1
|
He G, Yao H, Duan S, Luo L, Sun Q, Tang R, Chen J, Wang Z, Sun Y, Li X, Hu L, Yun L, Yang J, Yan J, Nie S, Zhu Y, Wang CC, Liu B, Hu L, Liu C, Wang M. Pilot work of the 10K Chinese People Genomic Diversity Project along the Silk Road suggests a complex east-west admixture landscape and biological adaptations. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2748-4. [PMID: 39862346 DOI: 10.1007/s11427-024-2748-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 01/27/2025]
Abstract
Genomic sources from China are underrepresented in the population-specific reference database. We performed whole-genome sequencing or genome-wide genotyping on 1,207 individuals from four linguistically diverse groups (1,081 Sinitic, 56 Mongolic, 40 Turkic, and 30 Tibeto-Burman people) living in North China included in the 10K Chinese People Genomic Diversity Project (10K_CPGDP) to characterize the genetic architecture and adaptative history of ethnic groups in the Silk Road Region of China. We observed a population split between Northwest Chinese minorities (NWCMs) and Han Chinese since the Upper Paleolithic and later Neolithic genetic differentiation within NWCMs. The observed population substructures among ethnically/linguistically diverse NWCMs suggested that differentiated admixture events contributed to the differences in their genomic and phenotypic diversity. We estimated that the Dongxiang, Tibetan, and Yugur people inherited more than 10% of the Western Eurasian ancestry, which is much greater than that of the Salar and Tu people (<7%), while Han neighbors showed less West Eurasian ancestry (∼1%-3%). Male-biased admixture introduced Western Eurasian ancestry in the Dongxiang, Tibetan, and Yugur populations. We found that the eastern-western admixture in NWCMs occurred ∼800-1,100 years ago, coinciding with intensive economic and cultural exchanges during the Tang and Song dynasties. Additionally, we identified the signatures of natural selection associated with cardiovascular system diseases or lipid metabolism and developmental/neurogenetic disorders. Moreover, the EPAS1 gene showed relatively high population branch statistic values in NWCMs. The well-fitted demographical models presented the vast landscape of complex admixture processes of the Silk Road people, and the newly reported functionally important variations suggested the importance of including ethnolinguistically diverse populations in Chinese genetic studies for uncovering the genetic basis of complex traits/diseases.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Hongbing Yao
- Belt and Road Research Center for Forensic Molecular Anthropology, Gansu University of Political Science and Law, Lanzhou, 730000, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637007, China
- Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
- Institution of Genome Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Junbao Yang
- School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637007, China
- Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
- Institution of Genome Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yanfeng Zhu
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Bing Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Lan Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510220, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510220, China.
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| |
Collapse
|
2
|
Wang M, Duan S, Sun Q, Liu K, Liu Y, Wang Z, Li X, Wei L, Liu Y, Nie S, Zhou K, Ma Y, Yuan H, Liu B, Hu L, Liu C, He G. YHSeqY3000 panel captures all founding lineages in the Chinese paternal genomic diversity database. BMC Biol 2025; 23:18. [PMID: 39838386 PMCID: PMC11752814 DOI: 10.1186/s12915-025-02122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications. OBJECTIVES This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort. This panel is intended to provide a new tool for forensic complex pedigree search and paternal biogeographical ancestry inference, as well as explore the general patterns of the fine-scale paternal evolutionary history of ethnolinguistically diverse Chinese populations. RESULTS The sequencing performance of the East Asian-specific Y-chromosomal panel, including 2999-core SNP variants, was found to be robust and reliable. The YHSeqY3000 panel was designed to capture the genetic diversity of Chinese paternal lineages from 3500 years ago, identifying 408 terminal lineages in 2097 individuals across 41 genetically and geographically distinct populations. We identified a fine-scale paternal substructure that was correlating with ancient population migrations and expansions. New evidence was provided for extensive gene flow events between minority ethnic groups and Han Chinese people, based on the integrative Chinese Paternal Genomic Diversity Database. CONCLUSIONS This work successfully integrated Y-chromosome-related basic genomic science with forensic and anthropological translational applications, emphasizing the necessity of comprehensively characterizing Y-chromosome genomic diversity from genomically under-representative populations. This is particularly important in the second phase of our population-specific medical or anthropological genomic cohorts, where dense sampling strategies are employed.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China.
| | - Shuhan Duan
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Qiuxia Sun
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Kaijun Liu
- School of International Tourism and Culture, Guizhou Normal University, Guiyang, 550025, China
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, 610042, Sichuan, China
| | - Yan Liu
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Yunhui Liu
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Kun Zhou
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, 610042, Sichuan, China
| | - Yongxin Ma
- Department of Medical Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huijun Yuan
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Bing Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Lan Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Guanglin He
- Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| |
Collapse
|
3
|
Yang C, Liu C, Lun M, Chen X, Xu Q, Liu X, He M, Ye L, He G, Wang M, Liu C. Dissecting the genetic admixture and forensic signatures of ethnolinguistically diverse Chinese populations via a 114-plex NGS InDel panel. BMC Genomics 2024; 25:1137. [PMID: 39587470 PMCID: PMC11587575 DOI: 10.1186/s12864-024-10894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024] Open
Abstract
Comprehensive characterizations of genetic diversity and demographic models of ethnolinguistically diverse Chinese populations are essential for elucidating their forensic characteristics and evolutionary past. We developed a 114-plex NGS InDel panel to genotype 114 genome-wide markers and investigated the genetic structures of Zhuang, Hui, Miao, Li, Tibetan, Yi, and Mongolian populations, encompassing five language families. This panel demonstrated robust performance, with exceptional potential for forensic individual identification and paternity testing, evidenced by the combined power of discrimination for 77 autosomal InDels (ranged from 1-3.6400 × 10-30 to 1-3.5713 × 10-32) and the combined power of exclusion (ranged from 1-2.1863 × 10-6 to 1-2.1261 × 10-7). The cumulative mean exclusion chance for 32 X-chromosomal InDels varied between 0.99996 and 0.99999 for trios and 0.99760 to 0.99898 for duos. We also analyzed genetic similarities and differences between these populations and 27 global populations, revealing distinct clusters among African, South Asian, East Asian, and European groups, with a close genetic affinity to East Asians. Notably, we identified geography-related genetic substructures: Inner Mongolia Mongolians and Gansu Huis formed a northern branch, Tibetans and Yis from Sichuan constituted a highland branch, and Guangxi Zhuangs exhibited close ties with Hainan Lis and Guangxi Miaos in the southern branch. Additionally, many InDels proved to be ancestry-informative markers for biogeographic ancestry inference. Collectively, these findings underscore the utility of the 114-plex NGS InDel panel as a complementary tool for forensic investigations and as a source of insights into the genetic architecture of ethnolinguistically distinct Chinese populations.
