1
|
Korinek M, Candelas Serra M, Abdel Rahman F, Dobrovolski M, Kuchtiak V, Abramova V, Fili K, Tomovic E, Hrcka Krausova B, Krusek J, Cerny J, Vyklicky L, Balik A, Smejkalova T. Disease-Associated Variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA Receptor Structure, Function, and Pathophysiology. Physiol Res 2024; 73:S413-S434. [PMID: 38836461 PMCID: PMC11412357 DOI: 10.33549/physiolres.935346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors critical for synaptic transmission and plasticity, and for the development of neural circuits. Rare or de-novo variants in GRIN genes encoding NMDAR subunits have been associated with neurodevelopmental disorders characterized by intellectual disability, developmental delay, autism, schizophrenia, or epilepsy. In recent years, some disease-associated variants in GRIN genes have been characterized using recombinant receptors expressed in non-neuronal cells, and a few variants have also been studied in neuronal preparations or animal models. Here we review the current literature on the functional evaluation of human disease-associated variants in GRIN1, GRIN2A and GRIN2B genes at all levels of analysis. Focusing on the impact of different patient variants at the level of receptor function, we discuss effects on receptor agonist and co-agonist affinity, channel open probability, and receptor cell surface expression. We consider how such receptor-level functional information may be used to classify variants as gain-of-function or loss-of-function, and discuss the limitations of this classification at the synaptic, cellular, or system level. Together this work by many laboratories worldwide yields valuable insights into NMDAR structure and function, and represents significant progress in the effort to understand and treat GRIN disorders. Keywords: NMDA receptor , GRIN genes, Genetic variants, Electrophysiology, Synapse, Animal models.
Collapse
Affiliation(s)
- M Korinek
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhang PP, Benske TM, Ahn LY, Schaffer AE, Paton JC, Paton AW, Mu TW, Wang YJ. Adapting the endoplasmic reticulum proteostasis rescues epilepsy-associated NMDA receptor variants. Acta Pharmacol Sin 2024; 45:282-297. [PMID: 37803141 PMCID: PMC10789767 DOI: 10.1038/s41401-023-01172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023] Open
Abstract
The GRIN genes encoding N-methyl-D-aspartate receptor (NMDAR) subunits are remarkably intolerant to variation. Many pathogenic NMDAR variants result in their protein misfolding, inefficient assembly, reduced surface expression, and impaired function on neuronal membrane, causing neurological disorders including epilepsy and intellectual disability. Here, we investigated the proteostasis maintenance of NMDARs containing epilepsy-associated variations in the GluN2A subunit, including M705V and A727T. In the transfected HEK293T cells, we showed that the two variants were targeted to the proteasome for degradation and had reduced functional surface expression. We demonstrated that the application of BIX, a known small molecule activator of an HSP70 family chaperone BiP (binding immunoglobulin protein) in the endoplasmic reticulum (ER), dose-dependently enhanced the functional surface expression of the M705V and A727T variants in HEK293T cells. Moreover, BIX (10 μM) increased the surface protein levels of the M705V variant in human iPSC-derived neurons. We revealed that BIX promoted folding, inhibited degradation, and enhanced anterograde trafficking of the M705V variant by modest activation of the IRE1 pathway of the unfolded protein response. Our results suggest that adapting the ER proteostasis network restores the folding, trafficking, and function of pathogenic NMDAR variants, representing a potential treatment for neurological disorders resulting from NMDAR dysfunction.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Taylor M Benske
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Myers SJ, Yuan H, Perszyk RE, Zhang J, Kim S, Nocilla KA, Allen JP, Bain JM, Lemke JR, Lal D, Benke TA, Traynelis SF. Classification of missense variants in the N-methyl-d-aspartate receptor GRIN gene family as gain- or loss-of-function. Hum Mol Genet 2023; 32:2857-2871. [PMID: 37369021 PMCID: PMC10508039 DOI: 10.1093/hmg/ddad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.
Collapse
Affiliation(s)
- Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, Köln 50923, Germany
| | - Timothy A Benke
- Department of Pediatrics, Pharmacology and Neurology, University of Colorado School of Medicine, and Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Benske TM, Mu TW, Wang YJ. Protein quality control of N-methyl-D-aspartate receptors. Front Cell Neurosci 2022; 16:907560. [PMID: 35936491 PMCID: PMC9352929 DOI: 10.3389/fncel.2022.907560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated cation channels that mediate excitatory neurotransmission and are critical for synaptic development and plasticity in the mammalian central nervous system (CNS). Functional NMDARs typically form via the heterotetrameric assembly of GluN1 and GluN2 subunits. Variants within GRIN genes are implicated in various neurodevelopmental and neuropsychiatric disorders. Due to the significance of NMDAR subunit composition for regional and developmental signaling at synapses, properly folded receptors must reach the plasma membrane for their function. This review focuses on the protein quality control of NMDARs. Specifically, we review the quality control mechanisms that ensure receptors are correctly folded and assembled within the endoplasmic reticulum (ER) and trafficked to the plasma membrane. Further, we discuss disease-associated variants that have shown disrupted NMDAR surface expression and function. Finally, we discuss potential targeted pharmacological and therapeutic approaches to ameliorate disease phenotypes by enhancing the expression and surface trafficking of subunits harboring disease-associated variants, thereby increasing their incorporation into functional receptors.
