1
|
Li L, Jin X, Liu S, Fan H. Prenatal ultrasound findings and prenatal diagnosis of fetal skeletal dysplasia. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:575-587. [PMID: 38561934 DOI: 10.1002/jcu.23673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To analyze the value of prenatal ultrasound and molecular testing in diagnosing fetal skeletal dysplasia (SD). METHODS Clinical data, prenatal ultrasound data, and molecular results of pregnant women with fetal SD were collected in the ultrasound department of our clinic from May 2019 to December 2021. RESULTS A total of 40 pregnant women with fetal SD were included, with 82.5% exhibiting short limb deformity, followed by 25.0% with central nervous system malformations, 17.50% with facial malformations, 15% with cardiac malformations, and 12.5% with urinary system malformations. The genetic testing positive rate was 70.0% (28/40), with 92.8% (26/28) being single-gene disorders due to mutations in FGFR3, COL1A1, COL1A2, EVC2, FLNB, LBR, and TRPV4 genes. The most common SD subtypes were osteogenesis imperfecta (OI), thanatophoric dysplasia (TD), and achondroplasia (ACH). The gestational age (GA) at initial diagnosis for TD, OI, and ACH was 16.6, 20.9, and 28.3 weeks, respectively (p < 0.05), with no significant difference in femoral shortening between the three groups (p > 0.05). Of the OI cases, 5 out of 12 had a family history. CONCLUSION Short limb deformity is the most prevalent phenotype of SD. When fetal SD is suspected, detailed ultrasound screening should be conducted, combined with GA at initial diagnosis, family history, and molecular evidence, to facilitate more accurate diagnosis and enhance prenatal counseling and perinatal management.
Collapse
Affiliation(s)
- Lili Li
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaofei Jin
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suna Liu
- Department of Neonatal Disease Screening, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Fan
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Peng Y, Zhou L, Chen J, Huang X, Pang J, Liu J, Tang W, Yang S, Liang C, Xie W. Clinical features and genetic analysis of a case series of skeletal ciliopathies in a prenatal setting. BMC Med Genomics 2023; 16:318. [PMID: 38062428 PMCID: PMC10704717 DOI: 10.1186/s12920-023-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Short-rib polydactyly syndrome (SRPS) refers to a group of lethal skeletal dysplasias that can be difficult to differentiate between subtypes or from other non-lethal skeletal dysplasias such as Ellis-van Creveld syndrome and Jeune syndrome in a prenatal setting. We report the ultrasound and genetic findings of four unrelated fetuses with skeletal dysplasias. METHODS Systemic prenatal ultrasound examination was performed in the second or third trimester. Genetic tests including GTG-banding, single nucleotide polymorphism (SNP) array and exome sequencing were performed with amniocytes or aborted fetal tissues. RESULTS The major and common ultrasound anomalies for the four unrelated fetuses included short long bones of the limbs and narrow thorax. No chromosomal abnormalities and pathogenic copy number variations were detected. Exome sequencing revealed three novel variants in the DYNC2H1 gene, namely NM_001080463.2:c.6809G > A p.(Arg2270Gln), NM_001080463.2:3133C > T p.(Gln1045Ter), and NM_001080463.2:c.337C > T p.(Arg113Trp); one novel variant in the IFT172 gene, NM_015662.3:4540-5 T > A; and one novel variant in the WDR19 gene, NM_025132.4:c.2596G > C p.(Gly866Arg). The genotypes of DYNC2H1, IFT172 and WDR19 and the phenotypes of the fetuses give hints for the diagnosis of short-rib thoracic dysplasia (SRTD) with or without polydactyly 3, 10, and 5, respectively. CONCLUSION Our findings expand the mutation spectrum of DYNC2H1, IFT172 and WDR19 associated with skeletal ciliopathies, and provide useful information for prenatal diagnosis and genetic counseling on rare skeletal disorders.
Collapse
Affiliation(s)
- Ying Peng
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road.
| | - Lin Zhou
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road
| | - Jing Chen
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road
| | - Xiaoliang Huang
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road
| | - Jialun Pang
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road
| | - Jing Liu
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road
| | - Wanglan Tang
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road
| | - Shuting Yang
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road
| | - Changbiao Liang
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road
| | - Wanqin Xie
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China, No. 53 Xiangchun Road.