Collapse
Affiliation(s)
- Chengliang Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Changhui Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Miaoqiang Lun
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Chen
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Quyi Xu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Xueyuan Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Meiyun He
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Guanglin He
- Center for Archaeological Science, Sichuan University, Chengdu, China.
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, China.
| | - Mengge Wang
- Center for Archaeological Science, Sichuan University, Chengdu, China.
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, China.
| | - Chao Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou, China.
| |
Collapse
|
4
|
Ni B, Tang L, Zhu L, Li X, Zhang K, Nie H, Ye Z, Wang Y, Zhu L, Kong X, Gou X. Screening of functional genes for hypoxia adaptation in Tibetan pigs by combined genome resequencing and transcriptome analysis. Front Vet Sci 2024; 11:1486258. [PMID: 39497743 PMCID: PMC11532106 DOI: 10.3389/fvets.2024.1486258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The high-altitude, low-oxygen environment of the Qinghai-Tibet Plateau poses significant challenges for the introduction of superior livestock breeds. However, local plateau species have adapted to thrive and reproduce under these harsh conditions. Understanding the molecular mechanisms behind plateau animals' adaptation to low-oxygen environments is essential for breeding livestock suited to high-altitude regions. Tibetan pigs, which have undergone long-term natural selection and artificial breeding, have developed the ability to survive and reproduce in hypoxic environments. In this study, we conducted whole-genome resequencing of 30 Tibetan pigs from high-altitude regions and 30 Diannan small-ear pigs from low-altitude areas, to identify candidate genes that support Tibetan pigs' adaptation to hypoxic conditions through selection signal analysis. Additionally, we performed transcriptome sequencing on five tissues (heart, liver, spleen, lung, and bone marrow) from both Tibetan pigs and Diannan small-ear pigs to identify genes with significant differential expression between the two breeds. We then integrated the genomic and transcriptomic data by examining the expression of candidate genes identified in selection signal analysis across different tissues. The selection signal analysis identified 10 genes-HES4, ANGPT1, HIF3A, SPHK2, PCK2, RCN3, HIGD2A, DNM2, IRF9, and SRF-that were under positive selection in the Tibetan pig population and are associated with hypoxia adaptation. When combined with transcriptome data, we found that five of these genes-HIF3A, RCN3, HIGD2A, PCK2, and IRF9-exhibited differential expression. Through an integrated approach of selection signal and transcriptome analysis, we identified five key functional genes that contribute to the adaptation of Tibetan pigs to hypoxic environments. These findings offer new insights into the adaptability of plateau animals.
Collapse
Affiliation(s)
- Bin Ni
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lin Tang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinpeng Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hongyu Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zeyu Ye
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yiwen Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lijun Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoyan Kong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiao Gou
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
5
|
Chen J, Wang M, Duan S, Yang Q, Liu Y, Zhao M, Sun Q, Li X, Sun Y, Su H, Wang Z, Huang Y, Zhong J, Feng Y, Zhang X, He G, Yan J. Genetic history and biological adaptive landscape of the Tujia people inferred from shared haplotypes and alleles. Hum Genomics 2024; 18:104. [PMID: 39289776 PMCID: PMC11409738 DOI: 10.1186/s40246-024-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND High-quality genomic datasets from under-representative populations are essential for population genetic analysis and medical relevance. Although the Tujia are the most populous ethnic minority in southwestern China, previous genetic studies have been fragmented and only partially reveal their genetic diversity landscape. The understanding of their fine-scale genetic structure and potentially differentiated biological adaptive features remains nascent. OBJECTIVES This study aims to explore the demographic history and genetic architecture related to the natural selection of the Tujia people, focusing on a meta-Tujia population from the central regions of the Yangtze River Basin. RESULTS Population genetic analyses conducted on the meta-Tujia people indicate that they occupy an intermediate position in the East Asian North-South genetic cline. A close genetic affinity was identified between the Tujia people and neighboring Sinitic-speaking populations. Admixture models suggest that the Tujia can be modeled as a mixture of northern and southern ancestries. Estimates of f3/f4 statistics confirmed the presence of ancestral links to ancient Yellow River Basin millet farmers and the BaBanQinCen-related groups. Furthermore, population-specific natural selection signatures were explored, revealing highly differentiated functional variants between the Tujia and southern indigenous populations, including genes associated with hair morphology (e.g., EDAR) and skin pigmentation (e.g., SLC24A5). Additionally, both shared and unique selection signatures were identified among ethnically diverse but geographically adjacent populations, highlighting their extensive admixture and the biological adaptations introduced by this admixture. CONCLUSIONS The study unveils significant population movements and genetic admixture among the Tujia and other ethno-linguistically diverse East Asian groups, elucidating the differentiated adaptation processes across geographically diverse populations from the current genetic landscape.
