1
|
Hnizil O, Baidani A, Khlila I, Taghouti M, Nsarellah N, Amamou A. Dissecting Genotype by Environment Interactions in Moroccan Wheat: An Advanced Biplot and Heatmap Analysis Unveiling Agronomic, Quality Traits, and Genotypic Stability for Tailored Breeding Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:1068. [PMID: 38674477 PMCID: PMC11054286 DOI: 10.3390/plants13081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 04/28/2024]
Abstract
This five-year study (2016-2021) across diverse Moroccan agro-climatic zones investigated genotype by environment (G × E) interactions in wheat, focusing on variations in agronomic traits and quality attributes such as protein and gluten content. Significant environmental effects were observed on key traits, like yield, thousand kernel weight (TKW), and spikes per square meter (Spk/m2), highlighting environmental factors' role in wheat yield variability. In the Tassaout (TST) location, notable genotypic effects emerged for traits like biomass, underscoring genetic factors' importance in specific contexts, while in Sidi El Aidi (SEA) and Marchouch (MCH), genotypic effects on yield and its components were predominantly absent, indicating a more substantial environmental influence. These findings illustrate the complexity of G × E interactions and the need for breeding strategies considering genetic potential and environmental adaptability, especially given the trade-offs between yield enhancement and quality maintenance. Insights from the biplot and heatmap analyses enhanced the understanding of genotypes' dynamic interactions with environmental factors, establishing a basis for strategic genotype selection and management to optimize wheat yield and quality. This research contributes to sustainable wheat breeding in Morocco, aligning with global efforts to adapt wheat breeding strategies to changing climatic conditions.
Collapse
Affiliation(s)
- Oussama Hnizil
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, P.B. 577, Settat 26000, Morocco; (A.B.); (I.K.)
- Research Unit of Plant Breeding and Genetic Resources Conservation, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, P.B. 589, Settat 26000, Morocco;
| | - Aziz Baidani
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, P.B. 577, Settat 26000, Morocco; (A.B.); (I.K.)
| | - Ilham Khlila
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, P.B. 577, Settat 26000, Morocco; (A.B.); (I.K.)
- Research Unit of Plant Breeding and Genetic Resources Conservation, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, P.B. 589, Settat 26000, Morocco;
| | - Mouna Taghouti
- Research Unit of Plant Genetic Resources and Plant Breeding, National Institute for Agronomic Research, P.B. 6356, Institutes 1010, Rabat 10101, Morocco;
| | - Nasserelhaq Nsarellah
- Research Unit of Plant Breeding and Genetic Resources Conservation, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, P.B. 589, Settat 26000, Morocco;
| | - Ali Amamou
- Research Unit of Plant Breeding and Genetic Resources Conservation, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, P.B. 589, Settat 26000, Morocco;
| |
Collapse
|
2
|
Khare V, Shukla RS, Pandey S, Singh SK, Singh C. Exploring the genotype-environment interaction of bread wheat in ambient and high-temperature planting conditions: a rigorous investigation. Sci Rep 2024; 14:2402. [PMID: 38287162 PMCID: PMC10825171 DOI: 10.1038/s41598-024-53052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/27/2024] [Indexed: 01/31/2024] Open
Abstract
The current study is carried out to find out the stable wheat genotype in ambient and high temperature planting conditions. The objective was to estimate the genotype x environment interactions through various univariates and multivariate techniques. Twenty wheat genotypes were evaluated at Jabalpur, Narmadapuram, and Sagar districts of Madhya Pradesh, India, across cropping years 2019-20 and 2021-21, considering both timely and late planting conditions. The univariate and multivariate stability analysis were performed based on per-plant grain yield and grain filling rate. Our result revealed that environment, genotype, and GEI effects were significant (P < 0.001) across all the environments. The wheat genotypes JW3288, L8, and L13 have been discerned as top performers, exhibiting remarkable stability in grain yield per plant. Similarly, for grain filling rate, genotypes L11 and L13 have emerged as superior and consistently stable performers. Notably, the AMMI and GGE models demonstrated superior effectiveness and accuracy compared to the linear regression model. In conclusion, based on thorough univariate and multivariate stability analyses, L13 emerges as the most stable genotype across all environments under both planting conditions. Consequently, L13 holds promise for inclusion in future breeding programs. It's noteworthy that Jabalpur stands out as the most discriminating and representative environment among all the conditions assessed.
