1
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
2
|
Rajakaruna H, O'Connor JH, Cockburn IA, Ganusov VV. Liver Environment-Imposed Constraints Diversify Movement Strategies of Liver-Localized CD8 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1292-1304. [PMID: 35131868 PMCID: PMC9250760 DOI: 10.4049/jimmunol.2100842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/17/2021] [Indexed: 05/11/2023]
Abstract
Pathogen-specific CD8 T cells face the problem of finding rare cells that present their cognate Ag either in the lymph node or in infected tissue. Although quantitative details of T cell movement strategies in some tissues such as lymph nodes or skin have been relatively well characterized, we still lack quantitative understanding of T cell movement in many other important tissues, such as the spleen, lung, liver, and gut. We developed a protocol to generate stable numbers of liver-located CD8 T cells, used intravital microscopy to record movement patterns of CD8 T cells in livers of live mice, and analyzed these and previously published data using well-established statistical and computational methods. We show that, in most of our experiments, Plasmodium-specific liver-localized CD8 T cells perform correlated random walks characterized by transiently superdiffusive displacement with persistence times of 10-15 min that exceed those observed for T cells in lymph nodes. Liver-localized CD8 T cells typically crawl on the luminal side of liver sinusoids (i.e., are in the blood); simulating T cell movement in digital structures derived from the liver sinusoids illustrates that liver structure alone is sufficient to explain the relatively long superdiffusive displacement of T cells. In experiments when CD8 T cells in the liver poorly attach to the sinusoids (e.g., 1 wk after immunization with radiation-attenuated Plasmodium sporozoites), T cells also undergo Lévy flights: large displacements occurring due to cells detaching from the endothelium, floating with the blood flow, and reattaching at another location. Our analysis thus provides quantitative details of movement patterns of liver-localized CD8 T cells and illustrates how structural and physiological details of the tissue may impact T cell movement patterns.
Collapse
Affiliation(s)
| | - James H O'Connor
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; and
- Australian National University Medical School, Acton, Australian Capital Territory, Australia
| | - Ian A Cockburn
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; and
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN;
| |
Collapse
|
3
|
Lu J, Chu R, Yin Y, Yu H, Xu Q, Yang B, Sun Y, Song J, Wang Q, Xu J, Lu F, Cheng Y. Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) interacts with the band 3 receptor to promote erythrocyte invasion by malaria parasites. J Biol Chem 2022; 298:101765. [PMID: 35202655 PMCID: PMC8931436 DOI: 10.1016/j.jbc.2022.101765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) is an erythrocyte binding protein known to be involved in malarial parasite invasion. Although anti-GAMA antibodies have been shown to block GAMA attachment to the erythrocyte surface and subsequently inhibit parasite invasion, little is known about the molecular mechanisms by which GAMA promotes the invasion process. In this study, LC-MS analysis was performed on the erythrocyte membrane to identify the specific receptor that interacts with GAMA. We found that ankyrin 1 and the band 3 membrane protein showed affinity for GAMA, and characterization of their binding specificity indicated that both Plasmodium falciparum and Plasmodium vivax GAMA bound to the same extracellular loop of band 3 (loop 5). In addition, we show the interaction between GAMA and band 3 was sensitive to chymotrypsin. Furthermore, antibodies against band 3 loop 5 were able to reduce the binding activity of GAMA to erythrocytes and inhibit the invasion of P. falciparum merozoites into human erythrocytes, whereas antibodies against P. falciparum GAMA (PfGAMA)-Tr3 only slightly reduced P. falciparum invasion. The identification and characterization of the erythrocyte GAMA receptor is a novel finding that identifies an essential mechanism of parasite invasion of host erythrocytes.
