1
|
Zheng W, Borja M, Dorman L, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco A, Rosenberg O, Neff N, Zha BS. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M. tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590421. [PMID: 38712150 PMCID: PMC11071417 DOI: 10.1101/2024.04.20.590421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mycobacterium tuberculosis (MTB) infects and replicates in lung mononuclear phagocytes (MNPs) with astounding ability to evade elimination. ESX-1, a type VII secretion system, acts as a virulence determinant that contributes to MTB's ability to survive within MNPs, but its effect on MNP recruitment and/or differentiation remains unknown. Here, using single-cell RNA sequencing, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces an anti-inflammatory signature in MNPs and BMDM in an ESX-1 dependent manner. Similarly, spatial transcriptomics revealed an upregulation of anti-inflammatory signals in MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 mediates the recruitment and differentiation of anti-inflammatory MNPs, which MTB can infect and manipulate for survival.
Collapse
|
2
|
Zhou C, Deng H, Fang Y, Wei Z, Shen Y, Qiu S, Ye D, Shen Z, Shen Y. Identification and validation of a novel signature based on T cell marker genes to predict prognosis, immunotherapy response and chemotherapy sensitivity in head and neck squamous carcinoma by integrated analysis of single-cell and bulk RNA-sequencing. Heliyon 2023; 9:e21381. [PMID: 37954266 PMCID: PMC10632748 DOI: 10.1016/j.heliyon.2023.e21381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
T cells are among the most potent anti-tumor cells that are found in humans. Our study sought to develop a reliable signature incorporating T cell marker genes (TMGs) for predicting the prognosis and therapy responsiveness of head and neck squamous cell carcinoma (HNSCC) patients. We downloaded scRNA-seq data from the GSE181919 to identify TMGs. Subsequently, we devised a 12 TMG signature in the TCGA HNSCC cohort by using LASSO analysis. Patients with high-risk scores were shown to experience unfavorable progression-free survival, disease-specific survival, and overall survival, which was validated in the GSE65858 cohort. Additionally, the nomogram integrated risk score and clinical features are more suitable for clinical application. The enrichment analyses of both pathways and functions showed that high- and low-risk patients had functionally related distinctions. Furthermore, analysis of the immunological landscape confirmed that the low-risk patients had a larger percentage of infiltrating immune cells as well as a higher incidence rate of immune-related events. In the meantime, a greater IPS score and expression of immune checkpoint genes suggested significantly favorable responsiveness to immunotherapy in low-risk patients. On the other hand, the high-risk patients had a greater degree of sensitivity to the chemotherapy agents, which included paclitaxel, gemcitabine, docetaxel, and cisplatin. Our finding revealed that this TMG signature independently functioned as a prognostic marker and guided individualized immunotherapy and chemotherapy selection for patients with HNSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yiming Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shijie Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo NO. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Xu J, Shi Q, Wang B, Ji T, Guo W, Ren T, Tang X. The role of tumor immune microenvironment in chordoma: promising immunotherapy strategies. Front Immunol 2023; 14:1257254. [PMID: 37720221 PMCID: PMC10502727 DOI: 10.3389/fimmu.2023.1257254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Chordoma is a rare malignant bone tumor with limited therapeutic options, which is resistant to conventional chemotherapy and radiotherapy, and targeted therapy is also shown with little efficacy. The long-standing delay in researching its mechanisms of occurrence and development has resulted in the dilemma of no effective treatment targets and no available drugs in clinical practice. In recent years, the role of the tumor immune microenvironment in driving tumor growth has become a hot and challenging topic in the field of cancer research. Immunotherapy has shown promising results in the treatment of various tumors. However, the study of the immune microenvironment of chordoma is still in its infancy. In this review, we aim to present a comprehensive reveal of previous exploration on the chordoma immune microenvironment and propose promising immunotherapy strategies for chordoma based on these characteristics.
Collapse
Affiliation(s)
- Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tao Ji
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
4
|
The malignancy of chordomas is enhanced via a circTLK1/miR-16-5p/Smad3 positive feedback axis. Cell Death Discov 2023; 9:64. [PMID: 36792585 PMCID: PMC9932141 DOI: 10.1038/s41420-023-01332-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
CircRNAs play crucial roles in various malignancies via an increasing number of reported regulatory mechanisms, including the classic sponging mechanism between circRNAs and micro RNAs (miRNAs). We performed bioinformatic analyses and identified circTLK1 as a regulator of malignant chordoma progression. Moreover, we observed that circTLK1 showed high expression in chordoma cells and tissues, while circTLK1 interference suppressed chordoma cell proliferation and invasion. In addition, circTLK1 directly interacted with miR-16-5p, which has previously been shown to repress chordoma, and circTLK1 knockdown suppressed Smad3 expression. Chromatin immunoprecipitation sequencing further demonstrated that Smad3 acts as a positive regulator by interacting with TLK1, thereby mediating the circTLK1/miR-16-5p/Smad3 positive feedback axis. Taken together, our findings suggested that the disruption of the circTLK1/miR-16-5p/Smad3 positive feedback pathway, particularly via the Smad3 inhibitor SIS3, could be a promising therapeutic strategy.
