1
|
Nasim A, Hao J, Tawab F, Jin C, Zhu J, Luo S, Nie X. Micronutrient Biofortification in Wheat: QTLs, Candidate Genes and Molecular Mechanism. Int J Mol Sci 2025; 26:2178. [PMID: 40076800 PMCID: PMC11900071 DOI: 10.3390/ijms26052178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Micronutrient deficiency (hidden hunger) is one of the serious health problems globally, often due to diets dominated by staple foods. Genetic biofortification of a staple like wheat has surfaced as a promising, cost-efficient, and sustainable strategy. Significant genetic diversity exists in wheat and its wild relatives, but the nutritional profile in commercial wheat varieties has inadvertently declined over time, striving for better yield and disease resistance. Substantial efforts have been made to biofortify wheat using conventional and molecular breeding. QTL and genome-wide association studies were conducted, and some of the identified QTLs/marker-trait association (MTAs) for grain micronutrients like Fe have been exploited by MAS. The genetic mechanisms of micronutrient uptake, transport, and storage have also been investigated. Although wheat biofortified varieties are now commercially cultivated in selected regions worldwide, further improvements are needed. This review provides an overview of wheat biofortification, covering breeding efforts, nutritional evaluation methods, nutrient assimilation and bioavailability, and microbial involvement in wheat grain enrichment. Emerging technologies such as non-destructive hyperspectral imaging (HSI)/red, green, and blue (RGB) phenotyping; multi-omics integration; CRISPR-Cas9 alongside genomic selection; and microbial genetics hold promise for advancing biofortification.
Collapse
Affiliation(s)
- Adnan Nasim
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Junwei Hao
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University Larama, Peshawar 25000, Pakistan;
| | - Ci Jin
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Jiamin Zhu
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Shuang Luo
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Xiaojun Nie
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| |
Collapse
|
2
|
Kumar J, Saini DK, Kumar A, Kumari S, Gahlaut V, Rahim MS, Pandey AK, Garg M, Roy J. Biofortification of Triticum species: a stepping stone to combat malnutrition. BMC PLANT BIOLOGY 2024; 24:668. [PMID: 39004715 PMCID: PMC11247745 DOI: 10.1186/s12870-024-05161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ashish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Supriya Kumari
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Vijay Gahlaut
- Department of Biotechnology, University Center for Research and Development Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohammed Saba Rahim
- CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| |
Collapse
|
3
|
Ma Y, Wen Y, Wang C, Wu Z, Yuan X, Xiong Y, Chen K, He L, Zhang Y, Wang Z, Li L, Yang Z, Sun Y, Chen Z, Ma J. ZIP Genes Are Involved in the Retransfer of Zinc Ions during the Senescence of Zinc-Deficient Rice Leaves. Int J Mol Sci 2023; 24:13989. [PMID: 37762290 PMCID: PMC10531140 DOI: 10.3390/ijms241813989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Rice lacks sufficient amounts of zinc despite its vitality for human health. Leaf senescence enables redistribution of nutrients to other organs, yet Zn retransfer during deficiency is often overlooked. In this hydroponic experiment, we studied the effect of Zn deficiency on rice seedlings, focusing on the fourth leaf under control and deficient conditions. Growth phenotype analysis showed that the growth of rice nodal roots was inhibited in Zn deficiency, and the fourth leaf exhibited accelerated senescence and increased Zn ion transfer. Analyzing differentially expressed genes showed that Zn deficiency regulates more ZIP family genes involved in Zn ion retransfer. OsZIP3 upregulation under Zn-deficient conditions may not be induced by Zn deficiency, whereas OsZIP4 is only induced during Zn deficiency. Gene ontology enrichment analysis showed that Zn-deficient leaves mobilized more biological pathways (BPs) during aging, and the enrichment function differed from that of normal aging leaves. The most apparent "zinc ion transport" BP was stronger than that of normal senescence, possibly due to Zn-deficient leaves mobilizing large amounts of BP related to lipid metabolism during senescence. These results provide a basis for further functional analyses of genes and the study of trace element transfer during rice leaf senescence.
Collapse
Affiliation(s)
- Yangming Ma
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yanfang Wen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Cheng Wang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Ziniu Wu
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiaojuan Yuan
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Ying Xiong
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Kairui Chen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Limei He
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yue Zhang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhonglin Wang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Leilei Li
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhiyuan Yang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yongjian Sun
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhongkui Chen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Jun Ma
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|