1
|
Slavkova Z, Yancheva D, Genova J. Phase behaviour and structural properties of SOPC model lipid system in a sucrose solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123287. [PMID: 37633099 DOI: 10.1016/j.saa.2023.123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Lipid membranes are an important component of the biological cell. The profound understanding of their structure and functionality, as well as, the influence of various biologically relevant admixtures on their main characteristics is of great importance for research and development in medicine and pharmacology. The effect of sugars on the behaviour of the membrane cell enjoys an ever-increasing interest as they are biologically significant substances. We have studied the influence of the disaccharide sucrose on the physicochemical properties of SOPC (1-stearoyl-2-oleoyl-sn- glycero-3-phosphocholine) lipid system aiming to gain better understanding of the mechanisms of the interaction between both substances. For that purpose, we have used differential scanning calorimetry and Fourier-transform infrared spectroscopy. Our results show that adding sugar up to 300 mM concentration substantially alters the thermodynamic and structural properties of SOPC. The DSC thermograms at heating reveal a general lowering of the SOPC transition temperature Tm from gel to liquid crystalline phase (main phase transition, ordered-disordered phase transition) in the presence of sugar. The corresponding peaks are smeared and harder to trace. In agreement with this, a gradual decrease of the enthalpy values up to 300 mM was measured. The IR spectroscopy study provided spectral evidence for two states of hydration of the phosphate groups in the sugar-SOPC model systems suggesting a mechanism of interaction where only part of the phospholipid headgroups are hydrogen bonded to the sugar molecules. The obtained results are in good agreement with various earlier data including results about the bending elasticity moduli, as well as, some theoretical simulations on the sugar-lipid interactions. The current results also reinforce the potential of sucrose to be used as a cell protector against drought at, both, high and low temperatures.
Collapse
Affiliation(s)
- Zdravka Slavkova
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussée blvd., 1784 Sofia, Bulgaria; Joint Institute for Nuclear Research, 6 Joliot-Curie St., Dubna, Moscow Region 141980, Russia
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Build. 9, 1113 Sofia, Bulgaria.
| | - Julia Genova
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussée blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
2
|
Ön A, Vejzovic D, Jennings J, Parigger L, Cordfunke RA, Drijfhout JW, Lohner K, Malanovic N. Bactericidal Activity to Escherichia coli: Different Modes of Action of Two 24-Mer Peptides SAAP-148 and OP-145, Both Derived from Human Cathelicidine LL-37. Antibiotics (Basel) 2023; 12:1163. [PMID: 37508259 PMCID: PMC10376646 DOI: 10.3390/antibiotics12071163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
OP-145 and SAAP-148, two 24-mer antimicrobial peptides derived from human cathelicidin LL-37, exhibit killing efficacy against both Gram-positive and Gram-negative bacteria at comparable peptide concentrations. However, when it comes to the killing activity against Escherichia coli, the extent of membrane permeabilization does not align with the observed bactericidal activity. This is the case in living bacteria as well as in model membranes mimicking the E. coli cytoplasmic membrane (CM). In order to understand the killing activity of both peptides on a molecular basis, here we studied their mode of action, employing a combination of microbiological and biophysical techniques including differential scanning calorimetry (DSC), zeta potential measurements, and spectroscopic analyses. Various membrane dyes were utilized to monitor the impact of the peptides on bacterial and model membranes. Our findings unveiled distinct binding patterns of the peptides to the bacterial surface and differential permeabilization of the E. coli CM, depending on the smooth or rough/deep-rough lipopolysaccharide (LPS) phenotypes of E. coli strains. Interestingly, the antimicrobial activity and membrane depolarization were not significantly different in the different LPS phenotypes investigated, suggesting a general mechanism that is independent of LPS. Although the peptides exhibited limited permeabilization of E. coli membranes, DSC studies conducted on a mixture of synthetic phosphatidylglycerol/phosphatidylethanolamine/cardiolipin, which mimics the CM of Gram-negative bacteria, clearly demonstrated disruption of lipid chain packing. From these experiments, we conclude that depolarization of the CM and alterations in lipid packing plays a crucial role in the peptides' bactericidal activity.