Collapse
Affiliation(s)
- Jing Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637007, China
- Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Qingxin Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637007, China
- Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Mengyang Zhao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Jie Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Yuhang Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, China.
| |
Collapse
|
6
|
Sun Y, Wang M, Sun Q, Liu Y, Duan S, Wang Z, Zhou Y, Zhong J, Huang Y, Huang X, Yang Q, Li X, Su H, Cai Y, Jiang X, Chen J, Yan J, Nie S, Hu L, Yang J, Tang R, Wang CC, Liu C, Deng X, Yun L, He G. Distinguished biological adaptation architecture aggravated population differentiation of Tibeto-Burman-speaking people. J Genet Genomics 2024; 51:517-530. [PMID: 37827489 DOI: 10.1016/j.jgg.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Tibeto-Burman (TB) people have endeavored to adapt to the hypoxic, cold, and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period. However, the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people, as well as their interaction mechanism, remain unknown. Here, we generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations and present a comprehensive landscape of genetic diversity, admixture history, and differentiated adaptative features of geographically different TB-speaking people. We identify genetic differentiation related to geography and language among TB-speaking people, consistent with their differentiated admixture process with incoming or indigenous ancestral source populations. A robust genetic connection between the Tibetan-Yi corridor and the ancient Yellow River people supports their Northern China origin hypothesis. We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers. Adaptative signatures associated with the physical pigmentation (EDAR and SLC24A5) and metabolism (ALDH9A1) are identified in Loloish people, which differed from the high-altitude adaptative genetic architecture in Tibetan. TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically informed sampling design in biomedical and genomic cohort research.
Collapse
Affiliation(s)
- Yuntao Sun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangzhou Forensic Science Institute, Guangzhou, Guangdong 510055, China.
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yunyu Zhou
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jun Zhong
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China
| | - Xinyu Huang
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Yan Cai
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China; Department of Medical Laboratory, North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Xiucheng Jiang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junbao Yang
- School of Clinical Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Chuan-Chao Wang
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China
| | - Xiaohui Deng
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Libing Yun
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
7
|
Zhong H, Tong Q. An Anthropometric Study of the Morphologic Facial Index of Tibetan Youth in Tibet. J Craniofac Surg 2024; 35:490-494. [PMID: 39445908 PMCID: PMC10880939 DOI: 10.1097/scs.0000000000009766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/12/2023] [Indexed: 10/25/2024] Open
Abstract
The purpose of this study was to understand sex differences and variations in facial indices among Tibetans and to create and evaluate anthropometric data on facial morphology. The study population consisted of 476 native Tibetans (241 males and 235 females) aged 18 to 24 years. The means and SD facial width was 133.53±7.31 mm for males and 133.95±8.10 mm for females; the difference between the sexes was not statistically significant. The means and SD facial height was 107.68±5.76 mm for males and 111.95±14.28 mm for females; the difference between the sexes was statistically significant (u=-8.394, P=0.000). The morphologic facial index was 80.86±5.82 (means±SD) for males and 83.91±11.90 (means±SD) for females; the difference between the sexes was statistically significant (u=-6.581, P=0.000). The proportion of the Tibetan male facial shape was hypereuryprosopic (45.6%) > euryprosopic (31.1%) > mesoprosopic (18.7%) > leptoprosopic (3.3%) > hyperleptoprosopic (1.2%). The proportion of the Tibetan female facial shape was hypereuryprosopic (25.5%) > mesoprosopic (22.6%) > euryprosopic (21.7%) > leptoprosopic (17.4%) > hyperleptoprosopic (12.8%). Facial width was positively correlated with height (male r=0.306, P=0.000; female r=0.144, P=0.027), weight (r=0.470, P=0.000 for males; r=0.337, P=0.000 for females), and BMI (r=0.378, P=0.000 for males; r=0.291, P=0.000 for females). Facial height was positively correlated with height (r=0.329, P=0.000 for males; r=0.137, P=0.035 for females) and weight (r=0.391, P=0.000 for males; r=0.170, P=0.009 for females). Facial height was positively correlated with BMI in Tibetan males (r=0.293, P=0.000), but no significant correlation was found in Tibetan females. The morphologic facial index of Tibetans was positively correlated with age (r=0.183, P=0.004 for males; r=0.171, P=0.009 for females). The results indicated that Tibetan youth in Tibet have a predominantly hypereuryprosopic facial shape and that facial features are related to age, height, and weight. Some common facial morphology features exist among the Tibet Tibetans, northeastern Indians, and Nepalese in the 3 different regions of the Sino-Tibetan language family. The data from this study provide basic information for the study of Tibetans in the fields of physical anthropology, forensic medicine, maxillofacial surgery, and plastic surgery.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Anatomy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghua Tong
- General Hospital of Tibet Military Region, Chinese People’s Liberation Army, Lhasa, China
| |
Collapse
|
8
|
Chen X, Lü H, Liu X, Frachetti MD. Geospatial modelling of farmer-herder interactions maps cultural geography of Bronze and Iron Age Tibet, 3600-2200 BP. Sci Rep 2024; 14:2010. [PMID: 38307897 PMCID: PMC10837149 DOI: 10.1038/s41598-023-50556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 02/04/2024] Open
Abstract
Tibetan cultures reflect deeply rooted, regional interactions and diverse subsistence practices across varied high-altitude environments of the Tibetan Plateau. Yet, it remains unclear how these cultural relationships and social interactions took shape through time and how they were influenced by ecologically oriented behavioral strategies (e.g. mobility) emerging in prehistory. Recent applications of network analysis provide novel tools to quantitatively measure shared forms of material culture, but there have been fewer attempts to couple social network analysis with fine-grained geospatial modelling of prehistoric human mobility in Tibet. In this study, we developed an integrated high-resolution geospatial model and network analysis that simulates and correlates subsistence-based mobility and ceramic-based cultural material connectivity across the Tibetan Plateau. Our analysis suggests that (1) ecologically driven patterns of subsistence-based mobility correspond geographically with Bronze and Iron Ages settlement patterns across the Tibetan Plateau; (2) diverse material interaction networks among communities within western and central Tibet and trans-Himalayan connectivity across the broader Inner Asian Mountain Corridor can be linked to modeled differences in regional networks of subsistence mobility. This research provides ecological and archaeological insights into how subsistence-oriented mobility and interaction may have shaped documented patterns of social and material connectivity among regional Bronze and Iron Age communities of the Tibetan Plateau, prompting a reconsideration of Tibet's long-term cultural geography.
