1
|
Zhou N, Mei CM, Chen FG, Zhao YW, Ma MG, Li WD. Isolation and Identification of Alkaloid Genes from the Biomass of Fritillaria taipaiensis P.Y. Li. Metabolites 2024; 14:590. [PMID: 39590826 PMCID: PMC11596783 DOI: 10.3390/metabo14110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Fritillaria taipaiensis P.Y. Li is a valuable traditional Chinese medicinal herb that utilizes bulbs as medicine, which contain multiple alkaloids. Biomass, as a sustainable resource, has promising applications in energy, environmental, and biomedical fields. Recently, the biosynthesis and regulatory mechanisms of the main biomass components of biomass have become a prominent research topic. METHODS In this article, we explored the differences in the heterosteroidal alkaloid components of F. taipaiensis biomass using liquid chromatography-mass spectrometry and high-throughput transcriptome sequencing. RESULTS The experimental results demonstrated significant differences in the eight types of heterosteroidal alkaloid components among the biomass of F. taipaiensis, including peimisine, imperialine, peimine, peiminine, ebeinone, ebeiedine, ebeiedinone, and forticine. Transcriptomic analysis revealed substantial significant differences in gene expression patterns in the various samples. Three catalytic enzyme-coding genes, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), and terpene synthase (TPS), were speculated to contribute to the regulation of the differential accumulation of alkaloid synthesis in F. taipaiensis bulbs. A strong positive correlation was observed between the transcriptional level of the TPS gene and the alkaloid content of F. taipaiensis biomass, suggesting that TPS may be a key gene in the biosynthesis pathway of alkaloids. This finding can be used for subsequent gene function verification and molecular regulatory network analysis. CONCLUSIONS This work provides fundamental data and novel insights for the subsequent research on alkaloid biosynthesis in F. taipaiensis.
Collapse
Affiliation(s)
- Nong Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.Z.); (C.-M.M.); (F.-G.C.); (Y.-W.Z.)
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Chun-Mei Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.Z.); (C.-M.M.); (F.-G.C.); (Y.-W.Z.)
| | - Fu-Gui Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.Z.); (C.-M.M.); (F.-G.C.); (Y.-W.Z.)
| | - Yu-Wei Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.Z.); (C.-M.M.); (F.-G.C.); (Y.-W.Z.)
| | - Ming-Guo Ma
- College of Materials and Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei-Dong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.Z.); (C.-M.M.); (F.-G.C.); (Y.-W.Z.)
| |
Collapse
|
2
|
Yang L, Sun J, Zhang T, Chu D, Zhou T, Wang X. Comparative transcriptome analysis and HPLC reveal candidate genes associated with synthesis of bioactive constituents in Rheum palmatum complex. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1239-1252. [PMID: 39184557 PMCID: PMC11341509 DOI: 10.1007/s12298-024-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
Content of bioactive constituents is one of the most important characteristics in Rheum palmatum complex. Increasing ingredient content through genetic breeding is an effective strategy to solve the contradiction between large market demand and resource depletion, but currently hampered by limited understanding of metabolite biosynthesis in rhubarb. In this study, deep transcriptome sequencing was performed to compare roots, stems, and leaves of two Rheum species (PL and ZK) that show different levels of anthraquinone contents. Approximately 0.52 billion clean reads were assembled into 58,782 unigenes, of which around 80% (46,550) were found to be functionally annotated in public databases. Expression patterns of differential unigenes between PL and ZK were thoroughly investigated in different tissues. This led to the identification of various differentially expressed genes (DEGs) involved in shikimate, MEP, MVA, and polyketide pathways, as well as those involved in catechin and gallic acid biosynthesis. Some structural enzyme genes were shown to be significantly up-regulated in roots of ZK with high anthraquinone content, implying potential central roles in anthraquinone synthesis. Taken together, our study provides insights for future functional studies to unravel the mechanisms underlying metabolite biosynthesis in rhubarb. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01492-z.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Jiangyan Sun
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Tianyi Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061 China
| |
Collapse
|
3
|
Gong W, Xiong L, Fu H. Combined analysis of the metabolome and transcriptome reveals the metabolic characteristics and candidate genes involved in alkaloid metabolism in Heuchera micrantha Douglas ex Lindl. BMC PLANT BIOLOGY 2024; 24:639. [PMID: 38971732 PMCID: PMC11227142 DOI: 10.1186/s12870-024-05363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Alkaloids, important secondary metabolites produced by plants, play a crucial role in responding to environmental stress. Heuchera micrantha, a well-known plant used in landscaping, has the ability to purify air, and absorb toxic and radioactive substances, showing strong environmental adaptability. However, there is still limited understanding of the accumulation characteristics and metabolic mechanism of alkaloids in H. micrantha. RESULTS In this study, four distinct varieties of H. micrantha were used to investigate the accumulation and metabolic traits of alkaloids in its leaves. We conducted a combined analysis of the plant's metabolome and transcriptome. Our analysis identified 44 alkaloids metabolites in the leaves of the four H. micrantha varieties, with 26 showing different levels of accumulation among the groups. The HT and JQ varieties exhibited higher accumulation of differential alkaloid metabolites compared to YH and HY. We annotated the differential alkaloid metabolites to 22 metabolic pathways, including several alkaloid metabolism. Transcriptome data revealed 5064 differentially expressed genes involved in these metabolic pathways. Multivariate analysis showed that four key metabolites (N-hydroxytryptamine, L-tyramine, tryptamine, and 2-phenylethylamine) and three candidate genes (Cluster-15488.116815, Cluster-15488.146268, and Cluster-15488.173297) that merit further investigation. CONCLUSIONS This study provided preliminarily insight into the molecular mechanism of the biosynthesis of alkaloids in H. micrantha. However, further analysis is required to elucidate the specific regulatory mechanisms of the candidate gene involved in the synthesis of key alkaloid metabolites. In summary, our findings provide important information about how alkaloid metabolites build up and the metabolic pathways involved in H. micrantha varieties. This gives us a good starting point for future research on the regulation mechanism, and development, and utilization of alkaloids in H. micrantha.