Collapse
Affiliation(s)
- Ayse Ön
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Djenana Vejzovic
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - James Jennings
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Lena Parigger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Robert A Cordfunke
- Department of Immunology, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Karl Lohner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Nermina Malanovic
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
3
|
Vejzovic D, Piller P, Cordfunke RA, Drijfhout JW, Eisenberg T, Lohner K, Malanovic N. Where Electrostatics Matter: Bacterial Surface Neutralization and Membrane Disruption by Antimicrobial Peptides SAAP-148 and OP-145. Biomolecules 2022; 12:biom12091252. [PMID: 36139091 PMCID: PMC9496175 DOI: 10.3390/biom12091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022] Open
Abstract
The need for alternative treatment of multi-drug-resistant bacteria led to the increased design of antimicrobial peptides (AMPs). AMPs exhibit a broad antimicrobial spectrum without a distinct preference for a specific species. Thus, their mechanism, disruption of fundamental barrier function by permeabilization of the bacterial cytoplasmic membrane is considered to be rather general and less likely related to antimicrobial resistance. Of all physico-chemical properties of AMPs, their positive charge seems to be crucial for their interaction with negatively charged bacterial membranes. Therefore, we elucidate the role of electrostatic interaction on bacterial surface neutralization and on membrane disruption potential of two potent antimicrobial peptides, namely, OP-145 and SAAP-148. Experiments were performed on Escherichia coli, a Gram-negative bacterium, and Enterococcus hirae, a Gram-positive bacterium, as well as on their model membranes. Zeta potential measurements demonstrated that both peptides neutralized the surface charge of E. coli immediately after their exposure, but not of E. hirae. Second, peptides neutralized all model membranes, but failed to efficiently disrupt model membranes mimicking Gram-negative bacteria. This was further confirmed by flow cytometry showing reduced membrane permeability for SAAP-148 and the lack of OP-145 to permeabilize the E. coli membrane. As neutralization of E. coli surface charges was achieved before the cells were killed, we conclude that electrostatic forces are more important for actions on the surface of Gram-negative bacteria than on their cytoplasmic membranes.
Collapse
Affiliation(s)
- Djenana Vejzovic
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Paulina Piller
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Robert A. Cordfunke
- Department of Immunology, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands
| | - Jan W. Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Bio TechMed Graz, 8010 Graz, Austria
| | - Karl Lohner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Department of Immunology, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Nermina Malanovic
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Bio TechMed Graz, 8010 Graz, Austria
- Correspondence:
| |
Collapse
|
4
|
Kumari S, Booth V. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Int J Mol Sci 2022; 23:ijms23052740. [PMID: 35269882 PMCID: PMC8910884 DOI: 10.3390/ijms23052740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Much of the work probing antimicrobial peptide (AMP) mechanisms has focussed on how these molecules permeabilize lipid bilayers. However, AMPs must also traverse a variety of non-lipid cell envelope components before they reach the lipid bilayer. Additionally, there is a growing list of AMPs with non-lipid targets inside the cell. It is thus useful to extend the biophysical methods that have been traditionally applied to study AMP mechanisms in liposomes to the full bacteria, where the lipids are present along with the full complexity of the rest of the bacterium. This review focusses on what can be learned about AMP mechanisms from solid-state NMR of AMP-treated intact bacteria. It also touches on flow cytometry as a complementary method for measuring permeabilization of bacterial lipid membranes in whole bacteria.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Correspondence: ; Tel.: +1-709-864-4523
| |
Collapse
|
5
|
Ferreira AR, Teixeira C, Sousa CF, Bessa LJ, Gomes P, Gameiro P. How Insertion of a Single Tryptophan in the N-Terminus of a Cecropin A-Melittin Hybrid Peptide Changes Its Antimicrobial and Biophysical Profile. MEMBRANES 2021; 11:membranes11010048. [PMID: 33445476 PMCID: PMC7826622 DOI: 10.3390/membranes11010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
In the era of antibiotic resistance, there is an urgent need for efficient antibiotic therapies to fight bacterial infections. Cationic antimicrobial peptides (CAMP) are promising lead compounds given their membrane-targeted mechanism of action, and high affinity towards the anionic composition of bacterial membranes. We present a new CAMP, W-BP100, derived from the highly active BP100, holding an additional tryptophan at the N-terminus. W-BP100 showed a broader antibacterial activity, demonstrating a potent activity against Gram-positive strains. Revealing a high partition constant towards anionic over zwitterionic large unilamellar vesicles and inducing membrane saturation at a high peptide/lipid ratio, W-BP100 has a preferential location for hydrophobic environments. Contrary to BP100, almost no aggregation of anionic vesicles is observed around saturation conditions and at higher concentrations no aggregation is observed. With these results, it is possible to state that with the incorporation of a single tryptophan to the N-terminus, a highly active peptide was obtained due to the π-electron system of tryptophan, resulting in negatively charged clouds, that participate in cation-π interactions with lysine residues. Furthermore, we propose that W-BP100 action can be achieved by electrostatic interactions followed by peptide translocation.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
| | - Carla F. Sousa
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
- Helmholtz Institute for Pharmaceutical Sciences Campus E8 1, 66123 Saarbrücken, Germany
| | - Lucinda J. Bessa
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
| | - Paula Gomes
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
| | - Paula Gameiro
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
- Correspondence:
| |
Collapse
|
6
|
Malanovic N, Ön A, Pabst G, Zellner A, Lohner K. Octenidine: Novel insights into the detailed killing mechanism of Gram-negative bacteria at a cellular and molecular level. Int J Antimicrob Agents 2020; 56:106146. [DOI: 10.1016/j.ijantimicag.2020.106146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 01/30/2023]
|
7
|
Malanovic N, Marx L, Blondelle SE, Pabst G, Semeraro EF. Experimental concepts for linking the biological activities of antimicrobial peptides to their molecular modes of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183275. [PMID: 32173291 DOI: 10.1016/j.bbamem.2020.183275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The search for novel compounds to combat multi-resistant bacterial infections includes exploring the potency of antimicrobial peptides and derivatives thereof. Complementary to high-throughput screening techniques, biophysical and biochemical studies of the biological activity of these compounds enable deep insight, which can be exploited in designing antimicrobial peptides with improved efficacy. This approach requires the combination of several techniques to study the effect of such peptides on both bacterial cells and simple mimics of their cell envelope, such as lipid-only vesicles. These efforts carry the challenge of bridging results across techniques and sample systems, including the proper choice of membrane mimics. This review describes some important concepts toward the development of potent antimicrobial peptides and how they translate to frequently applied experimental techniques, along with an outline of the biophysics pertaining to the killing mechanism of antimicrobial peptides.