| |
Collapse
|
3
|
Liu W, Cao J, Shi X, Li Y, Qiao F, Wu Y. Genetic testing and diagnostic strategies of fetal skeletal dysplasia: a preliminary study in Wuhan, China. Orphanet J Rare Dis 2023; 18:336. [PMID: 37875969 PMCID: PMC10599061 DOI: 10.1186/s13023-023-02955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Fetal skeletal dysplasia is a diverse group of degenerative diseases of bone and cartilage disorders that can lead to movement disorder and even death. This study aims to evaluate the diagnostic yield of sonographic examination and genetic testing for fetal skeletal dysplasia. METHODS From September 2015 to April 2021, the study investigated 24 cases with suspected short-limb fetuses, which were obtained from Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology. To identify the causative gene, multiple approaches (including karyotype analysis, copy number variations and whole exome sequencing) were performed on these fetuses. And further segregation analysis of the candidate variant was performed in parents by using Sanger sequencing. RESULTS ① Out of 24 cases, likely pathogenic variants in FGFR3, FBN2, COL1A2, CUL7 and DYNC2H1 were detected in 6 cases; pathogenic variants in FGFR3, IMPAD1 and GORAB were identified in other 6 cases; and variants in WNT1, FBN1, OBSL1, COL1A1, DYNC2H1 and NEK1, known as Variant of Undetermined Significance, were found in 4 cases. There were no variants detected in the rest 8 cases by the whole exome sequencing. ② Of 24 cases, 12 (50%) were found to carry variants (pathogenic or likely pathogenic) in seven genes with 12 variants. Four fetuses (16.7%) had variants of uncertain significance. CONCLUSION Genetic testing combining with ultrasound scanning enhances the accurate diagnosis of fatal skeletal dysplasia in utero, and then provides appropriate genetic counseling.
Collapse
Affiliation(s)
- Wanlu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Jing Cao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Yuqi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
4
|
Tse KY, Surya IU, Irwinda R, Leung KY, Ting YH, Cao Y, Choy KW. Diagnostic Yield of Exome Sequencing in Fetuses with Sonographic Features of Skeletal Dysplasias but Normal Karyotype or Chromosomal Microarray Analysis: A Systematic Review. Genes (Basel) 2023; 14:1203. [PMID: 37372383 DOI: 10.3390/genes14061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Skeletal dysplasias are a group of diseases characterized by bone and joint abnormalities, which can be detected during prenatal ultrasound. Next-generation sequencing has rapidly revolutionized molecular diagnostic approaches in fetuses with structural anomalies. This review studies the additional diagnostic yield of prenatal exome sequencing in fetuses with prenatal sonographic features of skeletal dysplasias. This was a systematic review by searching PubMed for studies published between 2013 and July 2022 that identified the diagnostic yield of exome sequencing after normal karyotype or chromosomal microarray analysis (CMA) for cases with suspected fetal skeletal dysplasias based on prenatal ultrasound. We identified 10 out of 85 studies representing 226 fetuses. The pooled additional diagnostic yield was 69.0%. The majority of the molecular diagnoses involved de novo variants (72%), while 8.7% of cases were due to inherited variants. The incremental diagnostic yield of exome sequencing over CMA was 67.4% for isolated short long bones and 77.2% for non-isolated cases. Among phenotypic subgroup analyses, features with the highest additional diagnostic yield were an abnormal skull (83.3%) and a small chest (82.5%). Prenatal exome sequencing should be considered for cases with suspected fetal skeletal dysplasias with or without a negative karyotype or CMA results. Certain sonographic features, including an abnormal skull and small chest, may indicate a potentially higher diagnostic yield.