Collapse
Affiliation(s)
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
Xu Z, Jiao X, Gong P, Niu Y, Yang Z. Startle-Induced Epileptic Spasms: A Clinical and Video-EEG Study. Front Neurol 2022; 13:878504. [PMID: 35785347 PMCID: PMC9240202 DOI: 10.3389/fneur.2022.878504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study aimed to delineate the detailed characteristics of startle-induced epileptic spasms (ES) and explore the brain regions where startle-induced ES originated.MethodsAmong 581 patients with ES registered in our database, 30 were diagnosed with startle-induced ES according to video-electroencephalogram (EEG) and seizure semiology and were included in this study. Patients' clinical characteristics and ictal high-frequency oscillations (HFOs) were analyzed.ResultsMean age at the onset of startle-induced ES was 28.1 months. Half of the patients had structural etiology, two of whom were diagnosed with co-existing structural and genetic etiologies. The focal neuroimaging abnormalities were predominant in the frontal cortex (9/15, 60.0%). Fifteen patients (50%) had prominent interictal epileptiform discharges in the frontal and anterior temporal. Ictal HFOs counts of the startle-induced ES in the anterior region were significantly higher than those in the posterior regions (p < 0.05). Five patients (16.7%) became seizure-free ≥6 months, and ten (33.3%) showed startle-induced ES cessation ≥6 months. All patients except one had mild to severe psychomotor developmental delay after the onset of seizures.ConclusionPatients with startle-induced ES typically had brain lesions and showed drug-resistant. The neuroimaging and EEG findings, including ictal HFOs, support that startle-induced ES often originates from the frontal cortex.
Collapse
|
6
|
Neurodevelopmental Disorders Associated with PSD-95 and Its Interaction Partners. Int J Mol Sci 2022; 23:ijms23084390. [PMID: 35457207 PMCID: PMC9025546 DOI: 10.3390/ijms23084390] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023] Open
Abstract
The postsynaptic density (PSD) is a massive protein complex, critical for synaptic strength and plasticity in excitatory neurons. Here, the scaffolding protein PSD-95 plays a crucial role as it organizes key PSD components essential for synaptic signaling, development, and survival. Recently, variants in DLG4 encoding PSD-95 were found to cause a neurodevelopmental disorder with a variety of clinical features including intellectual disability, developmental delay, and epilepsy. Genetic variants in several of the interaction partners of PSD-95 are associated with similar phenotypes, suggesting that deficient PSD-95 may affect the interaction partners, explaining the overlapping symptoms. Here, we review the transmembrane interaction partners of PSD-95 and their association with neurodevelopmental disorders. We assess how the structural changes induced by DLG4 missense variants may disrupt or alter such protein-protein interactions, and we argue that the pathological effect of DLG4 variants is, at least partly, exerted indirectly through interaction partners of PSD-95. This review presents a direction for functional studies to elucidate the pathogenic mechanism of deficient PSD-95, providing clues for therapeutic strategies.
Collapse
|
7
|
Benke TA, Park K, Krey I, Camp CR, Song R, Ramsey AJ, Yuan H, Traynelis SF, Lemke J. Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology 2021; 199:108805. [PMID: 34560056 PMCID: PMC8525401 DOI: 10.1016/j.neuropharm.2021.108805] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
Considerable genetic variation of N-methyl-d-aspartate receptors (NMDARs) has recently become apparent, with many hundreds of de novo variants identified through widely available clinical genetic testing. Individuals with GRIN variants present with neurological conditions such as epilepsy, autism, intellectual disability (ID), movement disorders, schizophrenia and behavioral disorders. Determination of the functional consequence of genetic variation for NMDARs should lead to precision therapeutics. Furthermore, genetic animal models harboring human variants have the potential to reveal mechanisms that are shared among different neurological conditions, providing strategies that may allow treatment of individuals who are refractory to therapy. Preclinical studies in animal models and small open label trials in humans support this idea. However, additional functional data for variants and animal models corresponding to multiple individuals with the same genotype are needed to validate this approach and to lead to thoughtfully designed, randomized, placebo-controlled clinical trials, which could provide data in order to determine safety and efficacy of potential precision therapeutics.
Collapse
Affiliation(s)
- Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology, and Otolaryngology, University of Colorado, School of Medicine and Children's Hospital Colorado, United States.
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, United States
| | - Ilona Krey
- Institute of Human Genetics, Leipzig Medical Center, Leipzig, Germany
| | - Chad R Camp
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Rui Song
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Amy J Ramsey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Johannes Lemke
- Institute of Human Genetics, Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|