Collapse
Affiliation(s)
- Nermina Malanovic
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria.
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| | | | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| | - Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| |
Collapse
|
8
|
Popp PF, Benjdia A, Strahl H, Berteau O, Mascher T. The Epipeptide YydF Intrinsically Triggers the Cell Envelope Stress Response of Bacillus subtilis and Causes Severe Membrane Perturbations. Front Microbiol 2020; 11:151. [PMID: 32117169 PMCID: PMC7026026 DOI: 10.3389/fmicb.2020.00151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
The Gram-positive model organism and soil bacterium Bacillus subtilis naturally produces a variety of antimicrobial peptides (AMPs), including the ribosomally synthesized and post-translationally modified AMP YydF, which is encoded in the yydFGHIJ locus. The yydF gene encodes the pre-pro-peptide, which is, in a unique manner, initially modified at two amino acid positions by the radical SAM epimerase YydG. Subsequently, the membrane-anchored putative protease YydH is thought to cleave and release the mature AMP, YydF, to the environment. The AMP YydF, with two discreet epimerizations among 17 residues as sole post-translational modification, defines a novel class of ribosomally synthesized and post-translationally modified peptides (RiPPs) called epipeptides, for which the mode-of-action (MOA) is unknown. The predicted ABC transporter encoded by yydIJ was previously postulated as an autoimmunity determinant of B. subtilis against its own AMP. Here, we demonstrate that extrinsically added YydF* kills B. subtilis cells by dissipating membrane potential via membrane permeabilization. This severe membrane perturbation is accompanied by a rapid reduction of membrane fluidity, substantiated by lipid domain formation. The epipeptide triggers a narrow and highly specific cellular response. The strong induction of liaIH expression, a marker for cell envelope stress in B. subtilis, further supports the MOA described above. A subsequent mutational study demonstrates that LiaIH—and not YydIJ—represents the most efficient resistance determinant against YydF* action. Unexpectedly, none of the observed cellular effects upon YydF* treatment alone are able to trigger liaIH expression, indicating that only the unique combination of membrane permeabilization and membrane rigidification caused by the epipetide, leads to the observed cell envelope stress response.
Collapse
Affiliation(s)
- Philipp F Popp
- Institute of Microbiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Henrik Strahl
- Center for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität (TU) Dresden, Dresden, Germany
| |
Collapse
|
9
|
Bartels EJH, Dekker D, Amiche M. Dermaseptins, Multifunctional Antimicrobial Peptides: A Review of Their Pharmacology, Effectivity, Mechanism of Action, and Possible Future Directions. Front Pharmacol 2019; 10:1421. [PMID: 31849670 PMCID: PMC6901996 DOI: 10.3389/fphar.2019.01421] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Dermaseptins are a group of α-helical shaped polycationic peptides isolated from the Hylid frogs, with antimicrobial effects against bacteria, parasites, protozoa, viruses in vitro. Besides, anti-tumor effects have been demonstrated. However, few animal experiments and no clinical trials have been conducted thus far. This review summarizes the current knowledge on the pharmacology, ethno pharmacology, effectivity against infectious pathogens and tumors cells and the mechanism of action of the Dermaseptins. Future research should focus on further clarification of the mechanisms of action, the effectivity of Dermaseptins against several cancer cell lines and their applicability in humans.