Collapse
Affiliation(s)
- Vikrant Khare
- Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, 482004, India.
| | - Rama Shankar Shukla
- Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, 482004, India
| | - Suneeta Pandey
- Department of Plant Breeding and Genetics, Agriculture University Jodhpur, Rajasthan, 342304, India
| | - Sanjay Kumar Singh
- Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, 482004, India
| | - Charan Singh
- Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| |
Collapse
|
3
|
Ghazy MI, Abdelrahman M, El-Agoury RY, El-hefnawy TM, EL-Naem SA, Daher EM, Rehan M. Exploring Genetics by Environment Interactions in Some Rice Genotypes across Varied Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 13:74. [PMID: 38202383 PMCID: PMC10780751 DOI: 10.3390/plants13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Rice production faces challenges related to diverse climate change processes. Heat stress combined with low humidity, water scarcity, and salinity are the foremost threats in its cultivation. The present investigation aimed at identifying the most resilient rice genotypes with yield stability to cope with the current waves of climate change. A total of 34 rice genotypes were exposed to multilocation trials. These locations had different environmental conditions, mainly normal, heat stress with low humidity, and salinity-affected soils. The genotypes were assessed for their yield stability under these conditions. The newly developed metan package of R-studio was employed to perform additive main effects and multiplicative interactions modelling and genotype-by-environment modelling. The results indicated that there were highly significant differences among the tested genotypes and environments. The main effects of the environments accounted for the largest portion of the total yield sum of squared deviations, while different sets of genotypes showed good performance in different environments. AMMI1 and GGE biplots confirmed that Giza179 was the highest-yielding genotype, whereas Giza178 was considered the most-adopted and highest-yielding genotype across environments. These findings were further confirmed by the which-won-where analysis, which explained that Giza178 has the greatest adaptability to the different climatic conditions under study. While Giza179 was the best under normal environments, N22 recorded the uppermost values under heat stress coupled with low humidity, and GZ1968-S-5-4 manifested superior performance regarding salinity-affected soils. Giza 177 was implicated regarding harsh environments. The mean vs. stability-based rankings indicated that the highest-ranked genotypes were Giza179 > Giza178 > IET1444 > IR65600-77 > GZ1968-S-5-4 > N22 > IR11L236 > IR12G3213. Among them, Giza178, IR65600-77, and IR12G3213 were the most stable genotypes. Furthermore, these results were confirmed by cluster-analysis-based stability indices. A significant and positive correlation was detected between the overall yield under all the environments with panicle length, number of panicles per plant, and thousand grain weight. Our study sheds light on the notion that the Indica/Japonica and Indica types have greater stability potential over the Japonica ones, as well as the potential utilization of genotypes with wide adaptability, stability, and high yield, such as Giza178, in the breeding programs for climate change resilience in rice.
Collapse
Affiliation(s)
- Mohamed I. Ghazy
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.I.G.); (R.Y.E.-A.); (T.M.E.-h.); (S.A.E.-N.); (E.M.D.)
| | - Mohamed Abdelrahman
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.I.G.); (R.Y.E.-A.); (T.M.E.-h.); (S.A.E.-N.); (E.M.D.)
| | - Roshdy Y. El-Agoury
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.I.G.); (R.Y.E.-A.); (T.M.E.-h.); (S.A.E.-N.); (E.M.D.)
| | - Tamer M. El-hefnawy
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.I.G.); (R.Y.E.-A.); (T.M.E.-h.); (S.A.E.-N.); (E.M.D.)
| | - Sabry A. EL-Naem
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.I.G.); (R.Y.E.-A.); (T.M.E.-h.); (S.A.E.-N.); (E.M.D.)
| | - Elhousini M. Daher
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.I.G.); (R.Y.E.-A.); (T.M.E.-h.); (S.A.E.-N.); (E.M.D.)
