1
|
Xu Y, Liu F, Wu F, Zou R, Zhao M, Wu J, Cheng B, Li X. Zinc finger protein LjRSDL regulates arbuscule degeneration of arbuscular mycorrhizal fungi in Lotus japonicus. PLANT PHYSIOLOGY 2024; 196:2905-2917. [PMID: 39268874 DOI: 10.1093/plphys/kiae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, appropriate regulation of the formation, maintenance, and degeneration of the arbuscule is essential for plants and fungi. In this study, we identified a Cysteine-2/Histidine-2 zinc finger protein (C2H2-ZFP)-encoding gene in Lotus japonicus named Regulator of Symbiosome Differentiation-Like (LjRSDL) that is required for arbuscule degeneration. Evolutionary analysis showed that homologs of LjRSDL exist in mycorrhizal flowering plants. We obtained ProLjRSDL::GUS transgenic hairy roots and showed that LjRSDL was strongly upregulated upon AM colonization, particularly at 18 days post-AM fungi inoculation and specifically expressed in arbuscule-containing cells. The mycorrhization rate increased in the ljrsdl mutant but decreased in LjRSDL-overexpressed L. japonicus. Interestingly, we observed higher proportions of large arbuscule in the ljrsdl mutant but lower proportions of larger arbuscule in LjRSDL-overexpressing plants. Transcriptome analyses indicated that genes involved in arbuscule degeneration were significantly changed upon the dysregulation of LjRSDL and that LjRSDL-dependent regulation in AM symbiosis is mainly via the hormone signal transduction pathway. LjRSDL, therefore, represents a C2H2-ZFP that negatively regulates AM symbiosis. Our study provides insight into understanding plant-AM fungal communication and AM symbiosis development.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Fulang Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Ruifan Zou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Manli Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Key Laboratory of Soil Ecology and Health, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Kumar S, Shanker A, Gupta D. pSATdb 2.0: a database of organellar common, polymorphic, and unique microsatellites. Funct Integr Genomics 2024; 24:213. [PMID: 39546046 DOI: 10.1007/s10142-024-01498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Microsatellites, or simple sequence repeats (SSRs), are repetitive DNA sequences typically composed of 1-6 nucleotides. These repetitive sequences are found in almost all genomes, including chloroplasts and mitochondria, and are widely distributed throughout the genomes. Microsatellites are highly polymorphic, and their length may differ from species to species. Consequently, microsatellites are widely used as molecular markers and play pivotal roles in various biological research. However, comprehensive information about the length variation of microsatellites in various organellar genome sequences is not available. Therefore, to provide mined information and explore the variability in the length of microsatellites across species, we developed a comprehensive resource named pSATdb 2.0 (polymorphic microSATellites database; https://bioinfo.icgeb.res.in/psatdb/ ). This upgraded version of its predecessor pSATdb provides comprehensive information on the frequency and distribution of 348,894 microsatellites identified in organellar genome sequences. These sequences originate from 15,681 organisms spanning 3252 genera within Metazoa and Viridiplantae. Remarkably, pSATdb 2.0 is the only database that offers information on common and polymorphic microsatellites detected between organisms, along with unique microsatellites specific to each genus. Furthermore, this database features unrestricted access and includes pioneer functionalities such as Advanced Search, BLAST, and JBrowse, which facilitate user-specific microsatellite search and its visualization within the database. The pSATdb holds immense potential for the research community to support diverse studies, including genetic diversity, genetic mapping, marker-assisted selection, and comparative population investigations.
Collapse
Affiliation(s)
- Sonu Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, 824236, India.