Collapse
Affiliation(s)
- Kai Yeung Tse
- Department of Obstetrics and Gynaecology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Ilham Utama Surya
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Rima Irwinda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | | | - Yuen Ha Ting
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ye Cao
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, Shatin, N.T., Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
5
|
Strong A, Behr M, Lott C, Clark AJ, Mentch F, Da Silva RP, Rux DR, Campbell R, Skraban C, Wang X, Anari JB, Sinder B, Cahill PJ, Sleiman P, Hakonarson H. Molecular diagnosis and novel genes and phenotypes in a pediatric thoracic insufficiency cohort. Sci Rep 2023; 13:991. [PMID: 36653407 PMCID: PMC9849333 DOI: 10.1038/s41598-023-27641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Thoracic insufficiency syndromes are a genetically and phenotypically heterogeneous group of disorders characterized by congenital abnormalities or progressive deformation of the chest wall and/or vertebrae that result in restrictive lung disease and compromised respiratory capacity. We performed whole exome sequencing on a cohort of 42 children with thoracic insufficiency to elucidate the underlying molecular etiologies of syndromic and non-syndromic thoracic insufficiency and predict extra-skeletal manifestations and disease progression. Molecular diagnosis was established in 24/42 probands (57%), with 18/24 (75%) probands having definitive diagnoses as defined by laboratory and clinical criteria and 6/24 (25%) probands having strong candidate genes. Gene identified in cohort patients most commonly encoded components of the primary cilium, connective tissue, and extracellular matrix. A novel association between KIF7 and USP9X variants and thoracic insufficiency was identified. We report and expand the genetic and phenotypic spectrum of a cohort of children with thoracic insufficiency, reinforce the prevalence of extra-skeletal manifestations in thoracic insufficiency syndromes, and expand the phenotype of KIF7 and USP9X-related disease to include thoracic insufficiency.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Meckenzie Behr
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carina Lott
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abigail J Clark
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frank Mentch
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renata Pellegrino Da Silva
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Danielle R Rux
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Campbell
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Cara Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Xiang Wang
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jason B Anari
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin Sinder
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick J Cahill
- Division of Orthopedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Patrick Sleiman
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Endowed Chair in Genomic Research, Division of Pulmonary Medicine, The Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Huang Y, Liu C, Ding H, Wang Y, Yu L, Guo F, Li F, Shi X, Zhang Y, Yin A. Exome sequencing in fetuses with short long bones detected by ultrasonography: A retrospective cohort study. Front Genet 2023; 14:1032346. [PMID: 36923788 PMCID: PMC10010437 DOI: 10.3389/fgene.2023.1032346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Prenatal diagnosis of fetal short long bones (SLBs) was reported to be associated with skeletal dysplasias, chromosomal abnormalities, and genetic syndromes. This study aims to identify the genetic causes for fetal short long bones, and retrospectively evaluate the additional diagnostic yield of exome sequencing (ES) for short long bones following the use of conventional genetic testing. Methods: A cohort of ninety-four fetuses with sonographically identified short long bones was analyzed by trio-exome sequencing between January 2016 and June 2021. Fetuses with abnormal results of karyotype or chromosomal microarray analysis were excluded. Variants were interpreted based on ACMG/AMP guidelines. All diagnostic de novo variants were validated by Sanger sequencing. Results: Of the 94 fetuses, 38 (40.4%) were found to carry causal genetic variants (pathogenic or likely pathogenic) in sixteen genes with 38 variants. Five fetuses (5.3%) had variant(s) of uncertain significance. Thirty-five cases (37.2%) were diagnosed as genetic skeletal dysplasias including 14 different diseases that were classified into 10 groups according to the Nosology and Classification of Genetic Skeletal Disorders. The most common disease in the cohort was achondroplasia (28.9%), followed by osteogenesis imperfecta (18.4%), thanatophoric dysplasia (10.5%), chondrogenesis (7.9%), and 3-M syndrome (5.3%). The diagnostic yield in fetuses with isolated short long bones was lower than the fetuses with non-isolated short long bones, but not reached statistical significance (27.3% vs. 44.4%; p = 0.151). Whereas, the rate in the fetuses with other skeletal abnormalities was significantly higher than those with non-skeletal abnormalities (59.4% vs. 32.5%, p = 0.023), and the diagnostic rate was significantly higher in femur length (FL) below -4SDs group compared with FL 2-4SDs below GA group (72.5% vs. 16.7%; p < 0.001). A long-term follow-up showed that outcomes for fetuses with FL 2-4SDs below GA were significantly better than those with FL below -4SDs. Additionally, fourteen (36.8%) novel short long bones-related variants were identified in the present study. Conclusion: The findings suggest that in fetuses with short long bones routine genetic tests failed to determine the underlying causes, exome sequencing could add clinically relevant information that could assist the clinical management of pregnancies. Novel pathogenic variants identified may broaden the mutation spectrum for the disorders and contributes to clinical consultation and subsequent pregnancy examination.
Collapse
Affiliation(s)
- Yanlin Huang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Chang Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Hongke Ding
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yunan Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Lihua Yu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Fangfang Guo
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Fake Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiaomei Shi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yan Zhang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Rajala K, Kasanen E, Toiviainen‐Salo S, Valta H, Mäkitie O, Stefanovic V, Tanner L. Genetic spectrum of prenatally diagnosed skeletal dysplasias in a Finnish patient cohort. Prenat Diagn 2022; 42:1525-1537. [PMID: 35611473 PMCID: PMC9796183 DOI: 10.1002/pd.6186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This retrospective cohort study aims to describe the genetic spectrum of fetal skeletal dysplasias detected in a Finnish patient cohort and the diagnostic yield of various analysis methods used. METHOD A total of 121 pregnancies with prenatally suspected or diagnosed skeletal dysplasia were analyzed between 2013 and 2020. Clinical details and findings from genetic testing were collected. RESULTS Abnormal ultrasound triggered further testing in most cases. However, there were several cases with increased nuchal translucency and/or abnormal risk ratio in the first trimester combined screening as the initial finding. Further genetic testing was performed in 84/121 (69.4%) cases. A genetic diagnosis was confirmed in 36/84 (42.9%) cases. Half of the identified cases could be attributed to a founder mutation specific to the Finnish Disease Heritage, whereas the other half consisted of a variety of other genetic defects. CONCLUSION In our patient cohort, the overall genetic spectrum of prenatally diagnosed skeletal dysplasias was wide. However, the impact of Finnish founder mutations was considerable, suggesting that the genetic spectrum of skeletal dysplasias may differ significantly between populations. This should be taken into consideration during the diagnostic process especially as initial ultrasound findings may be unspecific and the interpretation of ultrasound features is usually difficult.
