1
|
Zhou C, Ye X, Liu Z, Liu T, Li S, Yang J, Wei J, Yu P, Jia R, Zhao W. Dissecting the causal links between gut microbiome, immune traits and polyp using genetic evidence. Front Immunol 2024; 15:1431990. [PMID: 39346904 PMCID: PMC11427361 DOI: 10.3389/fimmu.2024.1431990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Background Previous research has demonstrated an association between gut microbiota and immune status with the development of several diseases. However, whether these factors contribute to polyps remains unclear. This study aims to use Mendelian randomization (MR) to investigate the causal relationship between gut microbiota and 4 types of polyps (nasal, gallbladder, colon, and gastric polyps), as well as to analyze the mediating role of immune traits. Methods This study utilized large-scale GWAS meta-analyses of gut microbiota (MiBioGen Consortium), 731 immune traits, and 4 types of polyps (one from the FinnGen Consortium and three from the NBDC Human Database). Univariate MR with the inverse variance weighted (IVW) estimation method was employed as the primary analytical approach. A two-step MR analysis was performed to identify potential mediating immune traits. Additionally, multivariable MR approach based on Bayesian model averaging (MR-BMA) was employed to further prioritize gut microbiota and immune traits associated with polyp development. Results Based on IVW method in univariate MR analysis, we identified 39 gut microbial taxa and 135 immune traits significantly causally associated with at least one type of polyp. For nasal polyps, 13 microbial taxa and 61 immune traits were causally associated. After false discovery rate (FDR) correction, CD3 on Central Memory CD8+ T cells and CD3 on CD4 regulatory T cells remained significant. MR-BMA identified 4 gut microbial taxa and 4 immune traits as high priority. For gallbladder polyps, 9 microbial taxa and 30 immune traits were causally associated. MR-BMA identified 8 microbial taxa and 6 immune traits as higher importance. For colon polyps, 6 microbial taxa and 21 immune traits were causally associated. MR-BMA identified 4 microbial taxa and 3 immune traits as higher importance. For gastric polyps, 12 microbial taxa and 33 immune traits were causally associated. Actinobacteria remained significant after FDR correction, and MR-BMA identified 7 gut microbial taxa and 6 immune traits as high priority. We identified 16 causal pathways with mediator directions consistent with the direction of gut microbiome-polyp association. Of these, 6 pathways were associated with the mechanism of nasal polyps, 1 with gallbladder polyps, 2 with colon polyps, and 7 with gastric polyps. Conclusions Our findings shed light on the causal relationships between gut microbiota, immune traits, and polyp development, underscoring the crucial roles of gut microbiota and immune status in polypogenesis. Furthermore, these findings suggest potential applications in polyp prevention, early screening, and the development of effective strategies to reduce polyp risk.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiaofeng Ye
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Zhinuo Liu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Liu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shanzheng Li
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinqiu Yang
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingjing Wei
- Heart Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Yu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ran Jia