Collapse
Affiliation(s)
- Xinzhou Chen
- Center for Archaeological Sciences, Sichuan University, Chengdu, Sichuan, China.
- SAIE Laboratory, Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongliang Lü
- Center for Archaeological Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Liu
- SAIE Laboratory, Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael D Frachetti
- SAIE Laboratory, Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA.
- School of Cultural Heritage, Northwest University, Xi'an, China.
| |
Collapse
|
9
|
Song B, Fu J, Guo K, Qian J, He T, Yang L, Cheng J, Fu J. A Tibetan group from Ngawa Tibetan and Qiang Autonomous Prefecture, southwest China, is rich in genetic polymorphisms at 36 autosomal STR loci and shares a complex genetic structure with other Chinese populations. Heliyon 2023; 9:e23005. [PMID: 38125507 PMCID: PMC10731225 DOI: 10.1016/j.heliyon.2023.e23005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The Tibetan people are ancient and populous, constituting the seventh-largest of the fifty-five ethnic minority groups in China. The Ngawa Tibetan and Qiang Autonomous Prefecture (NTQAP), situated on the border of northwest and southwest China, has its distinct group relationships. Short tandem repeat (STR) is extremely polymorphic and extensively used in the application of forensic medicine and population genetics. However, it is not clear the genetic information including linkage disequilibrium (LD) by 36 autosomal STR (A-STR) markers in the Tibetan group from NTQAP. The Tibetan population from NTQAP of southwest China was examined for 36 A-STR loci in the research. Every marker across the 36 A-STR loci was consistent with Hardy-Weinberg equilibrium (HWE). The results of the calculation revealed that the total discrimination power (TDP) is 1-2.2552 × 10-42 and the cumulative probability of exclusion (CPE) is 1-1.3031 × 10-16. Subsequently, a total of 345 alleles with allelic frequencies ranging from 0.00382 to 0.55343 were identified, and the allelic numbers varied from 5 in both the TH01 and TPOX markers to 28 in the SE33 locus. The Ngawa Tibetan population, along with other Chinese populations, exhibited influences from historical factors and regional distribution, as indicated by the results of population genetics analysis. We thus first explored the genetic characteristics and correlated forensic parameters of the 36 A-STR markers in NTQAP to fill the gap in the Tibetan population. It was discovered that these 36 autosomal STR markers supplemented forensic STR databases and offered extremely valuable polymorphisms for Chinese forensic applications, such as parentage testing and personal identification. Moreover, the study would contribute additional information regarding the substructure and diversity in the Chinese population.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Kan Guo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ting He
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lisha Yang
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Obstetrics and Center for Prenatal Diagnosis, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
10
|
Li X, Zhang X, Yu T, Ye L, Huang T, Chen Y, Liu S, Wen Y. Whole mitochondrial genome analysis in highland Tibetans: further matrilineal genetic structure exploration. Front Genet 2023; 14:1221388. [PMID: 38034496 PMCID: PMC10682103 DOI: 10.3389/fgene.2023.1221388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: The Qinghai-Tibet Plateau is one of the last terrestrial environments conquered by modern humans. Tibetans are among the few high-altitude settlers in the world, and understanding the genetic profile of Tibetans plays a pivotal role in studies of anthropology, genetics, and archaeology. Methods: In this study, we investigated the maternal genetic landscape of Tibetans based on the whole mitochondrial genome collected from 145 unrelated native Lhasa Tibetans. Molecular diversity indices, haplotype diversity (HD), Tajima's D and Fu's Fs were calculated and the Bayesian Skyline Plot was obtained to determining the genetic profile and population fluctuation of Lhasa Tibetans. To further explore the genetic structure of Lhasa Tibetans, we collected 107 East Asian reference populations to perform principal component analysis (PCA), multidimensional scaling (MDS), calculated Fst values and constructed phylogenetic tree. Results: The maternal genetic landscape of Tibetans showed obvious East Asian characteristics, M9a (28.28%), R (11.03%), F1 (12.41%), D4 (9.66%), N (6.21%), and M62 (4.14%) were the dominant haplogroups. The results of PCA, MDS, Fst and phylogenetic tree were consistent: Lhasa Tibetans clustered with other highland Tibeto-Burman speakers, there was obvious genetic homogeneity of Tibetans in Xizang, and genetic similarity between Tibetans and northern Han people and geographically adjacent populations was found. In addition, specific maternal lineages of Tibetans also be determined in this study. Discussion: In general, this study further shed light on long-time matrilineal continuity on the Tibetan Plateau and the genetic connection between Tibetans and millet famers in the Yellow River Basin, and further revealed that multiple waves of population interaction and admixture during different historical periods between lowland and highland populations shaped the maternal genetic profile of Tibetans.
Collapse
Affiliation(s)
- Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ting Yu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Liping Ye
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Ting Huang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Shuhan Liu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
11
|
Peng MS, Liu YH, Shen QK, Zhang XH, Dong J, Li JX, Zhao H, Zhang H, Zhang X, He Y, Shi H, Cui C, Ouzhuluobu, Wu TY, Liu SM, Gonggalanzi, Baimakangzhuo, Bai C, Duojizhuoma, Liu T, Dai SS, Murphy RW, Qi XB, Dong G, Su B, Zhang YP. Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Tibetan Plateau. BMC Biol 2023; 21:208. [PMID: 37798721 PMCID: PMC10557253 DOI: 10.1186/s12915-023-01707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
- Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, Kunming, 650118, China
| | - Jiajia Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Hui Zhang
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Tian-Yi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Shi-Ming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- The First People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ti Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Xue-Bin Qi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China.
- Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
He G, Wang M, Miao L, Chen J, Zhao J, Sun Q, Duan S, Wang Z, Xu X, Sun Y, Liu Y, Liu J, Wang Z, Wei L, Liu C, Ye J, Wang L. Multiple founding paternal lineages inferred from the newly-developed 639-plex Y-SNP panel suggested the complex admixture and migration history of Chinese people. Hum Genomics 2023; 17:29. [PMID: 36973821 PMCID: PMC10045532 DOI: 10.1186/s40246-023-00476-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Non-recombining regions of the Y-chromosome recorded the evolutionary traces of male human populations and are inherited haplotype-dependently and male-specifically. Recent whole Y-chromosome sequencing studies have identified previously unrecognized population divergence, expansion and admixture processes, which promotes a better understanding and application of the observed patterns of Y-chromosome genetic diversity. RESULTS Here, we developed one highest-resolution Y-chromosome single nucleotide polymorphism (Y-SNP) panel targeted for uniparental genealogy reconstruction and paternal biogeographical ancestry inference, which included 639 phylogenetically informative SNPs. We genotyped these loci in 1033 Chinese male individuals from 33 ethnolinguistically diverse populations and identified 256 terminal Y-chromosomal lineages with frequency ranging from 0.0010 (singleton) to 0.0687. We identified six dominant common founding lineages associated with different ethnolinguistic backgrounds, which included O2a2b1a1a1a1a1a1a1-M6539, O2a1b1a1a1a1a1a1-F17, O2a2b1a1a1a1a1b1a1b-MF15397, O2a2b2a1b1-A16609, O1b1a1a1a1b2a1a1-F2517, and O2a2b1a1a1a1a1a1-F155. The AMOVA and nucleotide diversity estimates revealed considerable differences and high genetic diversity among ethnolinguistically different populations. We constructed one representative phylogenetic tree among 33 studied populations based on the haplogroup frequency spectrum and sequence variations. Clustering patterns in principal component analysis and multidimensional scaling results showed a genetic differentiation between Tai-Kadai-speaking Li, Mongolic-speaking Mongolian, and other Sinitic-speaking Han Chinese populations. Phylogenetic topology inferred from the BEAST and Network relationships reconstructed from the popART further showed the founding lineages from culturally/linguistically diverse populations, such as C2a/C2b was dominant in Mongolian people and O1a/O1b was dominant in island Li people. We also identified many lineages shared by more than two ethnolinguistically different populations with a high proportion, suggesting their extensive admixture and migration history. CONCLUSIONS Our findings indicated that our developed high-resolution Y-SNP panel included major dominant Y-lineages of Chinese populations from different ethnic groups and geographical regions, which can be used as the primary and powerful tool for forensic practice. We should emphasize the necessity and importance of whole sequencing of more ethnolinguistically different populations, which can help identify more unrecognized population-specific variations for the promotion of Y-chromosome-based forensic applications.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Miao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Jing Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Jie Zhao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiaofei Xu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian Ye
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| | - Le Wang
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| |
Collapse
|
13
|
Wang H, Yang MA, Wangdue S, Lu H, Chen H, Li L, Dong G, Tsring T, Yuan H, He W, Ding M, Wu X, Li S, Tashi N, Yang T, Yang F, Tong Y, Chen Z, He Y, Cao P, Dai Q, Liu F, Feng X, Wang T, Yang R, Ping W, Zhang Z, Gao Y, Zhang M, Wang X, Zhang C, Yuan K, Ko AMS, Aldenderfer M, Gao X, Xu S, Fu Q. Human genetic history on the Tibetan Plateau in the past 5100 years. SCIENCE ADVANCES 2023; 9:eadd5582. [PMID: 36930720 PMCID: PMC10022901 DOI: 10.1126/sciadv.add5582] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Using genome-wide data of 89 ancient individuals dated to 5100 to 100 years before the present (B.P.) from 29 sites across the Tibetan Plateau, we found plateau-specific ancestry across plateau populations, with substantial genetic structure indicating high differentiation before 2500 B.P. Northeastern plateau populations rapidly showed admixture associated with millet farmers by 4700 B.P. in the Gonghe Basin. High genetic similarity on the southern and southwestern plateau showed population expansion along the Yarlung Tsangpo River since 3400 years ago. Central and southeastern plateau populations revealed extensive genetic admixture within the plateau historically, with substantial ancestry related to that found in southern and southwestern plateau populations. Over the past ~700 years, substantial gene flow from lowland East Asia further shaped the genetic landscape of present-day plateau populations. The high-altitude adaptive EPAS1 allele was found in plateau populations as early as in a 5100-year-old individual and showed a sharp increase over the past 2800 years.