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
3
|
Ou T, Wu Z, Tian C, Yang Y, Li Z. Complete mitochondrial genome of Agropyron cristatum reveals gene transfer and RNA editing events. BMC PLANT BIOLOGY 2024; 24:830. [PMID: 39232676 PMCID: PMC11373303 DOI: 10.1186/s12870-024-05558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND As an important forage in arid and semi-arid regions, Agropyron cristatum provides livestock with exceptionally high nutritional value. Additionally, A. cristatum exhibits outstanding genetic characteristics to endure drought and disease. Therefore, rich genetic diversity serves as a cornerstone for the improvement of major food crops. The purposes of this study were to systematically describe mitogenome of A.cristatum and preliminarily analyze its internal variations. RESULT The A. cristatum mitogenome was a single-ring molecular structure of 381,065 bp that comprised 52 genes, including 35 protein-coding, 3 rRNA and 14 tRNA genes. Among these, two pseudoprotein-coding genes and multiple copies of tRNA genes were observed. A total of 320 repetitive sequences was found to cover more than 10% of the mitogenome (105 simple sequences, 185 dispersed and 30 tandem repeats), which led to a large number of fragment rearrangements in the mitogenome of A. cristatum. Leucine was the most frequent amino acid (n = 1087,10.8%) in the protein-coding genes of A. cristatum mitogenome, and the highest usage codon was ATG (initiation codon). The number of A/T changes at the third base of the codon was much higher than that of G/C. Among 23 PCGs, the range of Pi values is from 0.0021 to 0.0539, with an average of 0.013. Additionally, 81 RNA editing sites were predicted, which were considerably fewer than those reported in other plant mitogenomes. Most of the RNA editing site base positions were concentrated at the first and second codon bases, which were C to T transitions. Moreover, we identified 95 sequence fragments (total length of 34, 343 bp) that were transferred from the chloroplast to mitochondria genes, introns, and intergenic regions. The stability of the tRNA genes was maintained during this process. Selection pressure analysis of 23 protein-coding genes shared by 15 Poaceae plants, showed that most genes were subjected to purifying selection during evolution, whereas rps4, cob, mttB, and ccmB underwent positive selection in different plants. Finally, a phylogenetic tree was constructed based on 22 plant mitogenomes, which showed that Agropyron plants have a high degree of independent heritability in Triticeae. CONCLUSION The findings of this study provide new data for a better understanding of A. cristatum genes, and demonstrate that mitogenomes are suitable for the study of plant classifications, such as those of Agropyron. Moreover, it provides a reference for further exploration of the phylogenetic relationships within Agropyron species, and establishes a theoretical basis for the subsequent development and utilization of A. cristatum plant germplasm resources.
Collapse
Affiliation(s)
- Taiyou Ou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China.
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
4
|
Liu Q, Dai J, Chen J, Liu Z, Lin Y, Qiu G, Gao X, Zhang R, Zhu S. Comparative analysis the chloroplast genomes of Celastrus (Celastraceae) species: Provide insights into molecular evolution, species identification and phylogenetic relationships. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155770. [PMID: 38851103 DOI: 10.1016/j.phymed.2024.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND The genus Celastrus is an important medicinal plant resource. The similarity of morphology and the lack of complete chloroplast genome analysis have significantly impeded the exploration of species identification, molecular evolution and phylogeny of Celastrus. PURPOSE In order to resolve the phylogenic controversy of Celastrus species, the chloroplast genome comparative analysis was performed to provide genetic evidence. METHODS In this study, we collected and sequenced ten chloroplast genomes of Celastrus species from China and downloaded three chloroplast genomes from the databases. The chloroplast genomes were compared and analyzed to explore their characteristics and evolution. Furthermore, the phylogenetic relationships of Celastrus species were inferred based on the whole chloroplast genomes and protein-coding genes. RESULTS All the 13 Celastrus species chloroplast genomes showed a typical quadripartite structure with genome sizes ranging from 155,113 to 157,366 bp. The intron loss of the rps16 gene occurred in all the 13 Celastrus species. The GC content, gene sequence, repeat types and codon bias pattern were highly conserved. Ten highly variation regions were identified, which can be used as potential DNA markers in molecular identification of Celastrus species. Eight genes, including accD, atp4, ndhB, rpoC1, rbcL, rpl2, rpl20 and ycf1, were detected to experience positive selection. Phylogenetic analysis showed that Celastrus was a monophyletic group and Tripterygium was the closest sister-group. Noteworthy, C. gemmatus Loes. and C. orbiculatus Thunb. can be discriminated using the chloroplast genome as a super barcode. The comparative and phylogenetic analysis results proposed that C. tonkinensis Pitard. was the synonym of C. hindsii Benth. CONCLUSION The comparative analysis of the Celastrus chloroplast genomes can provide comprehensive genetic evidence for molecular evolution, species identification and phylogenetic relationships.
