1
|
Pandey S. Agronomic potential of plant-specific Gγ proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:337-347. [PMID: 38623166 PMCID: PMC11016034 DOI: 10.1007/s12298-024-01428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132 USA
| |
Collapse
|
2
|
Bai F, Ma H, Cai Y, Shahid MQ, Zheng Y, Lang C, Chen Z, Wu J, Liu X, Wang L. Natural allelic variation in GRAIN SIZE AND WEIGHT 3 of wild rice regulates the grain size and weight. PLANT PHYSIOLOGY 2023; 193:502-518. [PMID: 37249047 PMCID: PMC10469372 DOI: 10.1093/plphys/kiad320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Grain size is important for yield in rice (Oryza sativa L.). Although many genes involved in grain size have been isolated, few can be used in breeding due to their interactions and phenotypic effects. Here, we describe natural variation in the granule-type quantitative trait locus GRAIN SIZE AND WEIGHT 3 (GSW3) located on chromosome 3 in wild rice (Oryza rufipogon Griff.) that encodes a GTPase-regulated protein and negatively regulates grain length, grain width, and 1,000-grain weight. The insertion of a 232-bp fragment of the genomic sequence in the wild rice, a natural allelic variant gene (GSW3), increased the expression levels and reduced the grain length and width and 1,000-grain weight. Knockout of GSW3 in the wild rice inbred line Huaye 3 increased the grain length and width and 1,000-grain weight. Introducing GSW3Huaye3 into cultivated rice line KJ01 and overexpressing GSW3Huaye3 in Huaye 3 resulted in reduced grain length and width and 1,000-grain weight, and grain size and 1,000-grain weight changes were closely related to GSW3 expression levels. GSW3 regulated the grain length and width simultaneously by promoting grain glume cell division and longitudinal and transverse cell growth. GSW3 was also involved in regulating the gibberellic acid signaling pathway and negatively regulated plant growth. Furthermore, a critical SNP in the GSW3 coding region was obviously correlated with grain size variation in a core collection of cultivated rice. This SNP resulted in an amino acid substitution from Gln to Arg at position 161 in GSW3, which reduced the grain size. Our study shows that GSW3 negatively regulates the grain shape, which could explain different grain shapes in modern cultivars and wild rice. GSW3 may also be used for breeding rice varieties with improved grain shapes and higher yield.
Collapse
Affiliation(s)
- Feng Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huijin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yichang Cai
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yuebin Zheng
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chuan Lang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Hu S, Hu Y, Mei H, Li J, Xuan W, Jeyaraj A, Zhao Z, Zhao Y, Han R, Chen X, Li X. Genome-wide analysis of long non-coding RNAs (lncRNAs) in tea plants ( Camellia sinensis) lateral roots in response to nitrogen application. FRONTIERS IN PLANT SCIENCE 2023; 14:1080427. [PMID: 36909382 PMCID: PMC9998519 DOI: 10.3389/fpls.2023.1080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Tea (Camellia sinensis) is one of the significant cash crops in China. As a leaf crop, nitrogen supply can not only increase the number of new shoots and leaves but also improve the tenderness of the former. However, a conundrum remains in science, which is the molecular mechanism of nitrogen use efficiency, especially long non-coding RNA (lncRNA). In this study, a total of 16,452 lncRNAs were identified through high-throughput sequencing analysis of lateral roots under nitrogen stress and control conditions, of which 9,451 were differentially expressed lncRNAs (DE-lncRNAs). To figure out the potential function of nitrogen-responsive lncRNAs, co-expression clustering was employed between lncRNAs and coding genes. KEGG enrichment analysis revealed nitrogen-responsive lncRNAs may involve in many biological processes such as plant hormone signal transduction, nitrogen metabolism and protein processing in endoplasmic reticulum. The expression abundance of 12 DE-lncRNAs were further verified by RT-PCR, and their expression trends were consistent with the results of RNA-seq. This study expands the research on lncRNAs in tea plants, provides a novel perspective for the potential regulation of lncRNAs on nitrogen stress, and valuable resources for further improving the nitrogen use efficiency of tea plants.