Collapse
Affiliation(s)
- Hongru Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Melinda A. Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Hongliang Lu
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Honghai Chen
- School of Cultural Heritage, Northwest University, Xi’an 710069, China
| | - Linhui Li
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Guanghui Dong
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Haibing Yuan
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Manyu Ding
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Shuai Li
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Norbu Tashi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tsho Yang
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Feng Yang
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zujun Chen
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Yuanhong He
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Zhaoxia Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhang
- School of Cultural Heritage, Northwest University, Xi’an 710069, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Mark Aldenderfer
- Department of Anthropology and Heritage Studies, University of California, Merced, Merced, CA 95343, USA
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Qi Zhi Institute, Shanghai 200232, China
| |
Collapse
|
14
|
Archaeological evidence for initial migration of Neolithic Proto Sino-Tibetan speakers from Yellow River valley to Tibetan Plateau. Proc Natl Acad Sci U S A 2022; 119:e2212006119. [PMID: 36508670 PMCID: PMC9907151 DOI: 10.1073/pnas.2212006119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sino-Tibetan is the second largest language family in the world. Recent linguistic and genetic studies have traced its origin to Neolithic millet farmers in the Yellow River region of China around 8,000 y ago and also suggested that initial divergence among branches of Sino-Tibetan coincided with expansion of the Neolithic Yangshao culture to the west and southwest during the sixth millennium BP. However, archaeological investigations to date have been insufficient to understand the lifeways of these migrant Proto Sino-Tibetan speakers. Here, we present the results of the interdisciplinary research on the material culture and ritual activities related to the initial southwestward migration of Yangshao populations, based on evidence from microfossil remains on ceramics at three sites in Gansu and Sichuan, regional archaeological contexts, and ethnographic accounts of modern Gyalrong Tibetans. The first Yangshao migrants may have integrated with indigenous hunter-gatherers in the NW Sichuan highlands, and adopted broad-spectrum subsistence strategies, consisting of both millet farming and foraging for local wild resources. Meanwhile, the migrants appear to have retained important ritual traditions previously established in their Yellow River homelands. They prepared qu starter with Monascus mold and rice for brewing alcoholic beverages, which may have been consumed in communal drinking festivals associated with the performance of ritual dancing. Such ritual activities, which to some extent have survived in the skorbro-zajiu ceremonies in SW China, may have then played a central role in maintaining and reinforcing cultural identities, social values, and connections with the homelands of the Proto Sino-Tibetan migrants.
Collapse
|
15
|
Zhu K, Du P, Li J, Zhang J, Hu X, Meng H, Chen L, Zhou B, Yang X, Xiong J, Allen E, Ren X, Ding Y, Xu Y, Chang X, Yu Y, Han S, Dong G, Wang CC, Wen S. Cultural and demic co-diffusion of Tubo Empire on Tibetan Plateau. iScience 2022; 25:105636. [PMID: 36582485 PMCID: PMC9792914 DOI: 10.1016/j.isci.2022.105636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A high point of Tibetan Plateau (TP) civilization, the expansive Tubo Empire (618-842 AD) wielded great influence across ancient western China. However, whether the Tubo expansion was cultural or demic remains unclear due to sparse ancient DNA sampling. Here, we reported ten ancient genomes at 0.017- to 0.867-fold coverages from the Dulan site with typical Tubo archaeological culture dating to 1308-1130 BP. Nine individuals from three different grave types have close relationship with previously reported ancient highlanders from the southwestern Himalayas and modern core-Tibetan populations. A Dulan-related Tubo ancestry contributed overwhelmingly (95%-100%) to the formation of modern Tibetans. A genetic outlier with dominant Eurasian steppe-related ancestry suggesting a potential population movement into the Tubo-controlled regions from Central Asia. Together with archeological evidence from burial styles and customs, our study suggested the impact of the Tubo empire on the northeast edge of the TP involved both cultural and demic diffusion.
Collapse
Affiliation(s)
- Kongyang Zhu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Jiyuan Li
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining 810007, China
| | | | - Xiaojun Hu
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining 810007, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Liang Chen
- China-Central Asia Human Environmental “the Belt and Road” Joint Laboratory, Northwest University, Xi’an 710127, China
| | - Boyan Zhou
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY 10016, USA
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Jianxue Xiong
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xiaoying Ren
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yi Ding
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Sheng Han
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guanghui Dong
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China,Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China,Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China,Corresponding author
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China,Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China,MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China,Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China,Corresponding author
| |
Collapse
|
16
|
He G, Adnan A, Al-Qahtani WS, Safhi FA, Yeh HY, Hadi S, Wang CC, Wang M, Liu C, Yao J. Genetic admixture history and forensic characteristics of Tibeto-Burman-speaking Qiang people explored via the newly developed Y-STR panel and genome-wide SNP data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fine-scale patterns of population genetic structure and diversity of ethnolinguistically diverse populations are important for biogeographical ancestry inference, kinship testing, and development and validation of new kits focused on forensic personal identification. Analyses focused on forensic markers and genome-wide single nucleotide polymorphism (SNP) data can provide new insights into the origin, admixture processes, and forensic characteristics of targeted populations. Qiang people had a large sample size among Tibeto-Burmanspeaking populations, which widely resided in the middle latitude of the Tibetan Plateau. However, their genetic structure and forensic features have remained uncharacterized because of the paucity of comprehensive genetic analyses. Here, we first developed and validated the forensic performance of the AGCU-Y30 Y-short tandem repeats (STR) panel, which contains slowly and moderately mutating Y-STRs, and then we conducted comprehensive population genetic analyses based on Y-STRs and genome-wide SNPs to explore the admixture history of Qiang people and their neighbors. The validated results of this panel showed that the new Y-STR kit was sensitive and robust enough for forensic applications. Haplotype diversity (HD) ranging from 0.9932 to 0.9996 and allelic frequencies ranging from 0.001946 to 0.8326 in 514 Qiang people demonstrated that all included markers were highly polymorphic in Tibeto-Burman people. Population genetic analyses based on Y-STRs [RST, FST, multidimensional scaling (MDS) analysis, neighboring-joining (NJ) tree, principal component analysis (PCA), and median-joining network (MJN)] revealed that the Qiang people harbored a paternally close relationship with lowland Tibetan-Yi corridor populations. Furthermore, we conducted a comprehensive population admixture analysis among modern and ancient Eurasian populations based on genome-wide shared SNPs. We found that the Qiang people were a genetically admixed population and showed closest relationship with Tibetan and Neolithic Yellow River farmers. Admixture modeling showed that Qiang people shared the primary ancestry related to Tibetan, supporting the hypothesis of common origin between Tibetan and Qiang people from North China.