Collapse
Affiliation(s)
- Qiaozhen Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiwen Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuexia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Miao X, Yang W, Li D, Wang A, Li J, Deng X, He L, Niu J. Assembly and comparative analysis of the complete mitochondrial and chloroplast genome of Cyperus stoloniferus (Cyperaceae), a coastal plant possessing saline-alkali tolerance. BMC PLANT BIOLOGY 2024; 24:628. [PMID: 38961375 PMCID: PMC11220973 DOI: 10.1186/s12870-024-05333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Cyperus stoloniferus is an important species in coastal ecosystems and possesses economic and ecological value. To elucidate the structural characteristics, variation, and evolution of the organelle genome of C. stoloniferus, we sequenced, assembled, and compared its mitochondrial and chloroplast genomes. RESULTS We assembled the mitochondrial and chloroplast genomes of C. stoloniferus. The total length of the mitochondrial genome (mtDNA) was 927,413 bp, with a GC content of 40.59%. It consists of two circular DNAs, including 37 protein-coding genes (PCGs), 22 tRNAs, and five rRNAs. The length of the chloroplast genome (cpDNA) was 186,204 bp, containing 93 PCGs, 40 tRNAs, and 8 rRNAs. The mtDNA and cpDNA contained 81 and 129 tandem repeats, respectively, and 346 and 1,170 dispersed repeats, respectively, both of which have 270 simple sequence repeats. The third high-frequency codon (RSCU > 1) in the organellar genome tended to end at A or U, whereas the low-frequency codon (RSCU < 1) tended to end at G or C. The RNA editing sites of the PCGs were relatively few, with only 9 and 23 sites in the mtDNA and cpDNA, respectively. A total of 28 mitochondrial plastid DNAs (MTPTs) in the mtDNA were derived from cpDNA, including three complete trnT-GGU, trnH-GUG, and trnS-GCU. Phylogeny and collinearity indicated that the relationship between C. stoloniferus and C. rotundus are closest. The mitochondrial rns gene exhibited the greatest nucleotide variability, whereas the chloroplast gene with the greatest nucleotide variability was infA. Most PCGs in the organellar genome are negatively selected and highly evolutionarily conserved. Only six mitochondrial genes and two chloroplast genes exhibited Ka/Ks > 1; in particular, atp9, atp6, and rps7 may have undergone potential positive selection. CONCLUSION We assembled and validated the mtDNA of C. stoloniferus, which contains a 15,034 bp reverse complementary sequence. The organelle genome sequence of C. stoloniferus provides valuable genomic resources for species identification, evolution, and comparative genomic research in Cyperaceae.
Collapse
Affiliation(s)
- Xiaorong Miao
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenwen Yang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Donghai Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Juanyun Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China
| | - Xu Deng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Junqi Niu
- College of Agriculture, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
6
|
Li S, Tian C, Hu H, Yang Y, Ma H, Liu Q, Liu L, Li Z, Wu Z. Characterization and Comparative Analysis of Complete Chloroplast Genomes of Four Bromus (Poaceae, Bromeae) Species. Genes (Basel) 2024; 15:815. [PMID: 38927750 PMCID: PMC11202509 DOI: 10.3390/genes15060815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Bromus (Poaceae Bromeae) is a forage grass with high adaptability and ecological and economic value. Here, we sequenced Bromus ciliatus, Bromus benekenii, Bromus riparius, and Bromus rubens chloroplast genomes and compared them with four previously described species. The genome sizes of Bromus species ranged from 136,934 bp (Bromus vulgaris) to 137,189 bp (Bromus ciliates, Bromus biebersteinii), with a typical quadripartite structure. The studied species had 129 genes, consisting of 83 protein-coding, 38 tRNA-coding, and 8 rRNA-coding genes. The highest GC content was found in the inverted repeat (IR) region (43.85-44.15%), followed by the large single-copy (LSC) region (36.25-36.65%) and the small single-copy (SSC) region (32.21-32.46%). There were 33 high-frequency codons, with those ending in A/U accounting for 90.91%. A total of 350 simple sequence repeats (SSRs) were identified, with single-nucleotide repeats being the most common (61.43%). A total of 228 forward and 141 palindromic repeats were identified. No reverse or complementary repeats were detected. The sequence identities of all sequences were very similar, especially with respect to the protein-coding and inverted repeat regions. Seven highly variable regions were detected, which could be used for molecular marker development. The constructed phylogenetic tree indicates that Bromus is a monophyletic taxon closely related to Triticum. This comparative analysis of the chloroplast genome of Bromus provides a scientific basis for species identification and phylogenetic studies.