Collapse
|
5
|
Räuber S, Schroeter CB, Strippel C, Nelke C, Ruland T, Dik A, Golombeck KS, Regner-Nelke L, Paunovic M, Esser D, Münch C, Rosenow F, van Duijn M, Henes A, Ruck T, Amit I, Leypoldt F, Titulaer MJ, Wiendl H, Meuth SG, Meyer Zu Hörste G, Melzer N. Cerebrospinal fluid proteomics indicates immune dysregulation and neuronal dysfunction in antibody associated autoimmune encephalitis. J Autoimmun 2023; 135:102985. [PMID: 36621173 DOI: 10.1016/j.jaut.2022.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Autoimmune Encephalitis (AE) spans a group of non-infectious inflammatory conditions of the central nervous system due to an imbalanced immune response. Aiming to elucidate the pathophysiological mechanisms of AE, we applied an unsupervised proteomic approach to analyze the cerebrospinal fluid (CSF) protein profile of AE patients with autoantibodies against N-methyl-d-aspartate receptor (NMDAR) (n = 9), leucine-rich glioma-inactivated protein 1 (LGI1) (n = 9), or glutamate decarboxylase 65 (GAD65) (n = 8) compared to 9 patients with relapsing-remitting multiple sclerosis as inflammatory controls, and 10 patients with somatic symptom disorder as non-inflammatory controls. We found a dysregulation of the complement system, a disbalance between pro-inflammatory and anti-inflammatory proteins on the one hand, and dysregulation of proteins involved in synaptic transmission, synaptogenesis, brain connectivity, and neurodegeneration on the other hand to a different extent in all AE subtypes compared to non-inflammatory controls. Furthermore, elevated levels of several proteases and reduction in protease inhibitors could be detected in all AE subtypes compared to non-inflammatory controls. Moreover, the different AE subtypes showed distinct protein profiles compared to each other and inflammatory controls which may facilitate future identification of disease-specific biomarkers. Overall, CSF proteomics provides insights into the complex pathophysiological mechanisms of AE, including immune dysregulation, neuronal dysfunction, neurodegeneration, and altered protease function.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Christopher Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tillmann Ruland
- Department of Psychiatry, University of Münster, 48149, Münster, Germany; Department of Psychiatry, Maria Brunn Hospital, 48163, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kristin S Golombeck
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Liesa Regner-Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuela Paunovic
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, 24105, Kiel, Lübeck, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Faculty of Medicine, Theodor-Stern-Kai 7, Building 75, 60590, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Frankfurt am Main, Germany; Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martijn van Duijn
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Antonia Henes
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, 24105, Kiel, Lübeck, Germany; Department of Neurology, Faculty of Medicine, Kiel University, 24105, Kiel, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Sun Q, Liu Z, Xu X, Yang Y, Han X, Wang C, Song F, Mou Y, Li Y, Song X. Identification of a circRNA/miRNA/mRNA ceRNA Network as a Cell Cycle-Related Regulator for Chronic Sinusitis with Nasal Polyps. J Inflamm Res 2022; 15:2601-2615. [PMID: 35494315 PMCID: PMC9045834 DOI: 10.2147/jir.s358387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To explore the mechanisms by which circRNA/miRNA/mRNA competitive endogenous RNAs (ceRNA) networks regulate CRSwNP. Methods The expression profiles of circRNAs, miRNAs, and mRNAs from patients with CRSwNP and control subjects were acquired from the Gene Expression Omnibus database. The circRNA/miRNA/mRNA ceRNA network was constructed based on the predicted circRNA–miRNA interactions and miRNA–mRNA interactions. Hub-mRNAs were screened by protein–protein interaction network analysis and Cytoscape molecular complex detection. The expression of factors in tissue and in hsa_circ_0031594 siRNA transfection cells was verified by RT-qPCR and the association between them was revealed by Spearman correlation analysis. Receiver operating characteristic curve analysis was performed with the pROC R package. Results The differential expression of 5423 circRNAs, 415 miRNAs, and 3673 mRNAs was identified in CRSwNP subjects compared to control subjects. Among these, 9 circRNAs, 39 miRNAs, and 78 mRNAs were screened to construct a ceRNA network. Ultimately, a subnetwork including circRNA hsa_circ_0031594, hsa-miR-1260b, hsa-miR-6507-5p, NCAPG2, RACGAP1, CHEK1 and PRC1 was screened out. RT-qPCR validated that the expression of hsa_circ_0031594, NCAPG2, PRC1 was significantly increased, and hsa-miR-1260b and hsa-miR-6507-5p were expressed significantly less in patients with CRSwNP than in control subjects. In addition, the AUCs of hsa_circ_0031594, hsa-miR-1260b, hsa-miR-6507-5p, NCAPG2, and PRC1 to discriminate CRSwNP patients were 0.995, 0.842, 0.862, 0.765, and 0.816. Spearman correlation showed that the expression of hsa_circ_0031594 was negatively correlated with hsa-miR-1260b and hsa-miR-6507-5p, and positively correlated with NCAPG2 and PRC1. In human nasal epithelial cell (HNEpC) line, knocking down hsa_circ_0031594 could increase the expression of hsa-miR-1260b and hsa-miR-6507-5p, and reduce the expression of NCAPG2 and PRC1. Conclusion CeRNA networks including hsa_circ_0031594, hsa-miR-1260b, and NCAPG2, and hsa_circ_0031594, hsa-miR-6507-5p, and PRC1 may be key regulators for CRSwNP occurrence, and may be potential targets for the pathogenesis and treatment development of CRSwNP.
Collapse
Affiliation(s)
- Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xiangya Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, People’s Republic of China
| | - Fei Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Department of Binzhou Medical University, Clinical Medical College Second, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Correspondence: Xicheng Song; Yumei Li, Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, People’s Republic of China, Tel +860535-6691999, Fax +860535-6240341, Email ;
| |
Collapse
|