Collapse
Affiliation(s)
| | - Douwe Dekker
- Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mohamed Amiche
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| |
Collapse
|
10
|
Grafskaia EN, Nadezhdin KD, Talyzina IA, Polina NF, Podgorny OV, Pavlova ER, Bashkirov PV, Kharlampieva DD, Bobrovsky PA, Latsis IA, Manuvera VA, Babenko VV, Trukhan VM, Arseniev AS, Klinov DV, Lazarev VN. Medicinal leech antimicrobial peptides lacking toxicity represent a promising alternative strategy to combat antibiotic-resistant pathogens. Eur J Med Chem 2019; 180:143-153. [PMID: 31302447 DOI: 10.1016/j.ejmech.2019.06.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/25/2022]
Abstract
The rise of antibiotic resistance has necessitated the development of alternative strategies for the treatment of infectious diseases. Antimicrobial peptides (AMPs), components of the innate immune response in various organisms, are promising next-generation drugs against bacterial infections. The ability of the medicinal leech Hirudo medicinalis to store blood for months with little change has attracted interest regarding the identification of novel AMPs in this organism. In this study, we employed computational algorithms to the medicinal leech genome assembly to identify amino acid sequences encoding potential AMPs. Then, we synthesized twelve candidate AMPs identified by the algorithms, determined their secondary structures, measured minimal inhibitory concentrations against three bacterial species (Escherichia coli, Bacillus subtilis, and Chlamydia thrachomatis), and assayed cytotoxic and haemolytic activities. Eight of twelve candidate AMPs possessed antimicrobial activity, and only two of them, 3967 (FRIMRILRVLKL) and 536-1 (RWRLVCFLCRRKKV), exhibited inhibition of growth of all tested bacterial species at a minimal inhibitory concentration of 10 μmol. Thus, we evidence the utility of the developed computational algorithms for the identification of AMPs with low toxicity and haemolytic activity in the medicinal leech genome assembly.
Collapse
Affiliation(s)
- E N Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia.
| | - K D Nadezhdin
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia; M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I A Talyzina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Federal State Budget Educational Institution of Higher Education, M.V.Lomonosov Moscow State University (Lomonosov MSU), Moscow, 119991, Russia
| | - N F Polina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - O V Podgorny
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - E R Pavlova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia
| | - P V Bashkirov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - D D Kharlampieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - P A Bobrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - I A Latsis
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia
| | - V V Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V M Trukhan
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - A S Arseniev
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia; M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - D V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russia
| |
Collapse
|
11
|
Antimicrobial coatings prepared from Dhvar-5-click-grafted chitosan powders. Acta Biomater 2019; 84:242-256. [PMID: 30528610 DOI: 10.1016/j.actbio.2018.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMP) are powerful components of the innate immune system, as they display wide activity spectrum and low tendency to induce pathogen resistance. Hence, the development of AMP-based coatings is a very promising strategy to prevent biomaterials-associated infections. This work aims to investigate if Dhvar-5-chitosan conjugates, previously synthesized by us via azide-alkyne "click" reaction, can be applied as antimicrobial coatings. Ultrathin coatings were prepared by spin coater after dissolving Dhvar-5-chitosan conjugate powder in aqueous acetic acid. Peptide orientation and exposure from the surface was confirmed by ellipsometry and contact angle measurements. Bactericidal activity was evaluated against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, the most prevalent pathogens in implant-associated infections. Results showed that Dhvar-5-chitosan coatings displayed bactericidal effect. Moreover, since Dhvar-5 has head-to-tail amphipathicity, it was clear that the bactericidal potency was dependent on which domain of the peptide (cationic or hydrophobic) was exposed. In this context, Dhvar-5 immobilized through its C-terminus (exposing its hydrophobic end) presented higher antimicrobial activity against Gram-positive bacteria and reduced adhesion of Gram-negative bacteria. This orientation-dependent antimicrobial activity was further corroborated by the anti-biofilm assay, as covalent immobilization of Dhvar-5 through its C-terminus provided anti-biofilm properties to the chitosan thin film. Immobilization of Dhvar-5 showed no cytotoxic effect against HFF-1 cells, as both metabolic activity and cell morphology were similar to control. In conclusion, Dhvar-5-chitosan coatings are promising antimicrobial surfaces without cytotoxic effects against human cells. STATEMENT OF SIGNIFICANCE: AMP-tethering onto ground biomaterial is still a poorly explored strategy in research. In this work, AMP-tethered ground chitosan is used to produce highly antibacterial ultrathin films. Powdered AMP-tethered chitosan appears as an alternative solution for antimicrobial devices production, as it is suitable for large scale production, being easier to handle for fabrication of different coatings and materials with antimicrobial properties and without inducing toxicity.