Collapse
Affiliation(s)
- Shichao Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunyu Tian
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Haihong Hu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Huiling Ma
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Lemeng Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (S.L.)
| |
Collapse
|
7
|
Zhou C, Tao F, Long R, Yang X, Wu X, Xiang L, Zhou X, Girdthai T. The complete chloroplast genome of Mussaenda pubescens and phylogenetic analysis. Sci Rep 2024; 14:9131. [PMID: 38644374 PMCID: PMC11033256 DOI: 10.1038/s41598-024-55010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 04/23/2024] Open
Abstract
The chloroplast (cp) genome sequence of Mussaenda pubescens, a promising resource that is used as a traditional medicine and drink, is important for understanding the phylogenetic relationships among the Mussaenda family and genetic improvement and reservation. This research represented the first comprehensive description of the morphological characteristics of M. pubescens, as well as an analysis of the complete cp genome and phylogenetic relationship. The results indicated a close relationship between M. pubescens and M. hirsutula based on the morphological characteristics of the flower and leaves. The cp was sequenced using the Illumina NovaSeq 6000 platform. The results indicated the cp genome of M. pubescens spanned a total length of 155,122 bp, including a pair of inverted repeats (IRA and IRB) with a length of 25,871 bp for each region, as well as a large single-copy (LSC) region and a small single-copy (SSC) region with lengths of 85,370 bp and 18,010 bp, respectively. The results of phylogenetic analyses demonstrated that species within the same genus displayed a tendency to group closely together. It was suggested that Antirhea, Cinchona, Mitragyna, Neolamarckia, and Uncaria might have experienced an early divergence. Furthermore, M. hirsutula showed a close genetic connection to M. pubescens, with the two species having partially overlapping distributions in China. This study presents crucial findings regarding the identification, evolution, and phylogenetic research on Mussaenda plants, specifically targeting M. pubescens.
Collapse
Affiliation(s)
- Caibi Zhou
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Fang Tao
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rupiao Long
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Xiaoting Yang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Xingli Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Lan Xiang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Xiaolu Zhou
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Teerayoot Girdthai
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
8
|
Zhang H, Liu P, Zhang Y, Sun H, Wang Y, Gao Z, Liu X. Chloroplast genome of Calamus tetradactylus revealed rattan phylogeny. BMC Genom Data 2024; 25:34. [PMID: 38528505 PMCID: PMC10962098 DOI: 10.1186/s12863-024-01222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Calamus tetradactylus, a species primarily distributed in Vietnam, Laos, and southern China, is highly valued for its utilization as a small-diameter rattan material. While its physical and mechanical properties have been extensively studied, the genomic characteristics of C. tetradactylus remain largely unexplored. RESULTS To gain a better understanding of its chloroplast genomic features and evolutionary relationships, we conducted sequencing and assembly of the chloroplast genome of C. tetradactylus. The complete chloroplast genome exhibited the typical highly conserved quartile structure, with specific variable regions identified in the single-copy region (like psbF-psbE, π = 0.10327, ndhF-rpl32, π = 0.10195), as well as genes such as trnT-GGU (π = 0.05764) and ycf1 (π = 0.03345) and others. We propose that these regions and genes hold potential as markers for species identification. Furthermore, phylogenetic analysis revealed that C. tetradactylus formed a distinct clade within the phylogenetic tree, alongside other Calamus species, and C. tetradactylus was most closely related to C. walkeri, providing support for the monophyly of the genus. CONCLUSION The analysis of the chloroplast genome conducted in this study provides valuable insights that can contribute to the improvement of rattan breeding programs and facilitate sustainable development in the future.