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Yan L, Li H, Qian Y, Liu Q, Cong S, Dou B, Wang Y, Wang M, Yu T. Acupuncture modulates the gut microbiota in Alzheimer's disease: current evidence, challenges, and future opportunities. Front Neurosci 2024; 18:1334735. [PMID: 38495110 PMCID: PMC10940355 DOI: 10.3389/fnins.2024.1334735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Alzheimer's disease, one of the most severe and common neurodegenerative diseases, has no effective cure. Therefore it is crucial to explore novel and effective therapeutic targets. The gut microbiota - brain axis has been found to play a role in Alzheimer's disease by regulating the neuro-immune and endocrine systems. At the same time, acupuncture can modulate the gut microbiota and may impact the course of Alzheimer's disease. In this Review, we discuss recent studies on the role of acupuncture on the gut microbiota as well current challenges and future opportunities of acupuncture as potential treatment for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qidi Liu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Baomin Dou
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Li H, Hu Y, Huang Y, Ding S, Zhu L, Li X, Lan M, Huang W, Lin X. The mutual interactions among Helicobacter pylori, chronic gastritis, and the gut microbiota: a population-based study in Jinjiang, Fujian. Front Microbiol 2024; 15:1365043. [PMID: 38419635 PMCID: PMC10899393 DOI: 10.3389/fmicb.2024.1365043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objectives Helicobacter pylori (H. pylori) is a type of bacteria that infects the stomach lining, and it is a major cause of chronic gastritis (CG). H. pylori infection can influence the composition of the gastric microbiota. Additionally, alterations in the gut microbiome have been associated with various health conditions, including gastrointestinal disorders. The dysbiosis in gut microbiota of human is associated with the decreased secretion of gastric acid. Chronic atrophic gastritis (CAG) and H. pylori infection are also causes of reduced gastric acid secretion. However, the specific details of how H. pylori infection and CG, especially for CAG, influence the gut microbiome can vary and are still an area of ongoing investigation. The incidence of CAG and infection rate of H. pylori has obvious regional characteristics, and Fujian Province in China is a high incidence area of CAG as well as H. pylori infection. We aimed to characterize the microbial changes and find potential diagnostic markers associated with infection of H. pylori as well as CG of subjects in Jinjiang City, Fujian Province, China. Participants Enrollment involved sequencing the 16S rRNA gene in fecal samples from 176 cases, adhering to stringent inclusion and exclusion criteria. For our study, we included healthy volunteers (Normal), individuals with chronic non-atrophic gastritis (CNAG), and those with CAG from Fujian, China. The aim was to assess gut microbiome dysbiosis based on various histopathological features. QIIME and LEfSe analyses were performed. There were 176 cases, comprising 126 individuals who tested negative for H. pylori and 50 who tested positive defined by C14 urea breath tests and histopathological findings in biopsies obtained through endoscopy. CAG was also staged by applying OLGIM system. Results When merging the outcomes from 16S rRNA gene sequencing results, there were no notable variations in alpha diversity among the following groups: Normal, CNAG, and CAG; OLGIM I and OLGIM II; and H. pylori positive [Hp (+)] and H. pylori negative [Hp (-)] groups. Beta diversity among different groups show significant separation through the NMDS diagrams. LEfSe analyses confirmed 2, 3, and 6 bacterial species were in abundance in the Normal, CNAG, and CAG groups; 26 and 2 species in the OLGIM I and OLGIM II group; 22 significant phylotypes were identified in Hp (+) and Hp (-) group, 21 and 1, respectively; 9 bacterial species exhibited significant differences between individuals with CG who were Hp (+) and those who were Hp (-). Conclusion The study uncovered notable distinctions in the characteristics of gut microbiota among the following groups: Normal, CNAG, and CAG; OLGIM I and OLGIM II; and Hp (+) and Hp (-) groups. Through the analysis of H. pylori infection in CNAG and CAG groups, we found the gut microbiota characteristics of different group show significant difference because of H. pylori infection. Several bacterial genera could potentially serve as diagnostic markers for H. pylori infection and the progression of CG.
