1
|
Janivara R, Chen WC, Hazra U, Baichoo S, Agalliu I, Kachambwa P, Simonti CN, Brown LM, Tambe SP, Kim MS, Harlemon M, Jalloh M, Muzondiwa D, Naidoo D, Ajayi OO, Snyper NY, Niang L, Diop H, Ndoye M, Mensah JE, Abrahams AOD, Biritwum R, Adjei AA, Adebiyi AO, Shittu O, Ogunbiyi O, Adebayo S, Nwegbu MM, Ajibola HO, Oluwole OP, Jamda MA, Pentz A, Haiman CA, Spies PV, van der Merwe A, Cook MB, Chanock SJ, Berndt SI, Watya S, Lubwama A, Muchengeti M, Doherty S, Smyth N, Lounsbury D, Fortier B, Rohan TE, Jacobson JS, Neugut AI, Hsing AW, Gusev A, Aisuodionoe-Shadrach OI, Joffe M, Adusei B, Gueye SM, Fernandez PW, McBride J, Andrews C, Petersen LN, Lachance J, Rebbeck TR. Heterogeneous genetic architectures of prostate cancer susceptibility in sub-Saharan Africa. Nat Genet 2024; 56:2093-2103. [PMID: 39358599 DOI: 10.1038/s41588-024-01931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Men of African descent have the highest prostate cancer incidence and mortality rates, yet the genetic basis of prostate cancer in African men has been understudied. We used genomic data from 3,963 cases and 3,509 controls from Ghana, Nigeria, Senegal, South Africa and Uganda to infer ancestry-specific genetic architectures and fine-map disease associations. Fifteen independent associations at 8q24.21, 6q22.1 and 11q13.3 reached genome-wide significance, including four new associations. Intriguingly, multiple lead associations are private alleles, a pattern arising from recent mutations and the out-of-Africa bottleneck. These African-specific alleles contribute to haplotypes with odds ratios above 2.4. We found that the genetic architecture of prostate cancer differs across Africa, with effect size differences contributing more to this heterogeneity than allele frequency differences. Population genetic analyses reveal that African prostate cancer associations are largely governed by neutral evolution. Collectively, our findings emphasize the utility of conducting genetic studies that use diverse populations.
Collapse
Affiliation(s)
- Rohini Janivara
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wenlong C Chen
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ujani Hazra
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paidamoyo Kachambwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
- Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Corrine N Simonti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lyda M Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Saanika P Tambe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michelle S Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maxine Harlemon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mohamed Jalloh
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
- Université Iba Der Thiam de Thiès, Thiès, Senegal
| | - Dillon Muzondiwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Daphne Naidoo
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Olabode O Ajayi
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | | | - Lamine Niang
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Medina Ndoye
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - James E Mensah
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Afua O D Abrahams
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Richard Biritwum
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | | | | | | | - Sikiru Adebayo
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Maxwell M Nwegbu
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Hafees O Ajibola
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Olabode P Oluwole
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Mustapha A Jamda
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Audrey Pentz
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher A Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petrus V Spies
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - André van der Merwe
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | - Mazvita Muchengeti
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Sean Doherty
- Division of Urology, Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Lounsbury
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Judith S Jacobson
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
| | - Alfred I Neugut
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Oseremen I Aisuodionoe-Shadrach
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Pedro W Fernandez
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jo McBride
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | | | - Lindsay N Petersen
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
- Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Timothy R Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Warmbrunn MV, Boulund U, Aron-Wisnewsky J, de Goffau MC, Abeka RE, Davids M, Bresser LRF, Levin E, Clement K, Galenkamp H, Ferwerda B, van den Born BJJH, Kurilshikov A, Fu J, Zwinderman AH, Soeters MR, van Raalte DH, Herrema H, Groen AK, Nieuwdorp M. Networks of gut bacteria relate to cardiovascular disease in a multi-ethnic population: the HELIUS study. Cardiovasc Res 2024; 120:372-384. [PMID: 38289866 PMCID: PMC10981523 DOI: 10.1093/cvr/cvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024] Open
Abstract