Collapse
Affiliation(s)
| | - Peng Liu
- BGI Research, Beijing, 102601, China
| | - Yi Zhang
- School of nursing, Chongqing Medical and Pharmaceutical College, P. R, Chongqing, China
| | - Huayu Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yue Wang
- BGI Research, Beijing, 102601, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Xin Liu
- BGI Research, Beijing, 102601, China.
| |
Collapse
|
9
|
Hu Q, Qian R, Zhang Y, Ma X, Ye Y, Zhang X, Lin L, Liu H, Zheng J. Complete chloroplast genome molecular structure, comparative and phylogenetic analyses of Sphaeropteris lepifera of Cyatheaceae family: a tree fern from China. Sci Rep 2023; 13:1356. [PMID: 36693990 PMCID: PMC9873718 DOI: 10.1038/s41598-023-28432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Sphaeropteris lepifera is a tree fern in the Cyatheaceae, a family that has played an important role in the evolution of plant systems. This study aimed to analyze the complete chloroplast genome of S. lepifera and compared it with previously published chloroplast genomes Cyatheaceae family. The chloroplast genome of S. lepifera comprised 162,114 bp, consisting of a large single copy (LSC) region of 86,327 bp, a small single copy (SSC) region of 27,731 bp and a pair of inverted repeats (IRa and IRb) of 24,028 bp each. The chloroplast genome encoded 129 genes, comprising 32 transfer RNAs, 8 ribosomal RNAs, and 89 protein-coding genes. Comparison of the genomes of 7 Cyatheaceae plants showed that the chloroplast genome of S. lepifera was missing the gene trnV-UAC. Expansion of the SSC region led to the difference in the chloroplast genome size of S. lepifera. Eight genes, atpI, ccsA, petA, psaB, rpl16, rpoA, rpoC1, and ycf2 have high nucleic acid diversity and can be regarded as potential molecular markers. The genes trnG-trnR and atpB were suitable for DNA barcodes between different communities of S. lepifera. The S. lepifera groups in Zhejiang Province probably diffused from Pingtan and Ningde, Fujian. The results will provide a basis for species identification, biological studies, and endangerment mechanism of S. lepifera.
Collapse
Affiliation(s)
- Qingdi Hu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Renjuan Qian
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Yanjun Zhang
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang, China
| | - Xiaohua Ma
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Youju Ye
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Xule Zhang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Lin Lin
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Hongjian Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China
| | - Jian Zheng
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
10
|
Qin HH, Cai J, Liu CK, Zhou RX, Price M, Zhou SD, He XJ. The plastid genome of twenty-two species from Ferula, Talassia, and Soranthus: comparative analysis, phylogenetic implications, and adaptive evolution. BMC PLANT BIOLOGY 2023; 23:9. [PMID: 36604614 PMCID: PMC9814190 DOI: 10.1186/s12870-022-04027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Ferula genus encompasses 180-185 species and is one of the largest genera in Apiaceae, with many of Ferula species possessing important medical value. The previous studies provided more information for Ferula, but its infrageneric relationships are still confusing. In addition, its genetic basis of its adaptive evolution remains poorly understood. Plastid genomes with more variable sites have the potential to reconstruct robust phylogeny in plants and investigate the adaptive evolution of plants. Although chloroplast genomes have been reported within the Ferula genus, few studies have been conducted using chloroplast genomes, especially for endemic species in China. RESULTS Comprehensively comparative analyses of 22 newly sequenced and assembled plastomes indicated that these plastomes had highly conserved genome structure, gene number, codon usage, and repeats type and distribution, but varied in plastomes size, GC content, and the SC/IR boundaries. Thirteen mutation hotspot regions were detected and they would serve as the promising DNA barcodes candidates for species identification in Ferula and related genera. Phylogenomic analyses with high supports and resolutions showed that Talassia transiliensis and Soranthus meyeri were nested in the Ferula genus, and thus they should be transferred into the Ferula genus. Our phylogenies also indicated the monophyly of subgenera Sinoferula and subgenera Narthex in Ferula genus. Twelve genes with significant posterior probabilities for codon sites were identified in the positively selective analysis, and their function may relate to the photosystem II, ATP subunit, and NADH dehydrogenase. Most of them might play an important role to help Ferula species adapt to high-temperatures, strong-light, and drought habitats. CONCLUSION Plastome data is powerful and efficient to improve the support and resolution of the complicated Ferula phylogeny. Twelve genes with significant posterior probabilities for codon sites were helpful for Ferula to adapt to the harsh environment. Overall, our study supplies a new perspective for comprehending the phylogeny and evolution of Ferula.