Collapse
|
12
|
Martin LL, Kubeil C, Piantavigna S, Tikkoo T, Gray NP, John T, Calabrese AN, Liu Y, Hong Y, Hossain MA, Patil N, Abel B, Hoffmann R, Bowie JH, Carver JA. Amyloid aggregation and membrane activity of the antimicrobial peptide uperin 3.5. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Clemens Kubeil
- School of Chemistry; Monash University; Clayton Victoria 3800 Australia
| | | | - Tarun Tikkoo
- School of Chemistry; Monash University; Clayton Victoria 3800 Australia
| | - Nicholas P. Gray
- School of Chemistry; Monash University; Clayton Victoria 3800 Australia
| | - Torsten John
- School of Chemistry; Monash University; Clayton Victoria 3800 Australia
- Leibniz Institute of Surface Engineering (IOM) and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry; Leipzig University; Leipzig 04318 Germany
| | - Antonio N. Calabrese
- Department of Chemistry and School of Physical Sciences; The University of Adelaide; Adelaide South Australia 5005 Australia
| | - Yanqin Liu
- Department of Chemistry and School of Physical Sciences; The University of Adelaide; Adelaide South Australia 5005 Australia
| | - Yuning Hong
- Department of Chemistry and Physics; La Trobe Institute for Molecular Science, La Trobe University; Melbourne Victoria 3086 Australia
| | - Mohammed A. Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne; Parkville Victoria 3010 Australia
| | - Nitin Patil
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne; Parkville Victoria 3010 Australia
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry; Leipzig University; Leipzig 04318 Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, and Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig; Leipzig 04103 Germany
| | - John H. Bowie
- Department of Chemistry and School of Physical Sciences; The University of Adelaide; Adelaide South Australia 5005 Australia
| | - John A. Carver
- Research School of Chemistry; The Australian National University; Acton Australian Capital Territory 2601 Australia
| |
Collapse
|
13
|
Kaur P, Li Y, Cai J, Song L. Selective Membrane Disruption Mechanism of an Antibacterial γ-AApeptide Defined by EPR Spectroscopy. Biophys J 2017; 110:1789-1799. [PMID: 27119639 DOI: 10.1016/j.bpj.2016.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
γ-AApeptides are a new class of antibacterial peptidomimetics that are not prone to antibiotic resistance and are highly resistant to protease degradation. It is not clear how γ-AApeptides interact with bacterial membranes and alter lipid assembly, but such information is essential to understanding their antimicrobial activities and guiding future design of more potent and specific antimicrobial agents. Using electron paramagnetic resonance techniques, we characterized the membrane interaction and destabilizing mechanism of a lipo-cyclic-γ-AApeptide (AA1), which has broad-spectrum antibacterial activities. The analyses revealed that AA1 binding increases the membrane permeability of POPC/POPG liposomes, which mimic negatively charged bacterial membranes. AA1 binding also inhibits membrane fluidity and reduces solvent accessibility around the lipid headgroup region. Moreover, AA1 interacts strongly with POPC/POPG liposomes, inducing significant lipid lateral-ordering and membrane thinning. In contrast, minimal membrane property changes were observed upon AA1 binding for liposomes mimicking mammalian cell membranes, which consist of neutral lipids and cholesterol. Our findings suggest that AA1 interacts and disrupts bacterial membranes through a carpet-like mechanism. The results showed that the intrinsic features of γ-AApeptides are important for their ability to disrupt bacterial membranes selectively, the implications of which extend to developing new antibacterial biomaterials.
Collapse
Affiliation(s)
- Pavanjeet Kaur
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida
| | - Yaqiong Li
- Department of Chemistry, University of South Florida, Tampa, Florida
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida.
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida.
| |
Collapse
|
14
|
Maturana P, Martinez M, Noguera M, Santos N, Disalvo E, Semorile L, Maffia P, Hollmann A. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Colloids Surf B Biointerfaces 2017; 153:152-159. [DOI: 10.1016/j.colsurfb.2017.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/10/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
|
15
|
Juliano SA, Pierce S, deMayo JA, Balunas MJ, Angeles-Boza AM. Exploration of the Innate Immune System of Styela clava: Zn2+ Binding Enhances the Antimicrobial Activity of the Tunicate Peptide Clavanin A. Biochemistry 2017; 56:1403-1414. [DOI: 10.1021/acs.biochem.6b01046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel A. Juliano
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Scott Pierce
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - James A. deMayo
- Division
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marcy J. Balunas
- Division
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alfredo M. Angeles-Boza
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
16
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm J 2016. [PMID: 27752223 DOI: 10.1016/j.jsps.2015.02.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a wide-ranging class of host-defense molecules that act early to contest against microbial invasion and challenge. These are small cationic peptides that play an important in the development of innate immunity. In the oral cavity, the AMPs are produced by the salivary glands and the oral epithelium and serve defensive purposes. The aim of this review was to discuss the types and functions of oral AMPs and their role in combating microorganisms and infections in the oral cavity.
Collapse
Affiliation(s)
- Zohaib Khurshid
- School of Materials and Metallurgy, University of Birmingham, United Kingdom
| | - Mustafa Naseem
- Department of Community Dentistry and Preventive Dentistry, School of Dentistry, Ziauddin University, Pakistan
| | - Zeeshan Sheikh
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Shariq Najeeb
- School of Dentistry, Al-Farabi Dental College, Saudi Arabia
| | - Sana Shahab
- Department of Dental Materials Science, Sir Syed College of Medical Sciences for Girls, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
18
|
Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm J 2016; 24:515-524. [PMID: 27752223 PMCID: PMC5059823 DOI: 10.1016/j.jsps.2015.02.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/20/2015] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a wide-ranging class of host-defense molecules that act early to contest against microbial invasion and challenge. These are small cationic peptides that play an important in the development of innate immunity. In the oral cavity, the AMPs are produced by the salivary glands and the oral epithelium and serve defensive purposes. The aim of this review was to discuss the types and functions of oral AMPs and their role in combating microorganisms and infections in the oral cavity.