AIMS Gut microbiota have been linked to blood lipid levels and cardiovascular diseases (CVDs). The composition and abundance of gut microbiota trophic networks differ between ethnicities. We aim to evaluate the relationship between gut microbiotal trophic networks and CVD phenotypes. METHODS AND RESULTS We included cross-sectional data from 3860 individuals without CVD history from 6 ethnicities living in the Amsterdam region participating in the prospective Healthy Life in Urban Setting (HELIUS) study. Genetic variants were genotyped, faecal gut microbiota were profiled, and blood and anthropometric parameters were measured. A machine learning approach was used to assess the relationship between CVD risk (Framingham score) and gut microbiota stratified by ethnicity. Potential causal relationships between gut microbiota composition and CVD were inferred by performing two-sample Mendelian randomization with hard CVD events from the Pan-UK Biobank and microbiome genome-wide association studies summary data from a subset of the HELIUS cohort (n = 4117). Microbial taxa identified to be associated with CVD by machine learning and Mendelian randomization were often ethnic-specific, but some concordance across ethnicities was found. The microbes Akkermansia muciniphila and Ruminococcaceae UCG-002 were protective against ischaemic heart disease in African-Surinamese and Moroccans, respectively. We identified a strong inverse association between blood lipids, CVD risk, and the combined abundance of the correlated microbes Christensenellaceae-Methanobrevibacter-Ruminococcaceae (CMR). The CMR cluster was also identified in two independent cohorts and the association with triglycerides was replicated. CONCLUSION Certain gut microbes can have a potentially causal relationship with CVD events, with possible ethnic-specific effects. We identified a trophic network centred around Christensenellaceae, Methanobrevibacter, and various Ruminococcaceae, frequently lacking in South-Asian Surinamese, to be protective against CVD risk and associated with low triglyceride levels.
Collapse
Affiliation(s)
- Moritz V Warmbrunn
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Judith Aron-Wisnewsky
- Nutrition and Obesities: Systemic Approaches Research Unit (Nutriomics), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Nutrition Department, Assistantea Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centres de Recherche en Nutrition Humaine, Paris, Ile de France, France
| | - Marcus C de Goffau
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- HorAIzon BV, 2625 GZ Delft, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
| | - Rosamel E Abeka
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lucas R F Bresser
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- HorAIzon BV, 2625 GZ Delft, The Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- HorAIzon BV, 2625 GZ Delft, The Netherlands
| | - Karine Clement
- Nutrition and Obesities: Systemic Approaches Research Unit (Nutriomics), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Nutrition Department, Assistantea Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centres de Recherche en Nutrition Humaine, Paris, Ile de France, France
| | - Henrike Galenkamp
- Department of Public Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Bert-Jan J H van den Born
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Alexander Kurilshikov
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aeilko H Zwinderman
- Department of Public Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Daniel H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Albert K Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Shi M, Tanikawa C, Munter HM, Akiyama M, Koyama S, Tomizuka K, Matsuda K, Lathrop GM, Terao C, Koido M, Kamatani Y. Genotype imputation accuracy and the quality metrics of the minor ancestry in multi-ancestry reference panels. Brief Bioinform 2023; 25:bbad509. [PMID: 38221906 PMCID: PMC10788679 DOI: 10.1093/bib/bbad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Large-scale imputation reference panels are currently available and have contributed to efficient genome-wide association studies through genotype imputation. However, whether large-size multi-ancestry or small-size population-specific reference panels are the optimal choices for under-represented populations continues to be debated. We imputed genotypes of East Asian (180k Japanese) subjects using the Trans-Omics for Precision Medicine reference panel and found that the standard imputation quality metric (Rsq) overestimated dosage r2 (squared correlation between imputed dosage and true genotype) particularly in marginal-quality bins. Variance component analysis of Rsq revealed that the increased imputed-genotype certainty (dosages closer to 0, 1 or 2) caused upward bias, indicating some systemic bias in the imputation. Through systematic simulations using different template switching rates (θ value) in the hidden Markov model, we revealed that the lower θ value increased the imputed-genotype certainty and Rsq; however, dosage r2 was insensitive to the θ value, thereby causing a deviation. In simulated reference panels with different sizes and ancestral diversities, the θ value estimates from Minimac decreased with the size of a single ancestry and increased with the ancestral diversity. Thus, Rsq could be deviated from dosage r2 for a subpopulation in the multi-ancestry panel, and the deviation represents different imputed-dosage distributions. Finally, despite the impact of the θ value, distant ancestries in the reference panel contributed only a few additional variants passing a predefined Rsq threshold. We conclude that the θ value substantially impacts the imputed dosage and the imputation quality metric value.