Collapse
Affiliation(s)
- Weichang Gong
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Lina Xiong
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China.
| |
Collapse
|
4
|
Tabatabaeipour SN, Shiran B, Ravash R, Niazi A, Ebrahimie E. Comprehensive transcriptomic meta-analysis unveils new responsive genes to methyl jasmonate and ethylene in Catharanthusroseus. Heliyon 2024; 10:e27132. [PMID: 38449649 PMCID: PMC10915408 DOI: 10.1016/j.heliyon.2024.e27132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
In Catharanthus roseus, vital plant hormones, namely methyl jasmonate (MeJA) and ethylene, serve as abiotic triggers, playing a crucial role in stimulating the production of specific secondary compounds with anticancer properties. Understanding how plants react to various stresses, stimuli, and the pathways involved in biosynthesis holds significant promise. The application of stressors like ethylene and MeJA induces the plant's defense mechanisms, leading to increased secondary metabolite production. To delve into the essential transcriptomic processes linked to hormonal responses, this study employed an integrated approach combining RNA-Seq data meta-analysis and system biology methodologies. Furthermore, the validity of the meta-analysis findings was confirmed using RT-qPCR. Within the meta-analysis, 903 genes exhibited differential expression (DEGs) when comparing normal conditions to those of the treatment. Subsequent analysis, encompassing gene ontology, KEGG, TF, and motifs, revealed that these DEGs were actively engaged in multiple biological processes, particularly in responding to various stresses and stimuli. Additionally, these genes were notably enriched in diverse biosynthetic pathways, including those related to TIAs, housing valuable medicinal compounds found in this plant. Furthermore, by conducting co-expression network analysis, we identified hub genes within modules associated with stress response and the production of TIAs. Most genes linked to the biosynthesis pathway of TIAs clustered within three specific modules. Noteworthy hub genes, including Helicase ATP-binding domain, hbdA, and ALP1 genes within the blue, turquoise, and green module networks, are presumed to play a role in the TIAs pathway. These identified candidate genes hold potential for forthcoming genetic and metabolic engineering initiatives aimed at augmenting the production of secondary metabolites and medicinal compounds within C. roseus.
Collapse
Affiliation(s)
- Seyede Nasim Tabatabaeipour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Ali Niazi
- Department of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Esmaeil Ebrahimie
- Department of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| |
Collapse
|
5
|
Fu H, Guo C, Peng J, Shao F, Sheng S, Wang S. Transcriptomic Insights and Cytochrome P450 Gene Analysis in Kadsura coccinea for Lignan Biosynthesis. Genes (Basel) 2024; 15:270. [PMID: 38540329 PMCID: PMC10969973 DOI: 10.3390/genes15030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Kadsura coccinea is a medicinal plant from the Schisandraceae family that is native to China and has great pharmacological potential due to its lignans. However, there are significant knowledge gaps regarding the genetic and molecular mechanisms of lignans. We used transcriptome sequencing technology to analyze root, stem, and leaf samples, focusing on the identification and phylogenetic analysis of Cytochrome P450 (CYP) genes. High-quality data containing 158,385 transcripts and 68,978 unigenes were obtained. In addition, 36,293 unigenes in at least one database, and 23,335 across five databases (Nr, KEGG, KOG, TrEMBL, and SwissProt) were successfully annotated. The KEGG pathway classification and annotation of these unigenes identified 10,825 categorized into major metabolic pathways, notably phenylpropanoid biosynthesis, which is essential for lignan synthesis. A key focus was the identification and phylogenetic analysis of 233 Cytochrome P450 (CYP) genes, revealing their distribution across 38 families in eight clans, with roots showing specific CYP gene expression patterns indicative of their role in lignan biosynthesis. Sequence alignment identified 22 homologous single genes of these CYPs, with 6 homologous genes of CYP719As and 1 of CYP81Qs highly expressed in roots. Our study significantly advances the understanding of the biosynthesis of dibenzocyclooctadiene lignans, offering valuable insights for future pharmacological research and development.
Collapse
Affiliation(s)
- Hanyu Fu
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
| | - Chuan Guo
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Jiqing Peng
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Fengxia Shao
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Song Sheng
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Sen Wang
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| |
Collapse
|