Collapse
Affiliation(s)
- Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruilin Chu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yi Yin
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huijie Yu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qinwen Xu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Song
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, China
| | - Jiahui Xu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Yadav N, Parmar R, Patel H, Patidar M, Dalai SK. Infectious sporozoite challenge modulates radiation attenuated sporozoite vaccine-induced memory CD8 + T cells for better survival characteristics. Microbiol Immunol 2021; 66:41-51. [PMID: 34674290 DOI: 10.1111/1348-0421.12948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022]
Abstract
Radiation attenuated sporozoite (RAS), a whole parasite vaccine approach provides sterile protection against malaria. However, RAS immunization does not confer protection for long, and that has been correlated with the waning parasite-induced memory CD8+ T cell responses. Interestingly, an intermittent infectious (wild-type) sporozoite challenge to the RAS vaccinated mice lengthened the protection period from 6 to 18 months. Herein, we have studied the changes that infectious sporozoite brought in RAS-induced memory CD8+ T cells for conferring lengthened protection. We observed that the infectious sporozoite challenge has boosted the frequency of foreign antigen-experienced memory CD8+ T cells. In those CD8+ T cells, it has reduced the Annexin-V reactivity, raised Bcl-2 expression, and also more cells undergone homeostatic proliferation (Ki-67+ ). It has also scaled down the frequency of Nur77 and CX3CR1 high expressing cells in those memory CD8+ T cell populations which we further correlated with better survival signals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India, 382481
| | - Rajesh Parmar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India, 382481
| | - Hardik Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India, 382481
| | - Manoj Patidar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India, 382481
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India, 382481
| |
Collapse
|
5
|
Sedegah M, Hollingdale MR, Ganeshan H, Belmonte M, Huang J, Belmonte A, Inoue S, Velasco R, Hickey B, Teneza-Mora N, Lumsden J, Reyes S, Banania JG, Reyes A, Guzman I, Richie TL, Epstein JE, Villasante E. IMRAS-Immunization with radiation-attenuated Plasmodium falciparum sporozoites by mosquito bite: Cellular immunity to sporozoites, CSP, AMA1, TRAP and CelTOS. PLoS One 2021; 16:e0256396. [PMID: 34415964 PMCID: PMC8378721 DOI: 10.1371/journal.pone.0256396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Immunization with radiation-attenuated sporozoites (RAS) by mosquito bites provides >90% sterile protection against Plasmodium falciparum malaria in humans. We conducted a clinical trial based on data from previous RAS clinical trials that suggested that 800-1200 infected bites should induce ~50% protective vaccine efficacy (VE) against controlled human malaria infection (CHMI) administered three weeks after the final immunization. Two cohorts were immunized separately. VE was 55% in Cohort 1 but 90% in Cohort 2, the cohort that received a higher first dose and a reduced (fractional) fifth dose. Immune responses were better boosted by the fractional fifth dose in Cohort 2 and suggested the importance of the fractional fifth dose for increased protection in Cohort 2 responses. Three protected subjects were later boosted and were protected suggesting that protection could be extended to at least 67 weeks. METHODS The ex vivo FluoroSpot assay was used to measure peripheral IFN-γ, IL2, and IFN-γ+IL2 responses to PfNF54 sporozoites and malaria antigens CSP, AMA1, TRAP, and CelTOS using pools of synthetic overlapping 15mer peptides spanning each antigen. RESULTS There was no correlation between IFN-γ, IL2, and IFN-γ+IL2 responses to sporozoites and protection, but fold-increases between post-4th and post-5th responses greater than 1.0 occurred mostly in protected subjects. IFN-γ and IL2 responses to TRAP, CelTOS and CSP occurred only in protected subjects. Peripheral IFN-γ, IL2, and IFN-γ+IL2 responses were short-lived and low by 27 weeks post-CHMI but were restored by boosting. CONCLUSIONS These studies highlight the importance of vaccine dose and schedule for vaccine efficacy, and suggest that CSP, TRAP, AMA1 and CelTOS may be targets of protective immunity. The correlation between fold-increases in responses and protection should be explored in other vaccine trials. TRIAL REGISTRATION ClinicalTrials.gov NCT01994525.
Collapse
Affiliation(s)
- Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Harini Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Maria Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Sandra Inoue
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Rachel Velasco
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Bradley Hickey
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Nimfa Teneza-Mora
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Joanne Lumsden
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Sharina Reyes
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Jo Glenna Banania
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Anatalio Reyes
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Ivelese Guzman
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Judith E. Epstein
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
6
|
Kelemen RK, Rajakaruna H, Cockburn IA, Ganusov VV. Clustering of Activated CD8 T Cells Around Malaria-Infected Hepatocytes Is Rapid and Is Driven by Antigen-Specific Cells. Front Immunol 2019; 10:2153. [PMID: 31616407 PMCID: PMC6764016 DOI: 10.3389/fimmu.2019.02153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023] Open
Abstract
Malaria, a disease caused by parasites of the Plasmodium genus, begins when Plasmodium-infected mosquitoes inject malaria sporozoites while searching for blood. Sporozoites migrate from the skin via blood to the liver, infect hepatocytes, and form liver stages which in mice 48 h later escape into blood and cause clinical malaria. Vaccine-induced activated or memory CD8 T cells are capable of locating and eliminating all liver stages in 48 h, thus preventing the blood-stage disease. However, the rules of how CD8 T cells are able to locate all liver stages within a relatively short time period remains poorly understood. We recently reported formation of clusters consisting of variable numbers of activated CD8 T cells around Plasmodium yoelii (Py)-infected hepatocytes. Using a combination of experimental data and mathematical models we now provide additional insights into mechanisms of formation of these clusters. First, we show that a model in which cluster formation is driven exclusively by T-cell-extrinsic factors, such as variability in "attractiveness" of different liver stages, cannot explain distribution of cluster sizes in different experimental conditions. In contrast, the model in which cluster formation is driven by the positive feedback loop (i.e., larger clusters attract more CD8 T cells) can accurately explain the available data. Second, while both Py-specific CD8 T cells and T cells of irrelevant specificity (non-specific CD8 T cells) are attracted to the clusters, we found no evidence that non-specific CD8 T cells play a role in cluster formation. Third and finally, mathematical modeling suggested that formation of clusters occurs rapidly, within few hours after adoptive transfer of CD8 T cells, thus illustrating high efficiency of CD8 T cells in locating their targets in complex peripheral organs, such as the liver. Taken together, our analysis provides novel insights into and attempts to discriminate between alternative mechanisms driving the formation of clusters of antigen-specific CD8 T cells in the liver.