Collapse
|
17
|
Ancient DNA from Tubo Kingdom-related tombs in northeastern Tibetan Plateau revealed their genetic affinity to both Tibeto-Burman and Altaic populations. Mol Genet Genomics 2022; 297:1755-1765. [PMID: 36152077 DOI: 10.1007/s00438-022-01955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
The rise of the Tubo Kingdom is considered as the key period for the formation of modern groups on the Tibetan Plateau. The ethnic origin of the residents of the Tubo Kingdom is quite complex, and their genetic structure remains unclear. The tombs of the Tubo Kingdom period in Dulan County, Qinghai Province, dating back to the seventh century, are considered to be the remains left by Tubo conquerors or the Tuyuhun people dominated by the Tubo Kingdom. The human remains of these tombs are ideal materials for studying the population dynamics in the Tubo Kingdom. In this paper, we analyzed the genome-wide data of eight remains from these tombs by shotgun sequencing and multiplex PCR panels and compared the results with data of available ancient and modern populations across East Asia. Genetic continuity between ancient Dulan people with ancient Xianbei tribes in Northeast Asia, ancient settlers on the Tibetan Plateau, and modern Tibeto-Burman populations was found. Surprisingly, one out of eight individuals showed typical genetic features of populations from Central Asia. In summary, the genetic diversity of ancient Dulan people and their affiliations with other populations provide an example of the complex origin of the residents in the Tubo Kingdom and their long-distance connection with populations in a vast geographic region across ancient Asia.
Collapse
|
18
|
Ma L, Wang R, Feng S, Yang X, Li J, Zhang Z, Zhan H, Wang Y, Xia Z, Wang CC, Kang L. Genomic insight into the population history and biological adaptations of high-altitude Tibetan highlanders in Nagqu. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.930840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tibetan, one of the largest indigenous populations living in the high-altitude region of the Tibetan Plateau (TP), has developed a suite of physiological adaptation strategies to cope with the extreme highland environment in TP. Here, we reported genome-wide SNP data from 48 Kham-speaking Nagqu Tibetans and analyzed it with published data from 1,067 individuals in 167 modern and ancient populations to characterize the detailed Tibetan subgroup history and population substructure. Overall, the patterns of allele sharing and haplotype sharing suggested (1) the relatively genetic homogeny between the studied Nagqu Tibetans and ancient Nepalese as well as present-day core Tibetans from Lhasa, Nagqu, and Shigatse; and (2) the close relationship between our studied Kham-speaking Nagqu Tibetans and Kham-speaking Chamdo Tibetans. The fitted qpAdm models showed that the studied Nagqu Tibetans could be fitted as having the main ancestry from late Neolithic upper Yellow River millet farmers and deeply diverged lineages from Southern East Asians (represented by Upper Paleolithic Guangxi_Longlin and Laos_Hoabinhian), and a non-neglectable western Steppe herder-related ancestry (∼3%). We further scanned the candidate genomic regions of natural selection for our newly generated Nagqu Tibetans and the published core Tibetans via FST, iHS, and XP-EHH tests. The genes overlapping with these regions were associated with essential human biological functions such as immune response, enzyme activity, signal transduction, skin development, and energy metabolism. Together, our results shed light on the admixture and evolutionary history of Nagqu Tibetan populations.
Collapse
|
19
|
Yang M, Yang X, Ren Z, He G, Zhang H, Wang Q, Liu Y, Zhang H, Ji J, Chen J, Guo J, Huang J, Wang CC. Genetic Admixture History and Forensic Characteristics of Guizhou Sui People Inferred From Autosomal Insertion/Deletion and Genome-Wide Single-Nucleotide Polymorphisms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insertion-deletion (Indel) serves as one of the important markers in forensic personal identification and parentage testing, especially for cases with degraded samples. However, the genetic diversity and forensic features in ethnolinguistically diverse southwestern Chinese populations remain to be explored. Sui, one Tai-Kadai-speaking population residing in Guizhou, has a complex genetic history based on linguistic, historic, and anthropological evidence. In this study, we genotyped 30 Indels from 511 Guizhou Sui individuals and obtained approximately 700,000 genome-wide single-nucleotide polymorphisms (SNPs) in 15 representative Sui individuals to comprehensively characterize the genetic diversity, forensic characteristics, and genomic landscape of Guizhou Sui people. The estimated forensic statistically allele frequency spectrum and parameters demonstrated that this Indels panel was polymorphic and informative in Tai-Kadai populations in southern China. Results of principal component analysis (PCA), STRUCTURE, and phylogenetic trees showed that Guizhou Sui had a close genetic relationship with geographically close Tai-Kadai and Hmong-Mien people. Furthermore, genomic analysis based on the Fst and f4-statistics further suggested the genetic affinity within southern Chinese Tai-Kadai-speaking populations and a close relationship with geographically adjoining Guizhou populations. Admixture models based on the ADMIXTURE, f4, three-way qpAdm, and ALDER results demonstrated the interaction between the common ancestor for Tai-Kadai/Austronesian, Hmong-Mien, and Austroasiatic speaking populations played a significant role in the formation of modern Tai-Kadai people. We observed a sex-biased influence in Sui people by finding that the dominant Y chromosomal type was a Hmong-Mien specific lineage O2a2a1a2a1a2-N5 but the mtDNA lineages were commonly found in Tai-Kadai populations. The additional southward expansion of millet farmers in the Yellow River Basin has impacted the gene pool of southern populations including Tai-Kadai. The whole-genome sequencing in the future will shed more light on the finer genetic profile of Guizhou populations.