Collapse
Affiliation(s)
- Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ren-Xiu Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Megan Price
- Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Lan Z, Shi Y, Yin Q, Gao R, Liu C, Wang W, Tian X, Liu J, Nong Y, Xiang L, Wu L. Comparative and phylogenetic analysis of complete chloroplast genomes from five Artemisia species. FRONTIERS IN PLANT SCIENCE 2022; 13:1049209. [PMID: 36479523 PMCID: PMC9720176 DOI: 10.3389/fpls.2022.1049209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Artemisia Linn. is a large genus within the family Asteraceae that includes several important medicinal plants. Because of their similar morphology and chemical composition, traditional identification methods often fail to distinguish them. Therefore, developing an effective identification method for Artemisia species is an urgent requirement. In this study, we analyzed 15 chloroplast (cp) genomes, including 12 newly sequenced genomes, from 5 Artemisia species. The cp genomes from the five Artemisia species had a typical quadripartite structure and were highly conserved across species. They had varying lengths of 151,132-151,178 bp, and their gene content and codon preferences were similar. Mutation hotspot analysis identified four highly variable regions, which can potentially be used as molecular markers to identify Artemisia species. Phylogenetic analysis showed that the five Artemisia species investigated in this study were sister branches to each other, and individuals of each species formed a monophyletic clade. This study shows that the cp genome can provide distinguishing features to help identify closely related Artemisia species and has the potential to serve as a universal super barcode for plant identification.
Collapse
Affiliation(s)
- Zhaohui Lan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenting Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xufang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiawei Liu
- Department of product development, Hubei Aiaitie Health Technology Co., LTD, Huanggang, China
| | - Yiying Nong
- Department of product development, Hubei Aiaitie Health Technology Co., LTD, Huanggang, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Leymus (Triticodae, Poaceae). Genes (Basel) 2022; 13:genes13081425. [PMID: 36011336 PMCID: PMC9408388 DOI: 10.3390/genes13081425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Leymus is a perennial genus that belongs to the tribe Triticeae (Poaceae) which has an adaptive capacity to ecological conditions and strong resistance to cold, drought, and salinity. Most Leymus species are fine herbs that can be used for agriculture, conservation, and landscaping. Due to confusion taxonomy within genera, the complete chloroplast (cp) genome of 13 Leymus species was sequenced, assembled, and compared with those of three other previously published Leymus species (Leymus condensatus, Leymus angustus, and Leymus mollis) to clarify the issue. Overall, the whole cp genome size ranged between 135,057 (L. condensatus) and 136,906 bp (Leymus coreanus) and showed a typical quadripartite structure. All studied species had 129 genes, including 83 protein-coding genes, 38 transfer RNAs, and 8 ribosomal RNAs. In total, 800 tandem repeats and 707 SSR loci were detected, most of which were distributed in the large single-copy region, followed by the inverted repeat (IR) and small single-copy regions. The sequence identity of all sequences was highly similar, especially concerning the protein-coding and IR regions; in particular, the protein-coding regions were significantly similar to those in the IR regions, regardless of small sequence differences in the whole cp genome. Moreover, the coding regions were more conserved than the non-coding regions. Comparisons of the IR boundaries showed that IR contraction and expansion events were reflected in different locations of rpl22, rps19, ndhH, and psbA genes. The close phylogenetic relationship of Leymus and Psathyrostachys indicated that Psathyrostachys possibly is the donor of the Ns genome sequence identified in Leymus. Altogether, the complete cp genome sequence of Leymus will lay a solid foundation for future population genetics and phylogeography studies, as well as for the analysis of the evolution of economically valuable plants.
Collapse
|