Collapse
Affiliation(s)
- Reka K. Kelemen
- Institute of Science and Technology, Vienna, Austria
- Genome Science and Technology Program, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Harshana Rajakaruna
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Ian A. Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Vitaly V. Ganusov
- Genome Science and Technology Program, University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
7
|
Frank R, Gabel M, Heiss K, Mueller AK, Graw F. Varying Immunizations With Plasmodium Radiation-Attenuated Sporozoites Alter Tissue-Specific CD8 + T Cell Dynamics. Front Immunol 2018; 9:1137. [PMID: 29892289 PMCID: PMC5985394 DOI: 10.3389/fimmu.2018.01137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Whole sporozoite vaccines represent one of the most promising strategies to induce protection against malaria. However, the development of efficient vaccination protocols still remains a major challenge. To understand how the generation of immunity is affected by variations in vaccination dosage and frequency, we systematically analyzed intrasplenic and intrahepatic CD8+ T cell responses following varied immunizations of mice with radiation-attenuated sporozoites. By combining experimental data and mathematical modeling, our analysis indicates a reversing role of spleen and liver in the generation of protective liver-resident CD8+ T cells during priming and booster injections: While the spleen acts as a critical source compartment during priming, the increase in vaccine-induced hepatic T cell levels is likely due to local reactivation in the liver in response to subsequent booster injections. Higher dosing accelerates the efficient generation of liver-resident CD8+ T cells by especially affecting their local reactivation. In addition, we determine the differentiation and migration pathway from splenic precursors toward hepatic memory cells thereby presenting a mechanistic framework for the impact of various vaccination protocols on these dynamics. Thus, our work provides important insights into organ-specific CD8+ T cell dynamics and their role and interplay in the formation of protective immunity against malaria.
Collapse
Affiliation(s)
- Roland Frank
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Gabel
- Centre for Modeling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, Heidelberg, Germany
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Frederik Graw
- Centre for Modeling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
CD8 + T Cell Immune Response in Immunocompetent Mice during Zika Virus Infection. J Virol 2017; 91:JVI.00900-17. [PMID: 28835502 DOI: 10.1128/jvi.00900-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection causees neurologic complications, including Guillain-Barré syndrome in adults and central nervous system (CNS) abnormalities in fetuses. We investigated the immune response, especially the CD8+ T cell response in C57BL/6 (B6) wild-type (WT) mice, during ZIKV infection. We found that a robust CD8+ T cell response was elicited, major histocompatibility complex class I-restricted CD8+ T cell epitopes were identified, a tetramer that recognizes ZIKV-specific CD8+ T cells was developed, and virus-specific memory CD8+ T cells were generated in these mice. The CD8+ T cells from these infected mice were functional, as evidenced by the fact that the adoptive transfer of ZIKV-specific CD8+ T cells could prevent ZIKV infection in the CNS and was cross protective against dengue virus infection. Our findings provide comprehensive insight into immune responses against ZIKV and further demonstrate that WT mice could be a natural and easy-access model for evaluating immune responses to ZIKV infection.IMPORTANCE ZIKV infection has severe clinical consequences, including Guillain-Barré syndrome in adults, microcephaly, and congenital malformations in fetuses and newborn infants. Therefore, study of the immune response, especially the adaptive immune response to ZIKV infection, is important for understanding diseases caused by ZIKV infection. Here, we characterized the CD8+ T cell immune response to ZIKV in a comprehensive manner and identified ZIKV epitopes. Using the identified immunodominant epitopes, we developed a tetramer that recognizes ZIKV-specific CD8+ T cells in vivo, which simplified the detection and evaluation of ZIKV-specific immune responses. In addition, the finding that tetramer-positive memory CD8+ T cell responses were generated and that CD8+ T cells can traffic to a ZIKV-infected brain greatly enhances our understanding of ZIKV infection and provides important insights for ZIKV vaccine design.