Collapse
Affiliation(s)
- Hanjing Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Yingying Hu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Yanyu Huang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Shanshan Ding
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Long Zhu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Xinghui Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Meng Lan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| | - Weirong Huang
- Jinjiang Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Jinjiang, China
| | - Xuejuan Lin
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, China
| |
Collapse
|
5
|
Hartinger T, Kröger I, Neubauer V, Faas J, Doupovec B, Schatzmayr D, Zebeli Q. Zearalenone and Its Emerging Metabolites Promptly Affect the Rumen Microbiota in Holstein Cows Fed a Forage-Rich Diet. Toxins (Basel) 2023; 15:185. [PMID: 36977076 PMCID: PMC10053043 DOI: 10.3390/toxins15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The study investigated the short-term effects of a single oral bolus of zearalenone (ZEN) on the rumen microbiota and fermentation patterns in four rumen-cannulated Holstein cows fed a forage diet with daily 2 kg/cow concentrate. During the baseline day, cows received uncontaminated concentrate, followed by ZEN-contaminated concentrate on the second day, and again the uncontaminated concentrate on day three. Free rumen liquid (FRL) and particle-associated rumen liquid (PARL) were collected at different hours post-feeding on all days to analyze the prokaryotic community composition, absolute abundances of bacteria, archaea, protozoa, and anaerobic fungi, as well as short-chain fatty acid (SCFA) profiles. The ZEN reduced the microbial diversity in FRL but not in the PARL fraction. The abundance of protozoa was higher after ZEN exposure in PARL, which may be related to their strong biodegradation capacity that, therefore, promoted protozoal growth. In contrast, α-zearalenol might compromise anaerobic fungi as indicated by reduced abundances in FRL and fairly negative correlations in both fractions. Total SCFA significantly increased in both fractions after ZEN exposure, while the SCFA profile only changed marginally. Concluding, a single ZEN challenge caused changes in the rumen ecosystem soon after intake, including ruminal eukaryotes, that should be the subject of future studies.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Iris Kröger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Viktoria Neubauer
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johannes Faas
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Barbara Doupovec
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Dian Schatzmayr
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
6
|
Liu B, Li Y, Suo L, Zhang W, Cao H, Wang R, Luan J, Yu X, Dong L, Wang W, Xu S, Lu S, Shi M. Characterizing microbiota and metabolomics analysis to identify candidate biomarkers in lung cancer. Front Oncol 2022; 12:1058436. [PMID: 36457513 PMCID: PMC9705781 DOI: 10.3389/fonc.2022.1058436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 09/21/2023] Open
Abstract
Background Lung cancer is the leading malignant disease and cause of cancer-related death worldwide. Most patients with lung cancer had insignificant early symptoms so that most of them were diagnosed at an advanced stage. In addition to factors such as smoking, pollution, lung microbiome and its metabolites play vital roles in the development of lung cancer. However, the interaction between lung microbiota and carcinogenesis is lack of systematically characterized and controversial. Therefore, the purpose of this study was to excavate the features of the lung microbiota and metabolites in patients and verify potential biomarkers for lung cancer diagnosis. Methods Lung tissue flushing solutions and bronchoalveolar lavage fluid samples came from patients with lung cancer and non-lung cancer. The composition and variations of the microbiota and metabolites in samples were explored using muti-omics technologies including 16S rRNA amplicon sequencing, metagenomics and metabolomics. Results The metabolomics analysis indicated that 40 different metabolites, such as 9,10-DHOME, sphingosine, and cysteinyl-valine, were statistically significant between two groups (VIP > 1 and P < 0.05). These metabolites were significantly enriched into 11 signal pathways including sphingolipid, autophagy and apoptosis signaling pathway (P < 0.05). The analysis of lung microbiota showed that significant changes reflected the decrease of microbial diversity, changes of distribution of microbial taxa, and variability of the correlation networks of lung microbiota in lung cancer patients. In particular, we found that oral commensal microbiota and multiple probiotics might be connected with the occurrence and progression of lung cancer. Moreover, our study found 3 metabolites and 9 species with significantly differences, which might be regarded as the potential clinical diagnostic markers associated with lung cancer. Conclusions Lung microbiota and metabolites might play important roles in the pathogenesis of lung cancer, and the altered metabolites and microbiota might have the potential to be clinical diagnostic markers and therapeutic targets associated with lung cancer.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
- Department of Pulmonary and Critical Care Medicine, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yige Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lijun Suo
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Wei Zhang
- Department of Thoracic Surgery, Zibo Municipal Hospital, Zibo, China
| | - Hongyun Cao
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Ruicai Wang
- Department of Pathology, Zibo Municipal Hospital, Zibo, China
| | - Jiahui Luan
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Xiaofeng Yu
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shiyang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Shiyong Lu
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, China
| |
Collapse
|