1
|
Aguilar G, Bauer M, Vigano MA, Schnider ST, Brügger L, Jiménez-Jiménez C, Guerrero I, Affolter M. Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing. Dev Cell 2024; 59:2672-2686.e5. [PMID: 38971155 DOI: 10.1016/j.devcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Milena Bauer
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - M Alessandra Vigano
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Sophie T Schnider
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Lukas Brügger
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Carlos Jiménez-Jiménez
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Geng K, Merino LG, Veiga RG, Sommerauer C, Epperlein J, Brinkman EK, Kutter C. Intrinsic deletion at 10q23.31, including the PTEN gene locus, is aggravated upon CRISPR-Cas9-mediated genome engineering in HAP1 cells mimicking cancer profiles. Life Sci Alliance 2024; 7:e202302128. [PMID: 37984988 PMCID: PMC10662290 DOI: 10.26508/lsa.202302128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The CRISPR-Cas9 system is a powerful tool for studying gene functions and holds potential for disease treatment. However, precise genome editing requires thorough assessments to minimize unintended on- and off-target effects. Here, we report an unexpected 283-kb deletion on Chromosome 10 (10q23.31) in chronic myelogenous leukemia-derived HAP1 cells, which are frequently used in CRISPR screens. The deleted region encodes regulatory genes, including PAPSS2, ATAD1, KLLN, and PTEN We found that this deletion was not a direct consequence of CRISPR-Cas9 off-targeting but rather occurred frequently during the generation of CRISPR-Cas9-modified cells. The deletion was associated with global changes in histone acetylation and gene expression, affecting fundamental cellular processes such as cell cycle and DNA replication. We detected this deletion in cancer patient genomes. As in HAP1 cells, the deletion contributed to similar gene expression patterns among cancer patients despite interindividual differences. Our findings suggest that the unintended deletion of 10q23.31 can confound CRISPR-Cas9 studies and underscore the importance to assess unintended genomic changes in CRISPR-Cas9-modified cells, which could impact cancer research.
Collapse
Affiliation(s)
- Keyi Geng
- https://ror.org/056d84691 Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Lara G Merino
- https://ror.org/056d84691 Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Raül G Veiga
- https://ror.org/056d84691 Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Christian Sommerauer
- https://ror.org/056d84691 Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Janine Epperlein
- https://ror.org/056d84691 Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Eva K Brinkman
- https://ror.org/056d84691 Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- https://ror.org/056d84691 Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| |
Collapse
|
3
|
Chen J, Potlapalli R, Quan H, Chen L, Xie Y, Pouriyeh S, Sakib N, Liu L, Xie Y. Exploring DNA Damage and Repair Mechanisms: A Review with Computational Insights. BIOTECH 2024; 13:3. [PMID: 38247733 PMCID: PMC10801582 DOI: 10.3390/biotech13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
DNA damage is a critical factor contributing to genetic alterations, directly affecting human health, including developing diseases such as cancer and age-related disorders. DNA repair mechanisms play a pivotal role in safeguarding genetic integrity and preventing the onset of these ailments. Over the past decade, substantial progress and pivotal discoveries have been achieved in DNA damage and repair. This comprehensive review paper consolidates research efforts, focusing on DNA repair mechanisms, computational research methods, and associated databases. Our work is a valuable resource for scientists and researchers engaged in computational DNA research, offering the latest insights into DNA-related proteins, diseases, and cutting-edge methodologies. The review addresses key questions, including the major types of DNA damage, common DNA repair mechanisms, the availability of reliable databases for DNA damage and associated diseases, and the predominant computational research methods for enzymes involved in DNA damage and repair.
Collapse
Affiliation(s)
- Jiawei Chen
- College of Letter and Science, University of California, Berkeley, CA 94720, USA;
| | - Ravi Potlapalli
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Heng Quan
- Department of Civil and Urban Engineering, New York University, New York, NY 11201, USA;
| | - Lingtao Chen
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Ying Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Seyedamin Pouriyeh
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Nazmus Sakib
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA;
| | - Yixin Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (R.P.); (Y.X.); (S.P.); (N.S.)
| |
Collapse
|
4
|
Kauke-Navarro M, Noel OF, Knoedler L, Knoedler S, Panayi AC, Stoegner VA, Huelsboemer L, Pomahac B. Novel Strategies in Transplantation: Genetic Engineering and Vascularized Composite Allotransplantation. J Surg Res 2023; 291:176-186. [PMID: 37429217 DOI: 10.1016/j.jss.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/18/2023] [Accepted: 04/30/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Despite the clinical success in vascularized composite allotransplantation (VCA), systemic immunosuppression remains necessary to prevent allograft rejection. Even with potent immunosuppressive regimens (tacrolimus, mycophenolate mofetil, and steroids), most patients experience several rejection episodes, often within the same year. The risk of systemic side effects must constantly be weighed against the risk of under-immunosuppression and, thus, acute and chronic rejection. In this context, genomic editing has emerged as a potential tool to minimize the need for toxic immunosuppressive regimens and has gained attention in the fields of solid organ transplantation and xenotransplantation. This strategy may also be relevant for the future of VCA. METHODS We discuss the topic of genetic engineering and review recent developments in this field that justify investigating tools such as clustered regularly interspaced short palindromic repeats/Cas9 in the context of VCA. RESULTS We propose specific strategies for VCA based on the most recent gene expression data. This includes the well-known strategy of tolerance induction. Specifically, targeting the interaction between antigen-presenting cells and recipient-derived T cells by CD40 knockout may be effective. The novelty for VCA is a discovery that donor-derived T lymphocytes may play a special role in allograft rejection of facial transplants. We suggest targeting these cells prior to transplantation (e.g., by ex vivo perfusion of the transplant) by knocking out genes necessary for the long-term persistence of donor-derived immune cells in the allograft. CONCLUSION Despite the demonstrated feasibility of VCA in recent years, continued improvements to immunomodulatory strategies using tools like clustered regularly interspaced short palindromic repeats/Cas9 could lead to the development of approaches that mitigate the limitations associated with rejection of this life-giving procedure.