Collapse
Affiliation(s)
- Mingyang Shi
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hans Markus Munter
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Québec, Canada
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Koyama
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Gregory Mark Lathrop
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Québec, Canada
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
4
|
Habibe JJ, Boulund U, Clemente-Olivo MP, de Vries CJM, Eringa EC, Nieuwdorp M, Ferwerda B, Zwinderman K, van den Born BJH, Galenkamp H, van Raalte DH. FHL2 Genetic Polymorphisms and Pro-Diabetogenic Lipid Profile in the Multiethnic HELIUS Cohort. Int J Mol Sci 2023; 24:4332. [PMID: 36901761 PMCID: PMC10001862 DOI: 10.3390/ijms24054332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a prevalent disease often accompanied by the occurrence of dyslipidemia. Four and a half LIM domains 2 (FHL2) is a scaffolding protein, whose involvement in metabolic disease has recently been demonstrated. The association of human FHL2 with T2D and dyslipidemia in a multiethnic setting is unknown. Therefore, we used the large multiethnic Amsterdam-based Healthy Life in an Urban Setting (HELIUS) cohort to investigate FHL2 genetic loci and their potential role in T2D and dyslipidemia. Baseline data of 10,056 participants from the HELIUS study were available for analysis. The HELIUS study contained individuals of European Dutch, South Asian Surinamese, African Surinamese, Ghanaian, Turkish, and Moroccan descent living in Amsterdam and were randomly sampled from the municipality register. Nineteen FHL2 polymorphisms were genotyped, and associations with lipid panels and T2D status were investigated. We observed that seven FHL2 polymorphisms associated nominally with a pro-diabetogenic lipid profile including triglyceride (TG), high-density and low-density lipoprotein-cholesterol (HDL-C and LDL-C), and total cholesterol (TC) concentrations, but not with blood glucose concentrations or T2D status in the complete HELIUS cohort upon correcting for age, gender, BMI, and ancestry. Upon stratifying for ethnicity, we observed that only two of the nominally significant associations passed multiple testing adjustments, namely, the association of rs4640402 with increased TG and rs880427 with decreased HDL-C concentrations in the Ghanaian population. Our results highlight the effect of ethnicity on pro-diabetogenic selected lipid biomarkers within the HELIUS cohort, as well as the need for more large multiethnic cohort studies.