Collapse
|
9
|
Limbach K, Stefaniak M, Chen P, Patterson NB, Liao G, Weng S, Krepkiy S, Ekberg G, Torano H, Ettyreddy D, Gowda K, Sonawane S, Belmonte A, Abot E, Sedegah M, Hollingdale MR, Moormann A, Vulule J, Villasante E, Richie TL, Brough DE, Bruder JT. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model. Malar J 2017; 16:263. [PMID: 28673287 PMCID: PMC5496260 DOI: 10.1186/s12936-017-1911-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
Background A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. Results The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. Conclusion These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1911-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith Limbach
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Maureen Stefaniak
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ping Chen
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Noelle B Patterson
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Grant Liao
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Shaojie Weng
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Svetlana Krepkiy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Greg Ekberg
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Holly Torano
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Damodar Ettyreddy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Kalpana Gowda
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Sharvari Sonawane
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Esteban Abot
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Michael R Hollingdale
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ann Moormann
- University of Massachusetts Medical School, Worcester, MA, USA
| | - John Vulule
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Thomas L Richie
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Douglas E Brough
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Joseph T Bruder
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA.
| |
Collapse
|
10
|
Patel H, Yadav N, Parmar R, Patel S, Singh AP, Shrivastava N, Dalai SK. Frequent inoculations with radiation attenuated sporozoite is essential for inducing sterile protection that correlates with a threshold level of Plasmodia liver-stage specific CD8 + T cells. Cell Immunol 2017; 317:48-54. [PMID: 28499490 DOI: 10.1016/j.cellimm.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/18/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
Abstract
Whole sporozoite vaccine (WSV) is shown to induce sterile protection that targets Plasmodium liver-stage infection. There are many underlying issues associated with induction of effective sterile protracted protection. In this study, we have addressed how the alterations in successive vaccine regimen could possibly affect the induction of sterile protection. We have demonstrated that the pattern of vaccination with RAS (radiation attenuated sporozoites) induces varying degrees of protection among B6 mice. Animals receiving four successive doses generated 100% sterile protection. However, three successive doses, though with the same parasite inoculum as four doses, could induce sterile protection in ∼50% mice. Interestingly, mice immunized with the same 3 doses, but with longer gap, could not survive the challenge. We demonstrate that degree of protection correlates with the frequencies of IFN-γ+ and multifunctional (IFN-γ+ CD107a+) CD8+ TEM cells present in liver. The failure to achieve protective threshold frequency of these cells in liver might make the host more vulnerable to parasite infection during infectious sporozoite challenge.
Collapse
Affiliation(s)
- Hardik Patel
- Institute of Science, Nirma University, Ahmedabad 382481, India
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad 382481, India
| | - Rajesh Parmar
- Institute of Science, Nirma University, Ahmedabad 382481, India
| | | | - Agam P Singh
- National Institute of Immunology, New Delhi 110067, India
| | - Neeta Shrivastava
- B.V. Patel Pharmaceutical Education and Research Development (PERD Centre), Ahmedabad 380052, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
11
|
Hobbs CV, Anderson C, Neal J, Sahu T, Conteh S, Voza T, Langhorne J, Borkowsky W, Duffy PE. Trimethoprim-Sulfamethoxazole Prophylaxis During Live Malaria Sporozoite Immunization Induces Long-Lived, Homologous, and Heterologous Protective Immunity Against Sporozoite Challenge. J Infect Dis 2016; 215:122-130. [PMID: 28077589 DOI: 10.1093/infdis/jiw482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/30/2016] [Indexed: 11/12/2022] Open
Abstract
Trimethoprim-sulfamethoxazole (TMP-SMX) is widely used in malaria-endemic areas in human immunodeficiency virus (HIV)-infected children and HIV-uninfected, HIV-exposed children as opportunistic infection prophylaxis. Despite the known effects that TMP-SMX has in reducing clinical malaria, its impact on development of malaria-specific immunity in these children remains poorly understood. Using rodent malaria models, we previously showed that TMP-SMX, at prophylactic doses, can arrest liver stage development of malaria parasites and speculated that TMP-SMX prophylaxis during repeated malaria exposures would induce protective long-lived sterile immunity targeting pre-erythrocytic stage parasites in mice. Using the same models, we now demonstrate that repeated exposures to malaria parasites during TMP-SMX administration induces stage-specific and long-lived pre-erythrocytic protective anti-malarial immunity, mediated primarily by CD8+ T-cells. Given the HIV infection and malaria coepidemic in sub-Saharan Africa, clinical studies aimed at determining the optimum duration of TMP-SMX prophylaxis in HIV-infected or HIV-exposed children must account for the potential anti-infection immunity effect of TMP-SMX prophylaxis.