Collapse
Affiliation(s)
- Zohaib Khurshid
- School of Materials and Metallurgy, University of Birmingham, United Kingdom
| | - Mustafa Naseem
- Department of Community Dentistry and Preventive Dentistry, School of Dentistry, Ziauddin University, Pakistan
| | - Zeeshan Sheikh
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Shariq Najeeb
- School of Dentistry, Al-Farabi Dental College, Saudi Arabia
| | - Sana Shahab
- Department of Dental Materials Science, Sir Syed College of Medical Sciences for Girls, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
19
|
Zamora-Carreras H, Strandberg E, Mühlhäuser P, Bürck J, Wadhwani P, Jiménez MÁ, Bruix M, Ulrich AS. Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1328-38. [PMID: 26975251 DOI: 10.1016/j.bbamem.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
The short membrane-active peptide BP100 [KKLFKKILKYL-NH2] is known as an effective antimicrobial and cell penetrating agent. For a functional alanine scan each of the 11 amino acids was replaced with deuterated Ala-d3, one at a time. MIC assays showed that a substitution of Lys did not affect the antimicrobial activity, but it decreased when a hydrophobic residue was replaced. In most cases, a reduction in hydrophobicity led to a decrease in hemolysis, and some peptide analogues had an improved therapeutic index. Circular dichroism showed that BP100 folds as an amphiphilic α-helix in a bilayer. Its alignment was determined from (2)H NMR in oriented membranes of different composition. The azimuthal rotation angle was the same under all conditions, but the average helix tilt angle and the dynamical behavior of the peptide varied in a systematic manner. In POPC/POPG bilayers, with a negative spontaneous curvature, the peptide was found to lie flat on the bilayer surface, and with little wobble. In DMPC/DMPG, with a positive spontaneous curvature, BP100 at higher concentrations became tilted obliquely into the membrane, with the uncharged C-terminus inserted more deeply into the lipid bilayer, experiencing significant fluctuations in tilt angle. In DMPC/DMPG/lyso-MPC, with a pronounced positive spontaneous curvature, the helix tilted even further and became even more mobile. The 11-mer BP100 is obviously too short to form transmembrane pores. We conclude that BP100 operates via a carpet mechanism, whereby the C-terminus gets inserted into the hydrophobic core of the bilayer, which leads to membrane perturbation and induces transient permeability.
Collapse
Affiliation(s)
| | - Erik Strandberg
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Philipp Mühlhäuser
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - M Ángeles Jiménez
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Marta Bruix
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Anne S Ulrich
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
20
|
Hollmann A, Martínez M, Noguera ME, Augusto MT, Disalvo A, Santos NC, Semorile L, Maffía PC. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids Surf B Biointerfaces 2016; 141:528-536. [PMID: 26896660 DOI: 10.1016/j.colsurfb.2016.02.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/30/2022]
Abstract
Cationic antimicrobial peptides (CAMPs) represent important self defense molecules in many organisms, including humans. These peptides have a broad spectrum of activities, killing or neutralizing many Gram-negative and Gram-positive bacteria. The emergence of multidrug resistant microbes has stimulated research on the development of alternative antibiotics. In the search for new antibiotics, cationic antimicrobial peptides (CAMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to lysis of microbial membranes and eventually cell death. In particular, the group of linear α-helical cationic peptides has attracted increasing interest from clinical as well as basic research during the last decade. In this work, we studied the biophysical and microbiological characteristics of three new designed CAMPs. We modified a previously studied CAMP sequence, in order to increase or diminish the hydrophobic face, changing the position of two lysines or replacing three leucines, respectively. These mutations modified the hydrophobic moment of the resulting peptides and allowed us to study the importance of this parameter in the membrane interactions of the peptides. The structural properties of the peptides were also correlated with their membrane-disruptive abilities, antimicrobial activities and hemolysis of human red blood cells.