Collapse
Affiliation(s)
- Martin Kauke-Navarro
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut
| | - Olivier F Noel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Samuel Knoedler
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adriana C Panayi
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viola A Stoegner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut; Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Lioba Huelsboemer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut; Institute of Musculoskeletal Medicine, University Hospital Muenster, Münster, Germany
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
5
|
Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol 2023; 24:477-494. [PMID: 36781955 DOI: 10.1038/s41580-022-00571-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/15/2023]
Abstract
All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.
Collapse
Affiliation(s)
- Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
DNA double-strand break repair machinery in Penaeid crustaceans: A focus on the Non-Homologous End-Joining pathway. Comp Biochem Physiol B Biochem Mol Biol 2023; 264:110803. [DOI: 10.1016/j.cbpb.2022.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
|
7
|
Amendola M, Brusson M, Miccio A. CRISPRthripsis: The Risk of CRISPR/Cas9-induced Chromothripsis in Gene Therapy. Stem Cells Transl Med 2022; 11:1003-1009. [PMID: 36048170 PMCID: PMC9585945 DOI: 10.1093/stcltm/szac064] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/23/2022] [Indexed: 12/22/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system has allowed the generation of disease models and the development of therapeutic approaches for many genetic and non-genetic disorders. However, the generation of large genomic rearrangements has raised safety concerns for the clinical application of CRISPR/Cas9 nuclease approaches. Among these events, the formation of micronuclei and chromosome bridges due to chromosomal truncations can lead to massive genomic rearrangements localized to one or few chromosomes. This phenomenon, known as chromothripsis, was originally described in cancer cells, where it is believed to be caused by defective chromosome segregation during mitosis or DNA double-strand breaks. Here, we will discuss the factors influencing CRISPR/Cas9-induced chromothripsis, hereafter termed CRISPRthripsis, and its outcomes, the tools to characterize these events and strategies to minimize them.
Collapse
Affiliation(s)
- Mario Amendola
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Mégane Brusson
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Université Paris Cité, Imagine Institute, Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Université Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
8
|
Reshetnikov VV, Chirinskaite AV, Sopova JV, Ivanov RA, Leonova EI. Translational potential of base-editing tools for gene therapy of monogenic diseases. Front Bioeng Biotechnol 2022; 10:942440. [PMID: 36032737 PMCID: PMC9399415 DOI: 10.3389/fbioe.2022.942440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022] Open
Abstract
Millions of people worldwide have rare genetic diseases that are caused by various mutations in DNA sequence. Classic treatments of rare genetic diseases are often ineffective, and therefore great hopes are placed on gene-editing methods. A DNA base-editing system based on nCas9 (Cas9 with a nickase activity) or dCas9 (a catalytically inactive DNA-targeting Cas9 enzyme) enables editing without double-strand breaks. These tools are constantly being improved, which increases their potential usefulness for therapies. In this review, we describe the main types of base-editing systems and their application to the treatment of monogenic diseases in experiments in vitro and in vivo. Additionally, to understand the therapeutic potential of these systems, the advantages and disadvantages of base-editing systems are examined.
Collapse
Affiliation(s)
- Vasiliy V. Reshetnikov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Department of Molecular Genetics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Angelina V. Chirinskaite
- Сenter of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
| | - Julia V. Sopova
- Сenter of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman A. Ivanov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| | - Elena I. Leonova
- Сenter of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
9
|
Pan X, Qu K, Yuan H, Xiang X, Anthon C, Pashkova L, Liang X, Han P, Corsi GI, Xu F, Liu P, Zhong J, Zhou Y, Ma T, Jiang H, Liu J, Wang J, Jessen N, Bolund L, Yang H, Xu X, Church GM, Gorodkin J, Lin L, Luo Y. Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nat Commun 2022; 13:4049. [PMID: 35831290 PMCID: PMC9279339 DOI: 10.1038/s41467-022-31543-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Methods for sensitive and high-throughput evaluation of CRISPR RNA-guided nucleases (RGNs) off-targets (OTs) are essential for advancing RGN-based gene therapies. Here we report SURRO-seq for simultaneously evaluating thousands of therapeutic RGN OTs in cells. SURRO-seq captures RGN-induced indels in cells by pooled lentiviral OTs libraries and deep sequencing, an approach comparable and complementary to OTs detection by T7 endonuclease 1, GUIDE-seq, and CIRCLE-seq. Application of SURRO-seq to 8150 OTs from 110 therapeutic RGNs identifies significantly detectable indels in 783 OTs, of which 37 OTs are found in cancer genes and 23 OTs are further validated in five human cell lines by targeted amplicon sequencing. Finally, SURRO-seq reveals that thermodynamically stable wobble base pair (rG•dT) and free binding energy strongly affect RGN specificity. Our study emphasizes the necessity of thoroughly evaluating therapeutic RGN OTs to minimize inevitable off-target effects.
Collapse
Affiliation(s)
- Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, Copenhagen University, Copenhagen, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hao Yuan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Xiang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Liubov Pashkova
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Giulia I Corsi
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Research, BGI-Shenzhen, Shenzhen, China
| | - Ping Liu
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Jiayan Zhong
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Yan Zhou
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tao Ma
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Hui Jiang
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Junnian Liu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jian Wang
- BGI-Research, BGI-Shenzhen, Shenzhen, China
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Huanming Yang
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xun Xu
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- BGI-Research, BGI-Shenzhen, Shenzhen, China.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|