Collapse
Affiliation(s)
- Charlotte V Hobbs
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland.,Division of Infectious Diseases, Department of Pediatrics.,Department of Microbiology, Batson Children's Hospital, University of Mississippi Medical Center, Jackson.,Division of Infectious Disease and Immunology, Department of Pediatrics, New York University School of Medicine
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Tejram Sahu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Tatiana Voza
- Biological Sciences Department, New York City College of Technology, City University of New York
| | - Jean Langhorne
- Mill Hill Laboratory, Francis Crick Institute, London, United Kingdom
| | - William Borkowsky
- Division of Infectious Disease and Immunology, Department of Pediatrics, New York University School of Medicine
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
12
|
Hollingdale MR, Sedegah M, Limbach K. Development of replication-deficient adenovirus malaria vaccines. Expert Rev Vaccines 2016; 16:261-271. [PMID: 27606709 DOI: 10.1080/14760584.2016.1228454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.
Collapse
Affiliation(s)
| | - Martha Sedegah
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| | - Keith Limbach
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| |
Collapse
|
13
|
Abstract
INTRODUCTION Despite recent advances, malaria remains a major health threat both to populations in endemic areas as well travelers, including military personnel, to these areas. Subunit vaccines have not yet achieved sufficient efficacy needed for use in any of these at risk populations. Areas covered: This review discusses the current status of various whole sporozoite vaccine approaches and is mainly focused on current clinical trials. Expert commentary: Nearly 100% efficacy was achieved by administering multiple bites of radiation-attenuated sporozoite (RAS) Plasmodium falciparum-infected mosquitoes; this is impractical for widespread use. Now, this high level efficacy has been reproduced using purified, metabolically active RAS (PfSPZ Sanaria® Vaccine), which is undergoing extensive clinical testing. Alternative whole sporozoite vaccines include immunization with fully infectious sporozoites under chloroquine prophylaxis (CPS) or as genetically-attenuated parasites (GAP). By also manufacturing purified infectious sporozoites, it is now possible to combine these with CPS and GAP, as well as perform challenge studies using controlled doses of sporozoites.
Collapse
Affiliation(s)
| | - Martha Sedegah
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| |
Collapse
|
14
|
Sedegah M, Hollingdale MR, Farooq F, Ganeshan H, Belmonte M, Huang J, Abot E, Limbach K, Chuang I, Tamminga C, Epstein JE, Villasante E. Controlled Human Malaria Infection (CHMI) differentially affects cell-mediated and antibody responses to CSP and AMA1 induced by adenovirus vaccines with and without DNA-priming. Hum Vaccin Immunother 2015; 11:2705-15. [PMID: 26292027 PMCID: PMC4685686 DOI: 10.1080/21645515.2015.1019186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 μg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved.
Collapse
Affiliation(s)
- Martha Sedegah
- a Naval Medical Research Center ; Silver Spring , MD USA
| | | | - Fouzia Farooq
- a Naval Medical Research Center ; Silver Spring , MD USA
| | | | - Maria Belmonte
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Jun Huang
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Esteban Abot
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Keith Limbach
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Ilin Chuang
- a Naval Medical Research Center ; Silver Spring , MD USA
| | - Cindy Tamminga
- a Naval Medical Research Center ; Silver Spring , MD USA
| | | | | |
Collapse
|
15
|
Aguiar JC, Bolton J, Wanga J, Sacci JB, Iriko H, Mazeika JK, Han ET, Limbach K, Patterson NB, Sedegah M, Cruz AM, Tsuboi T, Hoffman SL, Carucci D, Hollingdale MR, Villasante ED, Richie TL. Discovery of Novel Plasmodium falciparum Pre-Erythrocytic Antigens for Vaccine Development. PLoS One 2015; 10:e0136109. [PMID: 26292257 PMCID: PMC4546230 DOI: 10.1371/journal.pone.0136109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified. Methodology Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics analysis and expression databases and were expressed in a wheat germ cell-free protein expression system. Recombinant proteins were recognized by plasma from RAS-immunized subjects, and 21 induced detectable antibody responses in mice and rabbit and sera from these immunized animals were used to characterize these antigens. All 21 proteins localized to the sporozoite: five localized to the surface, seven localized to the micronemes, cytoplasm, endoplasmic reticulum or nucleus, two localized to the surface and cytoplasm, and seven remain undetermined. PBMC from RAS-immunized volunteers elicited positive ex vivo or cultured ELISpot responses against peptides from 20 of the 21 antigens. Conclusions These T cell and antibody responses support our approach of using reagents from RAS-immunized subjects to screen potential vaccine antigens, and have led to the identification of a panel of novel P. falciparum antigens. These results provide evidence to further evaluate these antigens as vaccine candidates. Trial Registration ClinicalTrials.gov NCT00870987 ClinicalTrials.gov NCT00392015