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
4
|
Alomari DZ, Schierenbeck M, Alqudah AM, Alqahtani MD, Wagner S, Rolletschek H, Borisjuk L, Röder MS. Wheat Grains as a Sustainable Source of Protein for Health. Nutrients 2023; 15:4398. [PMID: 37892473 PMCID: PMC10609835 DOI: 10.3390/nu15204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Protein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat (Triticum aestivum L.) and identify the genes governing grain protein content (GPC) that improve end-use quality and in turn human health. Genome-wide association was applied using the 90k iSELECT Infinium and 35k Affymetrix arrays with GPC quantified by using a proteomic-based technique in 369 wheat genotypes over three field-year trials. The results showed significant natural variation among bread wheat genotypes that led to detecting 54 significant quantitative trait nucleotides (QTNs) surpassing the false discovery rate (FDR) threshold. These QTNs showed contrasting effects on GPC ranging from -0.50 to +0.54% that can be used for protein content improvement. Further bioinformatics analyses reported that these QTNs are genomically linked with 35 candidate genes showing high expression during grain development. The putative candidate genes have functions in the binding, remobilization, or transport of protein. For instance, the promising QTN AX-94727470 on chromosome 6B increases GPC by +0.47% and is physically located inside the gene TraesCS6B02G384500 annotated as Trehalose 6-phosphate phosphatase (T6P), which can be employed to improve grain protein quality. Our findings are valuable for the enhancement of protein content and end-use quality in one of the major daily food resources that ultimately improve human nutrition.
Collapse
Affiliation(s)
- Dalia Z. Alomari
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
- CONICET CCT La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| |
Collapse
|
5
|
Tanin MJ, Sharma A, Ram H, Singh S, Srivastava P, Mavi GS, Saini DK, Gudi S, Kumar P, Goyal P, Sohu VS. Application of potassium nitrate and salicylic acid improves grain yield and related traits by delaying leaf senescence in Gpc-B1 carrying advanced wheat genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1107705. [PMID: 37528976 PMCID: PMC10389087 DOI: 10.3389/fpls.2023.1107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
Grain protein content (GPC) is an important quality trait that effectively modulates end-use quality and nutritional characteristics of wheat flour-based food products. The Gpc-B1 gene is responsible for the higher protein content in wheat grain. In addition to higher GPC, the Gpc-B1 is also generally associated with reduced grain filling period which eventually causes the yield penalty in wheat. The main aim of the present study was to evaluate the effect of foliar application of potassium nitrate (PN) and salicylic acid (SA) on the physiological characteristics of a set of twelve genotypes, including nine isogenic wheat lines carrying the Gpc-B1 gene and three elite wheat varieties with no Gpc-B1 gene, grown at wheat experimental area of the Department of Plant Breeding and Genetics, PAU, Punjab, India. The PN application significantly increased the number of grains per spike (GPS) by 6.42 grains, number of days to maturity (DTM) by 1.03 days, 1000-grain weight (TGW) by 1.97 g and yield per plot (YPP) by 0.2 kg/plot. As a result of PN spray, the flag leaf chlorophyll content was significantly enhanced by 2.35 CCI at anthesis stage and by 1.96 CCI at 10 days after anthesis in all the tested genotypes. Furthermore, the PN application also significantly increased the flag leaf nitrogen content by an average of 0.52% at booting stage and by 0.35% at both anthesis and 10 days after anthesis in all the evaluated genotypes. In addition, the yellow peduncle colour at 30 days after anthesis was also increased by 19.08% while the straw nitrogen content was improved by 0.17% in all the genotypes. The preliminary experiment conducted using SA demonstrated a significant increase in DTM and other yield component traits. The DTM increased by an average of 2.31 days, GPS enhanced by approximately 3.17 grains, TGW improved by 1.13g, and YPP increased by 0.21 kg/plot. The foliar application of PN and SA had no significant effect on GPC itself. The findings of the present study suggests that applications of PN and SA can effectively mitigate the yield penalty associated with Gpc-B1 gene by extending grain filling period in the wheat.
Collapse
Affiliation(s)
| | - Achla Sharma
- *Correspondence: Mohammad Jafar Tanin, ; Achla Sharma,
| | | | | | | | | | | | | | | | | | | |
Collapse
|