Collapse
Affiliation(s)
- Katri Rajala
- Department of Clinical GeneticsKuopio University HospitalKuopioFinland,University of HelsinkiHelsinkiFinland
| | | | - Sanna Toiviainen‐Salo
- Department of Pediatric RadiologyHUS Medical Imaging CenterHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland,Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Helena Valta
- Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of HelsinkiHelsinkiFinland,Children’s Hospital and Pediatric Research CenterHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Outi Mäkitie
- Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of HelsinkiHelsinkiFinland,Children’s Hospital and Pediatric Research CenterHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Vedran Stefanovic
- Department of Obstetrics and GynecologyFetomaternal Medical CenterHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Laura Tanner
- Department of Obstetrics and GynecologyFetomaternal Medical CenterHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland,HUSLAB Department of Clinical GeneticsHelsinki University HospitalHelsinkiFinland,Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
8
|
Wang L, Li R, Zhai J, Zhang B, Wu J, Pang L, Liu Y. Whole exome sequencing combined with dynamic ultrasound assessments for fetal skeletal dysplasias: 4 case reports. Medicine (Baltimore) 2022; 101:e31321. [PMID: 36316869 PMCID: PMC9622563 DOI: 10.1097/md.0000000000031321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Fetal skeletal anomalies are one of the most common and potentially pathogenic developmental abnormalities detected by ultrasound screening. Any suspected fetal skeletal dysplasias often require further comprehensive evaluations. PATIENT CONCERNS Here 4 families with adverse fetal skeletal system histories were enrolled, including their histories of gestation, childbirth, familial skeletal abnormalities, and pregnancy outcomes. The corresponding diagnosis were done by whole exome sequencing (WES) combined with dynamic examination. DIAGNOSIS All of the families were definitively diagnosed through cytogenetics, molecular genetics, ultrasound, combined with multidisciplinary evaluation. Both of the fetuses in case 1 and case 2 were diagnosed with thanatophoric dysplasia type I, while the neonate in case 3 was diagnosed with Apert syndrome and a 3-years-old proband daughter with Crouzon syndrome in case 4. INTERVENTIONS We conducted karyotyping, copy number variation sequencing (CNV-seq), combined with WES to evaluate genetic conditions of abnormal fetus, neonate or proband patient. WES was preferred to obtain a relatively definitive diagnosis. OUTCOMES In cases 1 and 2, the families decided to choose termination of pregnancy due to fatal dysplasias. The couple in case 3, delivered a female baby diagnosed with Apert syndrome. Fortunately, in case 4, the family, which had a 3-years-old baby with Crouzon syndrome, gave birth to a healthy baby through prenatal diagnosis. LESSONS SUBSECTIONS Invasive prenatal diagnosis and dynamic assessments for the management of fetal skeletal dysplasias could contribute to revealing possible causes of fetal skeletal abnormalities and help clinicians conduct further genetic counseling in clinical practice.