Collapse
Affiliation(s)
- Jayron J. Habibe
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Ulrika Boulund
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Maria P. Clemente-Olivo
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Carlie J. M. de Vries
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Etto C. Eringa
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Institute Maastricht, 6229 ER Maastricht, The Netherlands
| | - Max Nieuwdorp
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Koos Zwinderman
- Department of Clinical Epidemiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bert-Jan H. van den Born
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Daniel H. van Raalte
- Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
van der Velden AIM, van den Berg BM, van den Born BJ, Galenkamp H, Ijpelaar DHT, Rabelink TJ. Ethnic differences in urinary monocyte chemoattractant protein-1 and heparanase-1 levels in individuals with type 2 diabetes: the HELIUS study. BMJ Open Diabetes Res Care 2022; 10:10/6/e003003. [PMID: 36564084 PMCID: PMC9791388 DOI: 10.1136/bmjdrc-2022-003003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION We aimed to investigate ethnic differences in two urinary inflammatory markers in participants with type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS We included 55 Dutch, 127 South-Asian Surinamese, 92 African Surinamese, 62 Ghanaian, 74 Turkish and 88 Moroccan origin participants with T2DM from the HEalthy LIfe in an Urban Setting study. Using linear regression analyses, we investigated differences in urinary monocyte chemoattractant protein-1 (MCP-1) and heparanase-1 (HPSE-1) levels across ethnic minorities compared with Dutch. Associations between the urinary markers and albuminuria (albumin:creatinine ratio (ACR)) was investigated per ethnicity. RESULTS Urinary MCP-1 levels were higher in the Moroccan participants (0.15 log ng/mmol, 95% CI 0.05 to 0.26) compared with Dutch after multiple adjustments. Urinary HPSE-1 levels were lower in the African Surinamese and Ghanaian participants compared with the Dutch, with a difference of -0.16 log mU/mmol (95% CI -0.29 to -0.02) in African Surinamese and -0.16 log mU/mmol (95% CI -0.31 to -0.00) in Ghanaian after multiple adjustments. In all ethnic groups except the Dutch and Ghanaian participants, MCP-1 was associated with ACR. This association remained strongest after multiple adjustment in South-Asian and African Surinamese participants, with an increase in log ACR of 1.03% (95% CI 0.58 to 1.47) and 1.23% (95% CI 0.52 to 1.94) if log MCP-1 increased 1%. Only in the Dutch participants, an association between HPSE-1 and ACR was found, with increase in log ACR of 0.40% (95% CI 0.04 to 0.76) if log HPSE-1 increased 1%. CONCLUSIONS We found ethnic differences in urinary MCP-1 and HPSE-1 levels, in a multi-ethnic cohort of participants with T2DM. In addition, we found ethnic differences in the association of MCP-1 and HPSE-1 levels with albuminuria. These findings suggest differences in renal inflammation across ethnic groups.
Collapse
Affiliation(s)
- Anouk I M van der Velden
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - B J van den Born
- Internal Medicine, Amsterdam UMC-Locatie AMC, Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Public and Occupational Health, Amsterdam UMC-Locatie AMC, Amsterdam, The Netherlands
| | - Daphne H T Ijpelaar
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine and Nephrology, Groene Hart Hospital, Gouda, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Boulund U, Bastos DM, Ferwerda B, van den Born BJ, Pinto-Sietsma SJ, Galenkamp H, Levin E, Groen AK, Zwinderman AH, Nieuwdorp M. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host Microbe 2022; 30:1464-1480.e6. [PMID: 36099924 DOI: 10.1016/j.chom.2022.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
Previous studies in mainly European populations have reported that the gut microbiome composition is associated with the human genome. However, the genotype-microbiome interaction in different ethnicities is largely unknown. We performed a large fecal microbiome genome-wide association study of a single multiethnic cohort, the Healthy Life in an Urban Setting (HELIUS) cohort (N = 4,117). Mendelian randomization was performed using the multiethnic Pan-UK Biobank (N = 460,000) to dissect potential causality. We identified ethnicity-specific associations between host genomes and gut microbiota. Certain microbes were associated with genotype in multiple ethnicities. Several of the microbe-associated loci were found to be related to immune functions, interact with glutamate and the mucus layer, or be expressed in the gut or brain. Additionally, we found that gut microbes potentially influence cardiometabolic health factors such as BMI, cholesterol, and blood pressure. This provides insight into the relationship of ethnicity and gut microbiota and into the possible causal effects of gut microbes on cardiometabolic traits.
Collapse
Affiliation(s)
- Ulrika Boulund
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Diogo M Bastos
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Bert-Jan van den Born
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; Department of Public and Occupational Health, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; HorAIzon BV, 2645 LT Delfgauw, the Netherlands
| | - Albert K Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|