Collapse
|
20
|
Chen J, He G, Ren Z, Wang Q, Liu Y, Zhang H, Yang M, Zhang H, Ji J, Zhao J, Guo J, Chen J, Zhu K, Yang X, Wang R, Ma H, Tao L, Liu Y, Shen Q, Yang W, Wang CC, Huang J. Fine-Scale Population Admixture Landscape of Tai–Kadai-Speaking Maonan in Southwest China Inferred From Genome-Wide SNP Data. Front Genet 2022; 13:815285. [PMID: 35251126 PMCID: PMC8891617 DOI: 10.3389/fgene.2022.815285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Guizhou Province harbors extensive ethnolinguistic and cultural diversity with Sino-Tibetan-, Hmong–Mien-, and Tai–Kadai-speaking populations. However, previous genetic analyses mainly focused on the genetic admixture history of the former two linguistic groups. The admixture history of Tai–Kadai-speaking populations in Guizhou needed to be characterized further. Thus, we genotyped genome-wide SNP data from 41 Tai–Kadai-speaking Maonan people and made a comprehensive population genetic analysis to explore their genetic origin and admixture history based on the pattern of the sharing alleles and haplotypes. We found a genetic affinity among geographically different Tai–Kadai-speaking populations, especially for Guizhou Maonan people and reference Maonan from Guangxi. Furthermore, formal tests based on the f3/f4-statistics further identified an adjacent connection between Maonan and geographically adjacent Hmong–Mien and Sino-Tibetan people, which was consistent with their historically documented shared material culture (Zhang et al., iScience, 2020, 23, 101032). Fitted qpAdm-based two-way admixture models with ancestral sources from northern and southern East Asians demonstrated that Maonan people were an admixed population with primary ancestry related to Guangxi historical people and a minor proportion of ancestry from Northeast Asians, consistent with their linguistically supported southern China origin. Here, we presented the landscape of genetic structure and diversity of Maonan people and a simple demographic model for their evolutionary process. Further whole-genome-sequence–based projects can be presented with more detailed information about the population history and adaptative history of the Guizhou Maonan people.
Collapse
Affiliation(s)
- Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Institute Of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jinwen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yilan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Qu Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wenjiao Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- *Correspondence: Chuan-Chao Wang, ; Jiang Huang,
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Chuan-Chao Wang, ; Jiang Huang,
| |
Collapse
|
21
|
The genomic history of southwestern Chinese populations demonstrated massive population migration and admixture among proto-Hmong-Mien speakers and incoming migrants. Mol Genet Genomics 2022; 297:241-262. [PMID: 35031862 DOI: 10.1007/s00438-021-01837-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Southwest China was the crossroad for the initial settler people of East Asia, which shows the highest diversity in languages and genetics. This region played a significant role in the formation of the genetic makeup of the proto-Hmong-Mien-speaking people and in the north-to-south human expansion during the Neolithic-to-historic transformation. Their genetic history covering migration events and the admixture processes still needs to be further explored. Therefore, in the current study, we have generated genome-wide data from three genomic aspects covering autosomal, mitochondrial and Y-chromosomal regions in 260 Hmong-Mien, Tibeto-Burman, and Sinitic people from 29 different southwestern Chinese groups, and further analyzed them with 2676 published modern and ancient Eurasian genomes. Here, we have noticed a new southwestern East Asian genetic cline composed of the Hmong-Mien-specific ancestry enriched in modern Hmong and Pathen. This newly identified southern inland East Asian lineage contributed to a great extent of the gene pool in the modern southern East Asians. We also have observed genetic substructure among Hmong-Mien-speaking populations. The southern Hmong-Mien-speaking people showed more genetic affinity with modern Tai-Kadai/Austroasiatic people, while the northern Hmong-Mien speakers expressed a closer genetic connection with the Neolithic-to-modern northern East Asians. Moreover, southwestern Sinitic populations had a strong genomic affinity with the adjacent Hmong-Mien-speaking populations and the lowlander Tibeto-Burman-speaking populations, which suggested the large-scale genetic admixture occurred between them. Allele-sharing-based qpAdm/qpGraph results further confirmed that all included southwestern Chinese populations could be modeled as a mixed result of the major ancestry component from the northern millet farmers in the Yellow River basin and the minor ancestry component from the southern rice farmers in the Yangtze River basin. Usually, this newly identified Hmong-Mien-associated southern East Asian ancestry could improve our understanding of the full-scale genetic landscape of the evolutionary and admixture history of southwestern East Asians. Further ancient genomic studies from southeastern China are required to shed deeper light on our established phylogeny context.
Collapse
|
22
|
Zhang X, He G, Li W, Wang Y, Li X, Chen Y, Qu Q, Wang Y, Xi H, Wang CC, Wen Y. Genomic Insight Into the Population Admixture History of Tungusic-Speaking Manchu People in Northeast China. Front Genet 2021; 12:754492. [PMID: 34659368 PMCID: PMC8515022 DOI: 10.3389/fgene.2021.754492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Manchu is the third-largest ethnic minority in China and has the largest population size among the Tungusic-speaking groups. However, the genetic origin and admixture history of the Manchu people are far from clear due to the sparse sampling and a limited number of markers genotyped. Here, we provided the first batch of genome-wide data of genotyping approximate 700,000 single-nucleotide polymorphisms (SNPs) in 93 Manchu individuals collected from northeast China. We merged the newly generated data with data of publicly available modern and ancient East Asians to comprehensively characterize the genetic diversity and fine-scale population structure, as well as explore the genetic origin and admixture history of northern Chinese Manchus. We applied both descriptive methods of ADMIXTURE, fineSTRUCTURE, F ST , TreeMix, identity by decedent (IBD), principal component analysis (PCA), and qualitative f-statistics (f 3, f 4, qpAdm, and qpWave). We found that Liaoning Manchus have a close genetic relationship and significant admixture signal with northern Han Chinese, which is in line with the cluster patterns in the haplotype-based results. Additionally, the qpAdm-based admixture models showed that modern Manchu people were formed as major ancestry related to Yellow River farmers and minor ancestry linked to ancient populations from Amur River Bain, or others. In summary, the northeastern Chinese Manchu people in Liaoning were an exception to the coherent genetic structure of Tungusic-speaking populations, probably due to the large-scale population migrations and genetic admixtures in the past few hundred years.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- School of Humanities, Nanyang Technological University, Singapore, Singapore
| | - Wenhui Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Yunfeng Wang
- Xinbin Manchu Autonomous County People’s Hospital, Fushun, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Quanying Qu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Wang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Huanjiu Xi
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|