Collapse
Affiliation(s)
- Shunkai Hu
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yimeng Hu
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jianjie Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Xuan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anburaj Jeyaraj
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Zhao
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuxin Zhao
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rui Han
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xuan Chen
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinghui Li
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Liang W, Du H, Pang B, Cheng J, He B, Hu F, Lv Y, Zhang Y. High-density genetic mapping identified QTLs for anaerobic germination tolerance in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1076600. [PMID: 36618635 PMCID: PMC9822775 DOI: 10.3389/fpls.2022.1076600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The tolerance of rice anaerobic germination (AG) is the main limiting factor for direct seeding application, yet the genetics mechanism is still in its infancy. In the study, recombinant inbred lines population of TD70 Japonica cultivar and Kasalath Indica cultivar, was employed to construct a high-density genetic map by whole genome re-sequencing. As a result, a genetic map containing 12,328 bin-markers was constructed and a total of 50 QTLs were then detected for CL(coleoptile length), CD (coleoptile diameter), CSA (coleoptile surface area) and CV (coleoptile volume) related traits in the two stages of anaerobic treatment using complete interval mapping method (inclusive composite interval mapping, ICIM). Among the four traits associated with coleoptile, coleoptile volume had the largest number of QTLs (17), followed by coleoptile diameter (16), and coleoptile length had 5 QTLs. These QTLs could explain phenotypic contribution rates ranging from 0.34% to 11.17% and LOD values ranging from 2.52 to 11.57. Combined with transcriptome analysis, 31 candidate genes were identified. Furthermore, 12 stable QTLs were used to detect the aggregation effect analysis. Besides, It was found that individuals with more aggregation synergistic alleles had higher phenotypic values in different environments. Totally, high-density genetic map, QTL mapping and aggregation effect analysis of different loci related to the anaerobic germination of rice seeds were conducted to lay a foundation for the fine mapping of related genes in subsequent assisted breeding.
Collapse
Affiliation(s)
- Wenhua Liang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongyang Du
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Science, Hefei, China
| | - Bingwen Pang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Junjie Cheng
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Bing He
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
5
|
Chen X, Wang C, He B, Wan Z, Zhao Y, Hu F, Lv Y. Transcriptome Profiling of Transposon-Derived Long Non-coding RNAs Response to Hormone in Strawberry Fruit Development. FRONTIERS IN PLANT SCIENCE 2022; 13:915569. [PMID: 35783970 PMCID: PMC9244616 DOI: 10.3389/fpls.2022.915569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 06/01/2023]
Abstract
Strawberry is an economically grown horticulture crop required for fruit consumption. The ripening of its fruit is a complex biological process regulated by various hormones. Abscisic acid (ABA) is a critical phytohormone involved in fruit ripening. However, little is known about the long non-coding RNAs (LncRNAs), especially transposon-derived LncRNA (TE-lncRNA), response to hormones during fruit ripening in octoploid strawberry. In the study, the transcriptome data of developing strawberry fruits treated with ABA and its inhibitor Nordihydroguaiaretic acid (NGDA) were analyzed to identify responsive LncRNAs and coding genes. A total of 14,552 LncRNAs were identified, including 8,617 transposon-derived LncRNAs (TE-LncRNAs), 412 LncRNAs (282 TE-LncRNAs), and 382 ABA-sensitive LncRNAs (231 TE-LncRNAs). Additionally, a weighted co-expression network analysis constructed 27 modules containing coding RNAs and LncRNAs. Seven modules, including "MEdarkorange" and "MElightyellow" were significantly correlated with ABA/NDGA treatments, resulting in 247 hub genes, including 21 transcription factors and 22 LncRNAs (15 TE-LncRNAs). Gene ontology enrichment analysis further revealed that ABA/NDGA-responsive modules, including LncRNAs, were associated with various metabolic pathways involved in strawberry fruit development and ripening, including lipid metabolism, organic acid metabolism, and phenylpropanoid metabolism. The current study identifies many high-confidence LncRNAs in strawberry, with a percentage of them being ABA pathway-specific and 22 hub-responsive LncRNAs, providing new insight into strawberry or other Rosaceae crop fruit ripening.
Collapse
Affiliation(s)
- Xi Chen
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Zhenjiang, China
- Engineering and Technical Center for Modern Horticulture, Jurong, China
| | - Chengdong Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Bing He
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zifan Wan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Zhenjiang, China
- Engineering and Technical Center for Modern Horticulture, Jurong, China
| | - Yukun Zhao
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Zhenjiang, China
- Engineering and Technical Center for Modern Horticulture, Jurong, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|