Collapse
Affiliation(s)
- Joao C. Aguiar
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- Camris International, Bethesda, MD 20814, United States of America
- * E-mail:
| | - Jessica Bolton
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States of America
| | - Joyce Wanga
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- Technical Resources International, Inc., Bethesda, MD 20817, United States of America
| | - John B. Sacci
- Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Hideyuki Iriko
- Department of International Health, Kobe University Graduate School of Health Science, Kobe 654-0142, Japan
| | - Julie K. Mazeika
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- EMD Millipore Corporation, North Andover, MA 01845, United States of America
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Keith Limbach
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States of America
| | - Noelle B. Patterson
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States of America
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Ann-Marie Cruz
- PATH Malaria Vaccine Initiative, Washington, DC 20001, United States of America
| | - Takafumi Tsuboi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Stephen L. Hoffman
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Daniel Carucci
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States of America
| | - Eileen D. Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| |
Collapse
|
16
|
Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates. Sci Rep 2015; 5:11820. [PMID: 26139288 PMCID: PMC4490344 DOI: 10.1038/srep11820] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
The development of an efficacious Plasmodium falciparum malaria vaccine remains a top priority for global health. Vaccination with irradiated sporozoites is able to provide complete sterile protection through the action of CD8+ T cells at the liver-stage of infection. However, this method is currently unsuitable for large-scale deployment and focus has instead turned to the development of sub-unit vaccines. Sub-unit vaccine efforts have traditionally focused on two well-known pre-erythrocytic antigens, CSP and TRAP, yet thousands of genes are expressed in the liver-stage. We sought to assess the ability of eight alternative P. falciparum pre-erythrocytic antigens to induce a high proportion of CD8+ T cells. We show that all antigens, when expressed individually in the non-replicating viral vectors ChAd63 and MVA, are capable of inducing an immune response in mice. Furthermore, we also developed chimeric P. berghei parasites expressing the cognate P. falciparum antigen to enable assessment of efficacy in mice. Our preliminary results indicate that vectors encoding either PfLSA1 or PfLSAP2 are capable of inducing sterile protection dependent on the presence of CD8+ T cells. This work has identified two promising P. falciparum liver-stage candidate antigens that will now undergo further testing in humans.
Collapse
|
17
|
Bao LQ, Nhi DM, Huy NT, Kikuchi M, Yanagi T, Hamano S, Hirayama K. Splenic CD11c+ cells derived from semi-immune mice protect naïve mice against experimental cerebral malaria. Malar J 2015; 14:23. [PMID: 25626734 PMCID: PMC4318192 DOI: 10.1186/s12936-014-0533-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/26/2014] [Indexed: 01/27/2023] Open
Abstract
Background Immunity to malaria requires innate, adaptive immune responses and Plasmodium-specific memory cells. Previously, mice semi-immune to malaria was developed. Three cycles of infection and cure (‘three-cure’) were required to protect mice against Plasmodium berghei (ANKA strain) infection. Methods C57BL/6 J mice underwent three cycles of P. berghei infection and drug-cure to become semi-immune. The spleens of infected semi-immune mice were collected for flow cytometry analysis. CD11c(+) cells of semi-immune mice were isolated and transferred into naïve mice which were subsequently challenged and followed up by survival and parasitaemia. Results The percentages of splenic CD4(+) and CD11c(+) cells were increased in semi-immune mice on day 7 post-infection. The proportion and number of B220(+)CD11c(+)low cells (plasmacytoid dendritic cells, DCs) was higher in semi-immune, three-cure mice than in their naïve littermates on day 7 post-infection (2.6 vs 1.1% and 491,031 vs 149,699, respectively). In adoptive transfer experiment, three months after the third cured P. berghei infection, splenic CD11c(+) DCs of non-infected, semi-immune, three-cure mice slowed Plasmodium proliferation and decreased the death rate due to neurological pathology in recipient mice. In addition, anti-P. berghei IgG1 level was higher in mice transferred with CD11c(+) cells of semi-immune, three-cure mice than mice transferred with CD11c(+) cells of naïve counterparts. Conclusion CD11c(+) cells of semi-immune mice protect against experimental cerebral malaria three months after the third cured malaria, potentially through protective plasmacytoid DCs and enhanced production of malaria-specific antibody.