Collapse
Affiliation(s)
- Axel Hollmann
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina; Laboratory of Biointerfaces and Biomimetic Systems, CITSE, National University of Santiago del Estero-CONICET, Santiago del Estero, Argentina; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Melina Martínez
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | - Martín E Noguera
- Instituto de Química y Fisicoquímica Biológicas, CONICET-University of Buenos Aires, Buenos Aires, Argentina
| | - Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Anibal Disalvo
- Laboratory of Biointerfaces and Biomimetic Systems, CITSE, National University of Santiago del Estero-CONICET, Santiago del Estero, Argentina
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Liliana Semorile
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | - Paulo C Maffía
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Peptaibolin analogues by incorporation of α,α-dialkylglycines: synthesis and study of their membrane permeating ability. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Jackman JA, Goh HZ, Zhdanov VP, Knoll W, Cho NJ. Deciphering How Pore Formation Causes Strain-Induced Membrane Lysis of Lipid Vesicles. J Am Chem Soc 2016; 138:1406-13. [PMID: 26751083 DOI: 10.1021/jacs.5b12491] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pore formation by membrane-active antimicrobial peptides is a classic strategy of pathogen inactivation through disruption of membrane biochemical gradients. It remains unknown why some membrane-active peptides also inhibit enveloped viruses, which do not depend on biochemical gradients. Here, we employ a label-free biosensing approach based on simultaneous quartz crystal microbalance-dissipation and ellipsometry measurements in order to investigate how a pore-forming, virucidal peptide destabilizes lipid vesicles in a surface-based experimental configuration. A key advantage of the approach is that it enables direct kinetic measurement of the surface-bound peptide-to-lipid (P:L) ratio. Comprehensive experiments involving different bulk peptide concentrations and biologically relevant membrane compositions support a unified model that membrane lysis occurs at or above a critical P:L ratio, which is at least several-fold greater than the value corresponding to the onset of pore formation. That is consistent with peptide-induced pores causing additional membrane strain that leads to lysis of highly curved membranes. Collectively, the work presents a new model that describes how peptide-induced pores may destabilize lipid membranes through a membrane strain-related lytic process, and this knowledge has important implications for the design and application of membrane-active peptides.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Haw Zan Goh
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Vladimir P Zhdanov
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore.,Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Wolfgang Knoll
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore.,Austrian Institute of Technology (AIT) , Donau-City-Strasse 1, 1220 Vienna, Austria
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
23
|
Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on Gram-positive bacterial and mammalian membrane model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [PMID: 26210299 DOI: 10.1016/j.bbamem.2015.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OP-145, a synthetic antimicrobial peptide developed from a screen of the human cathelicidin LL-37, displays strong antibacterial activities and is--at considerably higher concentrations--lytic to human cells. To obtain more insight into its actions, we investigated the interactions between OP-145 and liposomes composed of phosphatidylglycerol (PG) and phosphatidylcholine (PC), resembling bacterial and mammalian membranes, respectively. Circular dichroism analyses of OP-145 demonstrated a predominant α-helical conformation in the presence of both membrane mimics, indicating that the different membrane-perturbation mechanisms are not due to different secondary structures. Membrane thinning and formation of quasi-interdigitated lipid-peptide structures was observed in PG bilayers, while OP-145 led to disintegration of PC liposomes into disk-like micelles and bilayer sheets. Although OP-145 was capable of binding lipoteichoic acid and peptidoglycan, the presence of these bacterial cell wall components did not retain OP-145 and hence did not interfere with the activity of the peptide toward PG membranes. Furthermore, physiological Ca++ concentrations did neither influence the membrane activity of OP-145 in model systems nor the killing of Staphylococcus aureus. However, addition of OP-145 at physiological Ca++-concentrations to PG membranes, but not PC membranes, resulted in the formation of elongated enrolled structures similar to cochleate-like structures. In summary, phospholipid-driven differences in incorporation of OP-145 into the lipid bilayers govern the membrane activity of the peptide on bacterial and mammalian membrane mimics.
Collapse
|
24
|
Freire JM, Gaspar D, Veiga AS, Castanho MARB. Shifting gear in antimicrobial and anticancer peptides biophysical studies: from vesicles to cells. J Pept Sci 2015; 21:178-85. [DOI: 10.1002/psc.2741] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 12/28/2022]
Affiliation(s)
- João M. Freire
- Faculdade de Medicina, Instituto de Medicina Molecular; Universidade de Lisboa; Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Diana Gaspar
- Faculdade de Medicina, Instituto de Medicina Molecular; Universidade de Lisboa; Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Ana Salomé Veiga
- Faculdade de Medicina, Instituto de Medicina Molecular; Universidade de Lisboa; Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Miguel A. R. B. Castanho
- Faculdade de Medicina, Instituto de Medicina Molecular; Universidade de Lisboa; Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
25
|
Manzo G, Scorciapino MA, Wadhwani P, Bürck J, Montaldo NP, Pintus M, Sanna R, Casu M, Giuliani A, Pirri G, Luca V, Ulrich AS, Rinaldi AC. Enhanced amphiphilic profile of a short β-stranded peptide improves its antimicrobial activity. PLoS One 2015; 10:e0116379. [PMID: 25617899 PMCID: PMC4305290 DOI: 10.1371/journal.pone.0116379] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022] Open
Abstract
SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic β-strands.
Collapse
Affiliation(s)
- Giorgia Manzo
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Mariano A. Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Nicola Pietro Montaldo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Manuela Pintus
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Roberta Sanna
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Mariano Casu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Andrea Giuliani
- Research & Development Unit, Spider Biotech S.r.l., I-10010 Colleretto Giacosa (TO), Italy
| | - Giovanna Pirri
- Research & Development Unit, Spider Biotech S.r.l., I-10010 Colleretto Giacosa (TO), Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche, “A. Rossi Fanelli”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| |
Collapse
|
26
|
Lemeshko VV. Competitive interactions of amphipathic polycationic peptides and cationic fluorescent probes with lipid membrane: Experimental approaches and computational model. Arch Biochem Biophys 2014; 545:167-78. [DOI: 10.1016/j.abb.2014.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 11/29/2022]
|
27
|
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LDS, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 2013; 4:353. [PMID: 24367355 PMCID: PMC3856679 DOI: 10.3389/fmicb.2013.00353] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them.