Collapse
Affiliation(s)
- Li Wang
- Xuzhou Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Ruiqi Li
- The Second Clinical Medical School of Southern Medical University, Guangzhou, Guangdong, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jingfang Zhai
- Xuzhou Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- * Correspondence: Jingfang Zhai, Xuzhou Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 221009, China (e-mail: )
| | - Bei Zhang
- Xuzhou Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jiebin Wu
- Xuzhou Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Libo Pang
- Xuzhou Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Ying Liu
- Xuzhou Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
9
|
Next Generation Sequencing after Invasive Prenatal Testing in Fetuses with Congenital Malformations: Prenatal or Neonatal Investigation. Genes (Basel) 2022; 13:genes13091517. [PMID: 36140685 PMCID: PMC9498826 DOI: 10.3390/genes13091517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Congenital malformations diagnosed by ultrasound screening complicate 3–5% of pregnancies and many of these have an underlying genetic cause. Approximately 40% of prenatally diagnosed fetal malformations are associated with aneuploidy or copy number variants, detected by conventional karyotyping, QF-PCR and microarray techniques, however monogenic disorders are not diagnosed by these tests. Next generation sequencing as a secondary prenatal genetic test offers additional diagnostic yield for congenital abnormalities deemed to be potentially associated with an underlying genetic aetiology, as demonstrated by two large cohorts: the ‘Prenatal assessment of genomes and exomes’ (PAGE) study and ‘Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study’ performed at Columbia University in the US. These were large and prospective studies but relatively ‘unselected’ congenital malformations, with little Clinical Genetics input to the pre-test selection process. This review focuses on the incremental yield of next generation sequencing in single system congenital malformations, using evidence from the PAGE, Columbia and subsequent cohorts, with particularly high yields in those fetuses with cardiac and neurological anomalies, large nuchal translucency and non-immune fetal hydrops (of unknown aetiology). The total additional yield gained by exome sequencing in congenital heart disease was 12.7%, for neurological malformations 13.8%, 13.1% in increased nuchal translucency and 29% in non-immune fetal hydrops. This demonstrates significant incremental yield with exome sequencing in single-system anomalies and supports next generation sequencing as a secondary genetic test in routine clinical care of fetuses with congenital abnormalities.
Collapse
|
10
|
Implementation of Exome Sequencing in Prenatal Diagnosis and Impact on Genetic Counseling: The Polish Experience. Genes (Basel) 2022; 13:genes13050724. [PMID: 35627109 PMCID: PMC9140952 DOI: 10.3390/genes13050724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Despite advances in routine prenatal cytogenetic testing, most anomalous fetuses remain without a genetic diagnosis. Exome sequencing (ES) is a molecular technique that identifies sequence variants across protein-coding regions and is now increasingly used in clinical practice. Fetal phenotypes differ from postnatal and, therefore, prenatal ES interpretation requires a large amount of data deriving from prenatal testing. The aim of our study was to present initial results of the implementation of ES to prenatal diagnosis in Polish patients and to discuss its possible clinical impact on genetic counseling. Methods: In this study we performed a retrospective review of all fetal samples referred to our laboratory for ES from cooperating centers between January 2017 and June 2021. Results: During the study period 122 fetuses were subjected to ES at our institution. There were 52 abnormal ES results: 31 in the group of fetuses with a single organ system anomaly and 21 in the group of fetuses with multisystem anomalies. The difference between groups was not statistically significant. There were 57 different pathogenic or likely pathogenic variants reported in 33 different genes. The most common were missense variants. In 17 cases the molecular diagnosis had an actual clinical impact on subsequent pregnancies or other family members. Conclusions: Exome sequencing increases the detection rate in fetuses with structural anomalies and improves genetic counseling for both the affected couple and their relatives.
Collapse
|
11
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
12
|
The Osteogenesis Imperfecta Type V Mutant BRIL/IFITM5 Promotes Transcriptional Activation of MEF2, NFATc, and NR4A in Osteoblasts. Int J Mol Sci 2022; 23:ijms23042148. [PMID: 35216266 PMCID: PMC8875491 DOI: 10.3390/ijms23042148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022] Open
Abstract
BRIL (bone restricted ifitm-like; also known as IFITM5) is a transmembrane protein expressed in osteoblasts. Although its role in skeletal development and homeostasis is unknown, mutations in BRIL result in rare dominant forms of osteogenesis imperfecta. The pathogenic mechanism has been proposed to be a gain-of or neomorphic function. To understand the function of BRIL and its OI type V mutant (MALEP BRIL) and whether they could activate signaling pathways in osteoblasts, we performed a luciferase reporter assay screen based on the activity of 26 transcription factors. When overexpressed in MC3T3-E1 and MLO-A5 cells, the MALEP BRIL activated the reporters dependent on MEF2, NFATc, and NR4A significantly more. Additional co-transfection experiments with MEF2C and NFATc1 and a number of their modulators (HDAC4, calcineurin, RCAN, FK506) confirmed the additive or synergistic activation of the pathways by MALEP, and suggested a coordinated regulation involving calcineurin. Endogenous levels of Nr4a members, as well as Ptgs2, were upregulated by MALEP BRIL. Y2H and co-immunoprecipitation indicated that BRIL interacted with CAML, but its contribution as the most upstream stimulator of the Ca2+-calcineurin-MEF2/NFATc cascade was not confirmed convincingly. Altogether the data presented provide the first ever readout to monitor for BRIL activity and suggest a potential gain-of-function causative effect for MALEP BRIL in OI type V, leading to perturbed signaling events and gene expression.
Collapse
|