Collapse
Affiliation(s)
- Lam Q Bao
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Guthmiller JJ, Zander RA, Butler NS. Measurement of the T Cell Response to Preerythrocytic Vaccination in Mice. Methods Mol Biol 2015; 1325:19-37. [PMID: 26450376 DOI: 10.1007/978-1-4939-2815-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Whole attenuated parasite vaccines designed to elicit immunity against the clinically silent preerythrocytic stage of Plasmodium infection represent the most efficacious experimental platforms currently in clinical trial. Studies in rodents and humans show that T cells mediate vaccine-induced protection. Thus, determining the quantitative and qualitative properties of these T cells remains a major research focus. Most rodent models of preerythrocytic anti-Plasmodium vaccination focus on circumsporozoite-specific CD8 T cell responses in BALB/c mice. However, CD4 T cells and non-circumsporozoite-specific CD8 T cells also significantly contribute to protection. Here we describe alternative approaches that enable detection and functional characterization of total CD8 and CD4 T cell responses induced by preerythrocytic vaccination in mice. These flow cytometry-based approaches rely on monitoring the modulation of expressed integrins and co-receptors on the surface of T cells in vaccinated mice. The approaches enable direct determination of the magnitude, kinetics, distribution, phenotype, and functional features of T cell responses induced by infection or whole-parasite vaccination using any mouse-parasite species combination.
Collapse
Affiliation(s)
- Jenna J Guthmiller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73104, USA
| | - Ryan A Zander
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73104, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Biomedical Sciences Building, Room 1035, 940 Stanton L. Young Blvd., Oklahoma, OK, 73104, USA.
| |
Collapse
|
19
|
Krzych U, Zarling S, Pichugin A. Memory T cells maintain protracted protection against malaria. Immunol Lett 2014; 161:189-95. [PMID: 24709142 PMCID: PMC6499475 DOI: 10.1016/j.imlet.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response.
Collapse
Affiliation(s)
- Urszula Krzych
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States.
| | - Stasya Zarling
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | - Alexander Pichugin
- Department of Cellular Immunology, Branch of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| |
Collapse
|
20
|
Sedegah M, Hollingdale MR, Farooq F, Ganeshan H, Belmonte M, Kim Y, Peters B, Sette A, Huang J, McGrath S, Abot E, Limbach K, Shi M, Soisson L, Diggs C, Chuang I, Tamminga C, Epstein JE, Villasante E, Richie TL. Sterile immunity to malaria after DNA prime/adenovirus boost immunization is associated with effector memory CD8+T cells targeting AMA1 class I epitopes. PLoS One 2014; 9:e106241. [PMID: 25211344 PMCID: PMC4161338 DOI: 10.1371/journal.pone.0106241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/29/2014] [Indexed: 11/24/2022] Open
Abstract
Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines.
Collapse
Affiliation(s)
- Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Michael R. Hollingdale
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Fouzia Farooq
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Harini Ganeshan
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Maria Belmonte
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jun Huang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Shannon McGrath
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Esteban Abot
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Keith Limbach
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Meng Shi
- Division of Medical, Audio, Visual, Library and Statistical Services, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | | | - Ilin Chuang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Cindy Tamminga
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Judith E. Epstein
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Eileen Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Thomas L. Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
21
|
Espinoza Mora MDR, Steeg C, Tartz S, Heussler V, Sparwasser T, Link A, Fleischer B, Jacobs T. Depletion of regulatory T cells augments a vaccine-induced T effector cell response against the liver-stage of malaria but fails to increase memory. PLoS One 2014; 9:e104627. [PMID: 25115805 PMCID: PMC4130546 DOI: 10.1371/journal.pone.0104627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/15/2014] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Treg) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4+CD25+ Treg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3+CD25− Treg. To obtain more insights in the specific function of Treg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when Treg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.
Collapse
Affiliation(s)
- Maria del Rosario Espinoza Mora
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg, Germany
- * E-mail:
| | - Christiane Steeg
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Susanne Tartz
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Volker Heussler
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Tim Sparwasser
- TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Infektionsimmunologie, Hannover, Germany
| | - Andreas Link
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg, Germany
| | - Bernhard Fleischer
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Thomas Jacobs
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| |
Collapse
|
22
|
The whole parasite, pre-erythrocytic stage approach to malaria vaccine development: a review. Curr Opin Infect Dis 2014; 26:420-8. [PMID: 23982233 DOI: 10.1097/qco.0000000000000002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The whole sporozoite (SPZ) vaccine platform provides the only established approach for inducing high-level sustained protective immunity in humans against malaria. We introduce this platform, highlight literature published since 2011, and discuss the challenges of further development. RECENT FINDINGS There are three major approaches to development of a whole parasite vaccine to prevent malaria infection using the SPZ platform: radiation-attenuated sporozoites (irrSPZ), chemoprophylaxis with infectious sporozoites (CPS), and genetically attenuated parasites (GAPs). In all three, SPZ are administered to the vaccinee. All three protect animals against infection when administered by injection with a needle and syringe, and irrSPZ and CPS protect against Plasmodium falciparum malaria in humans when P. falciparum SPZ (PfSPZ) are administered by mosquito bite. Metabolically active, nonreplicating (radiation attenuated) aseptic, purified, cryopreserved PfSPZ (PfSPZ Vaccine), and infectious, aseptic, purified, cryopreserved PfSPZ administered with chemoprophylaxis (PfSPZ-CVac approach) administered by needle and syringe have entered clinical trials. Preliminary data indicate that the PfSPZ Vaccine is safe, well tolerated and highly protective when administered intravenously. SUMMARY With proof-of-concept now established for high-grade protection induced by parenteral administration of a whole sporozoite vaccine, pathways for further development are currently being defined. Demonstration of high-level, durable, cross-strain P. falciparum protection would set the stage for licensure of a vaccine that could lead to dramatic reductions in malaria morbidity and mortality, and eventually elimination of this ancient scourge.