Collapse
Affiliation(s)
- Fernanda Guilhelmelli
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Nathália Vilela
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Patrícia Albuquerque
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Lorena da S Derengowski
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Ildinete Silva-Pereira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Cynthia M Kyaw
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| |
Collapse
|
28
|
Bouchet AM, Iannucci NB, Pastrian MB, Cascone O, Santos NC, Disalvo EA, Hollmann A. Biological activity of antibacterial peptides matches synergism between electrostatic and non electrostatic forces. Colloids Surf B Biointerfaces 2013; 114:363-71. [PMID: 24257688 DOI: 10.1016/j.colsurfb.2013.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022]
Abstract
Substitution of Ala 108 and Ala 111 in the 107-115 human lysozyme (hLz) fragment results in a 20-fold increased anti-staphylococcal activity while its hemolytic activity becomes significant (30%) at very high concentrations. This analog displays an additional positive charge near the N-terminus (108) and an extra Trp residue at the center of the molecule (111), indicating that this particular amino acid sequence improves its interaction with the bacterial plasma membrane. In order to understand the role of this arrangement in the membrane interaction, studies with model lipid membranes were carried out. The interactions of peptides, 107-115 hLz and the novel analog ([K(108)W(111)]107-115 hLz) with liposomes and lipid monolayers were evaluated by monitoring the changes in the fluorescence of the Trp residues and the variation of the monolayers surface pressure, respectively. Results obtained with both techniques revealed a significant affinity increase of [K(108)W(111)]107-115 hLz for lipids, especially when the membranes containing negatively charged lipids, such as phosphatidylglycerol. However, there is also a significant interaction with zwitterionic lipids, suggesting that other forces in addition to electrostatic interactions are involved in the binding. The analysis of adsorption isotherms and the insertion kinetics suggest that relaxation processes of the membrane structure are involved in the insertion process of novel peptide [K(108)W(111)]107-115 hLz but not in 107-115 hLz, probably by imposing a reorganization of water at the interphases. In this regard, the enhanced activity of peptide [K(108)W(111)]107-115 hLz may be explained by a synergistic effect between the increased electrostatic forces as well as the increased hydrophobic interactions.
Collapse
Affiliation(s)
- Ana M Bouchet
- Laboratory of Biointerfaces and Biomimetic Systems, CITSE-University of Santiago del Estero, 4200 Santiago del Estero and CONICET, Argentina
| | - Nancy B Iannucci
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires 1113, Argentina; Therapeutic Peptides Research and Development Laboratory, Chemo-Romikin, 1605 Buenos Aires, Argentina
| | - María B Pastrian
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires 1113, Argentina
| | - Osvaldo Cascone
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires 1113, Argentina
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Edgardo A Disalvo
- Laboratory of Biointerfaces and Biomimetic Systems, CITSE-University of Santiago del Estero, 4200 Santiago del Estero and CONICET, Argentina
| | - Axel Hollmann
- Laboratory of Biointerfaces and Biomimetic Systems, CITSE-University of Santiago del Estero, 4200 Santiago del Estero and CONICET, Argentina; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, University of Quilmes, B1876BXD Bernal, Argentina.
| |
Collapse
|
29
|
Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother 2013; 57:2511-21. [PMID: 23507278 DOI: 10.1128/aac.02218-12] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens underscores the need for new antimicrobial agents to overcome the resistance mechanisms of these organisms. Cationic antimicrobial peptides (CAPs) provide a potential source of new antimicrobial therapeutics. We previously characterized a lytic base unit (LBU) series of engineered CAPs (eCAPs) of 12 to 48 residues demonstrating maximum antibacterial selectivity at 24 residues. Further, Trp substitution in LBU sequences increased activity against both P. aeruginosa and S. aureus under challenging conditions (e.g., saline, divalent cations, and serum). Based on these findings, we hypothesized that the optimal length and, therefore, the cost for maximum eCAP activity under physiologically relevant conditions could be significantly reduced using only Arg and Trp arranged to form idealized amphipathic helices. Hence, we developed a novel peptide series, composed only of Arg and Trp, in a sequence predicted and verified by circular dichroism to fold into optimized amphipathic helices. The most effective antimicrobial activity was achieved at 12 residues in length (WR12) against a panel of both Gram-negative and Gram-positive clinical isolates, including extensively drug-resistant strains, in saline and broth culture and at various pH values. The results demonstrate that the rational design of CAPs can lead to a significant reduction in the length and the number of amino acids used in peptide design to achieve optimal potency and selectivity against specific pathogens.
Collapse
|