We found that the proportion of area outside the root cambium (Rs) was higher in the WT plants than in the CT plants and correlated positively with the proximity to the root tip. Furthermore, the content of all four coumarins was also higher in the WT plants relative to the CT plants. In addition, we identified 15,524 differentially expressed genes (DEGs) between the two plant varieties. 11 DEGs are involved in the photoperiod and gibberellin pathways that regulate early bolting and 24 genes involved in coumarins biosynthesis were also identified. Nevertheless, early bolting of P. praeruptorum does affect its quality formation, and further studies are needed to confirm its mechanism.
Collapse
Affiliation(s)
- Jing Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Xueyang Tang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Chufei Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Yongqing Wang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Jian Jin
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Hao Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Can Zhong
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Rongrong Zhou
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Guangxi Ren
- College of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Shuihan Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China.
| |
Collapse
|
9
|
Nie T, Sun X, Wang S, Wang D, Ren Y, Chen Q. Genome-Wide Identification and Expression Analysis of the 4-Coumarate: CoA Ligase Gene Family in Solanum tuberosum. Int J Mol Sci 2023; 24:1642. [PMID: 36675157 PMCID: PMC9866895 DOI: 10.3390/ijms24021642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
4-coumarate: CoA ligase (4CL) is not only involved in the biosynthetic processes of flavonoids and lignin in plants but is also closely related to plant tolerance to abiotic stress. UV irradiation can activate the expression of 4CL genes in plants, and the expression of 4CL genes changed significantly in response to different phytohormone treatments. Although the 4CL gene has been cloned in potatoes, there have been fewer related studies of the 4CL gene family on the potato genome-wide scale. In this study, a total of 10 potato 4CL genes were identified in the potato whole genome. Through multiple sequence alignment, phylogenetic analysis as well as gene structure analysis indicated that the potato 4CL gene family could be divided into two subgroups. Combined with promoter cis-acting element analysis, transcriptome data, and RT-qPCR results indicated that potato 4CL gene family was involved in potato response to white light, UV irradiation, ABA treatment, MeJA treatment, and PEG simulated drought stress. Abiotic stresses such as UV, ABA, MeJA, and PEG could promote the up-regulated expression of St4CL6 and St4CL8 but inhibits the expression of St4CL5. The above results will increase our understanding of the evolution and expression regulation of the potato 4CL gene family and provide reference value for further research on the molecular biological mechanism of 4CL participating in response to diverse environmental signals in potatoes.
Collapse
Affiliation(s)
- Tengkun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinxin Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shenglan Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Dongdong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yamei Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Liu L, Wang X, Chen S, Liu D, Song C, Yi S, Zhu F, Wang W, Wang F, Wang G, Song X, Jia B, Chen C, Peng H, Guo L, Han B. Fungal isolates influence the quality of Peucedanum praeruptorum Dunn. FRONTIERS IN PLANT SCIENCE 2022; 13:1011001. [PMID: 36352875 PMCID: PMC9638934 DOI: 10.3389/fpls.2022.1011001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The symbiotic relationship between beneficial microorganisms and plants plays a vital role in natural and agricultural ecosystems. Although Peucedanum praeruptorum Dunn is widely distributed, its development is greatly limited by early bolting. The reason for early bolting in P. praeruptorum remains poorly characterized. We focus on the plant related microorganisms, including endophytes and rhizosphere microorganisms, by combining the traditional isolation and culture method with metagenomic sequencing technology. We found that the OTUs of endophytes and rhizosphere microorganisms showed a positive correlation in the whole growth stage of P. praeruptorum. Meanwhile, the community diversity of endophytic and rhizosphere fungi showed an opposite change trend, and bacteria showed a similar change trend. Besides, the microbial communities differed during the pre- and post-bolting stages of P. praeruptorum. Beneficial bacterial taxa, such as Pseudomonas and Burkholderia, and fungal taxa, such as Didymella and Fusarium, were abundant in the roots in the pre-bolting stage. Further, a strain belonging to Didymella was obtained by traditional culture and was found to contain praeruptorin A, praeruptorin B, praeruptorin E. In addition, we showed that the fungus could affect its effective components when it was inoculated into P. praeruptorum. This work provided a research reference for the similar biological characteristics of perennial one-time flowering plants, such as Saposhnikovia divaricate, Angelica sinensis and Angelica dahurica.
Collapse
Affiliation(s)
- Li Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Xuejun Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Shaotong Chen
- College of Life Science, South China Agricultural University, Guangzhou, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Shanyong Yi
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Wei Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Fang Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Guanglin Wang
- Analytical and Testing Center, West Anhui University, Lu’an, China
| | - Xiangwen Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Bin Jia
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| |
Collapse
|
11
|
Song C, Li X, Jia B, Liu L, Wei P, Manzoor MA, Wang F, Li BY, Wang G, Chen C, Han B. Comparative Transcriptomics Unveil the Crucial Genes Involved in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn. FRONTIERS IN PLANT SCIENCE 2022; 13:899819. [PMID: 35656010 PMCID: PMC9152428 DOI: 10.3389/fpls.2022.899819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Peucedanum praeruptorum Dunn is a commonly used traditional Chinese medicine that is abundant in furano- and dihydropyrano coumarins. When P. praeruptorum reaches the bolting stage, the roots gradually lignified, and the content of coumarins declines rapidly. Non-bolting has always been a decisive factor for harvesting the P. praeruptorum materials. To evaluate the amount of coumarin components in unbolted and bolted P. praeruptorum, the variations of praeruptorin A, praeruptorin B, praeruptorin E, peucedanocoumarin I, and peucedanocoumarin II were determined. Additionally, 336,505 transcripts were obtained from the comparative transcriptome data. Among them, a total of 1,573 differentially expressed genes were screened out. To identify the critical genes involved in coumarin biosynthesis, comparative transcriptomics coupled with co-expression associated analysis was conducted. Finally, coumarin biosynthesis-related eighteen candidate genes were selected for the validation of qPCR. Additionally, a phylogenetic tree and the expression profile of ATP-binding cassette (ABC) transporters were constructed. To clarify the main genes in the regulation of coumarin biosynthesis, the interaction network of the co-expression genes from thirteen modules was constructed. Current results exhibited the significant increment of praeruptorin A, praeruptorin B and praeruptorin E in the bolted P. praeruptorum. Although, peucedanocoumarin I and peucedanocoumarin II were slightly increased. Besides the content of coumarins, the essential genes involved in the coumarin biosynthesis also exhibited an overall downward trend after bolting. Three peroxidases (PRXs) involved in the production of lignin monomers had been demonstrated to be downregulated. PAL, C4H, HCT, COMT, CCoAOMT, and some ABC transporters were dramatically downregulated at the bolting stage. These results indicated that the downregulation of coumarin biosynthetic genes in the bolted P. praeruptorum ultimately reduced the formation of coumarins. However, the mechanism through which bolting indirectly affects the formation of coumarin still needs extra functional verification.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Xiaoli Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Bin Jia
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Li Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | | | - Fang Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Biqi Yao Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Guanglin Wang
- Analytical and Testing Center, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| |
Collapse
|