Collapse
|
23
|
Villarino N, Schmidt NW. CD8 + T Cell Responses to Plasmodium and Intracellular Parasites. ACTA ACUST UNITED AC 2014; 9:169-178. [PMID: 24741372 PMCID: PMC3983867 DOI: 10.2174/1573395509666131126232327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Parasitic protozoa are major threats to human health affecting millions of people around the world. Control of these infections by the host immune system relies on a myriad of immunological mechanisms that includes both humoral and cellular immunity. CD8+ T cells contribute to the control of these parasitic infections in both animals and humans. Here, we will focus on the CD8+ T cell response against a subset of these protozoa: Plasmodium, Toxoplasma gondii, Leishmania and Trypanosoma cruzi, with an emphasis on experimental rodent systems. It is evident a complex interaction occurs between CD8+ T cells and the invading protozoa. A detailed understanding of how CD8+ T cells mediate protection should provide the basis for the development of effective vaccines that prevent and control infections by these parasites.
Collapse
Affiliation(s)
- Nicolas Villarino
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nathan W Schmidt
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
24
|
Frevert U, Nacer A, Cabrera M, Movila A, Leberl M. Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitol Int 2013; 63:171-86. [PMID: 24076429 DOI: 10.1016/j.parint.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 08/28/2013] [Accepted: 09/18/2013] [Indexed: 01/10/2023]
Abstract
Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as the brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, 341 E 25 Street, New York, NY 10010, USA.
| | | | | | | | | |
Collapse
|
25
|
In vivo CD8+ T cell dynamics in the liver of Plasmodium yoelii immunized and infected mice. PLoS One 2013; 8:e70842. [PMID: 23967119 PMCID: PMC3743839 DOI: 10.1371/journal.pone.0070842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/21/2013] [Indexed: 12/28/2022] Open
Abstract
Plasmodium falciparum malaria remains one of the most serious health problems globally and a protective malaria vaccine is desperately needed. Vaccination with attenuated parasites elicits multiple cellular effector mechanisms that lead to Plasmodium liver stage elimination. While granule-mediated cytotoxicity requires contact between CD8+ effector T cells and infected hepatocytes, cytokine secretion should allow parasite killing over longer distances. To better understand the mechanism of parasite elimination in vivo, we monitored the dynamics of CD8+ T cells in the livers of naïve, immunized and sporozoite-infected mice by intravital microscopy. We found that immunization of BALB/c mice with attenuated P. yoelii 17XNL sporozoites significantly increases the velocity of CD8+ T cells patrolling the hepatic microvasculature from 2.69±0.34 μm/min in naïve mice to 5.74±0.66 μm/min, 9.26±0.92 μm/min, and 7.11±0.73 μm/min in mice immunized with irradiated, early genetically attenuated (Pyuis4-deficient), and late genetically attenuated (Pyfabb/f-deficient) parasites, respectively. Sporozoite infection of immunized mice revealed a 97% and 63% reduction in liver stage density and volume, respectively, compared to naïve controls. To examine cellular mechanisms of immunity in situ, naïve mice were passively immunized with hepatic or splenic CD8+ T cells. Unexpectedly, adoptive transfer rendered the motile CD8+ T cells from immunized mice immotile in the liver of P. yoelii infected mice. Similarly, when mice were simultaneously inoculated with viable sporozoites and CD8+ T cells, velocities 18 h later were also significantly reduced to 0.68±0.10 μm/min, 1.53±0.22 μm/min, and 1.06±0.26 μm/min for CD8+ T cells from mice immunized with irradiated wild type sporozoites, Pyfabb/f-deficient parasites, and P. yoelii CS280–288 peptide, respectively. Because immobilized CD8+ T cells are unable to make contact with infected hepatocytes, soluble mediators could potentially play a key role in parasite elimination under these experimental conditions.
Collapse
|