1
|
Xu L, Wang Y, Wang Y, Wang L, Du P, Cheng J, Zhang C, Jiao T, Xing L, Tapu MSR, Jia H, Li J. Early Use of PCSK9 Inhibitors in the Prognosis of Patients with Acute Coronary Syndrome by Protecting Vascular Endothelial Function. Pharmacology 2024:1-14. [PMID: 38964284 DOI: 10.1159/000540083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) has a protective effect on acute coronary syndrome (ACS). However, most studies have shown that this protective effect is based on a decrease in low-density lipoprotein cholesterol, while other mechanisms remain limited. This study aimed to determine whether PCSK9i can improve the prognosis of ACS patients by protecting endothelial function. METHODS A total of 113 ACS patients were enrolled and randomly assigned to PCSK9i group (PCSK9i combined with statins) and control group (statins only). Blood lipids and endothelial function indicators were measured and analyzed 6 weeks before and after treatment. The effect of PCSK9i on the expression and secretion of endothelial function indicators in vascular endothelial cells were studied by cell experiments. RESULTS After 6 weeks of treatment, endothelial function indicators such as nitric oxide (NO), thrombomodulin, intercellular cell adhesion molecule-1, endothelin-1, and flow-mediated vasodilation were significantly improved in PCSK9i group compared with control group. Only the changes of NO and von Willebrand factor were associated with blood lipid levels, whereas the changes of other endothelial function indicators were not significantly associated with blood lipid levels. PCSK9i reduced the incidence of major adverse cardiovascular events in patients with ACS compared to those in the control group. In cell experiments, PCSK9i treatment significantly ameliorated LPS induced endothelial injury in HUVECs. CONCLUSION PCSK9i can protect vascular endothelial function partly independently of its lipid-lowering effect and ameliorate the prognosis of patients with ACS within 6 weeks. This mechanism may involve heat shock transcription factor 1/heat shock proteins -related signaling pathways. Early use of PCSK9i in patients with ACS should be strongly considered in clinical practice.
Collapse
Affiliation(s)
- Linghao Xu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiqiong Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peizhao Du
- Department of Cardiology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Cheng
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunsheng Zhang
- Department of Cardiology, East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijian Xing
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Md Sakibur Rahman Tapu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haonan Jia
- Laboratory of Molecular Neural Biology, School of Life Sciences and Institute of Systems Biology, Shanghai University, Shanghai, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Cao X, Wu VWY, Han Y, Hong H, Wu Y, Kong APS, Lui KO, Tian XY. Role of Argininosuccinate Synthase 1 -Dependent L-Arginine Biosynthesis in the Protective Effect of Endothelial Sirtuin 3 Against Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307256. [PMID: 38233193 DOI: 10.1002/advs.202307256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Atherosclerosis is initiated with endothelial cell (EC) dysfunction and vascular inflammation under hyperlipidemia. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase. However, the specific role of endothelial SIRT3 during atherosclerosis remains poorly understood. The present study aims to study the role and mechanism of SIRT3 in EC function during atherosclerosis. Wild-type Sirt3f/f mice and endothelium-selective SIRT3 knockout Sirt3f/f; Cdh5Cre/+ (Sirt3EC-KO) mice are injected with adeno-associated virus (AAV) to overexpress PCSK9 and fed with high-cholesterol diet (HCD) for 12 weeks to induce atherosclerosis. Sirt3EC-KO mice exhibit increased atherosclerotic plaque formation, along with elevated macrophage infiltration, vascular inflammation, and reduced circulating L-arginine levels. In human ECs, SIRT3 inhibition resulted in heightened vascular inflammation, reduced nitric oxide (NO) production, increased reactive oxygen species (ROS), and diminished L-arginine levels. Silencing of SIRT3 results in hyperacetylation and deactivation of Argininosuccinate Synthase 1 (ASS1), a rate-limiting enzyme involved in L-arginine biosynthesis, and this effect is abolished in mutant ASS1. Furthermore, L-arginine supplementation attenuates enhanced plaque formation and vascular inflammation in Sirt3EC-KO mice. This study provides compelling evidence supporting the protective role of endothelial SIRT3 in atherosclerosis and also suggests a critical role of SIRT3-induced deacetylation of ASS1 by ECs for arginine synthesis.
Collapse
Affiliation(s)
- Xiaoyun Cao
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Vivian Wei Yan Wu
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Yumeng Han
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Huiling Hong
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Yalan Wu
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Alice Pik Shan Kong
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Zhang L, Yang J, Liu W, Ding Q, Sun S, Zhang S, Wang N, Wang Y, Xi S, Liu C, Ding C, Li C. A phellinus igniarius polysaccharide/chitosan-arginine hydrogel for promoting diabetic wound healing. Int J Biol Macromol 2023; 249:126014. [PMID: 37517765 DOI: 10.1016/j.ijbiomac.2023.126014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Inadequate angiogenesis and inflammation at the wound site have always been a major threat to skin wounds, especially for diabetic wounds that are difficult to heal. Therefore, hydrogel dressings with angiogenesis and antibacterial properties are very necessary in practical applications. This study reported a hydrogel (PCA) based on L-arginine conjugated chitosan (CA) and aldehyde functionalized polysaccharides of Phellinus igniarius (OPPI) as an antibacterial and pro-angiogenesis dressing for wound repair in diabetes for the first time. and discussed its possible mechanism for promoting wound healing. The results showed that PCA had good antioxidant, antibacterial, biological safety and other characteristics, and effectively promoted the healing course of diabetic wound model. In detail, the H&E and Masson staining results showed that PCA promoted normal epithelial formation and collagen deposition. The Western blot results confirmed that PCA decreased the inflammation by inhibiting the IKBα/NF-κB signaling pathway and enhanced angiogenesis by adjusting the level of HIF-1α. In conclusion, PCA is a promising candidate for promoting wound healing in diabetes. Graphic abstract.
Collapse
Affiliation(s)
- Lifeng Zhang
- Engineering Research Center of the Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Engineering Research Center of the Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Qiteng Ding
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Siyu Xi
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chunyu Liu
- Engineering Research Center of the Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Changtian Li
- Engineering Research Center of the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Stevens JL, McKenna HT, Filipe H, Lau L, Fernandez BO, Murray AJ, Feelisch M, Martin DS. Perioperative redox changes in patients undergoing hepato-pancreatico-biliary cancer surgery. Perioper Med (Lond) 2023; 12:35. [PMID: 37430377 DOI: 10.1186/s13741-023-00325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Tissue injury induces inflammation and the surgical stress response, which are thought to be central to the orchestration of recovery or deterioration after surgery. Enhanced formation of reactive oxygen and nitrogen species accompanies the inflammatory response and triggers separate but integrated reduction/oxidation (redox) pathways that lead to oxidative and/or nitrosative stress (ONS). Quantitative information on ONS in the perioperative period is scarce. This single-centre exploratory study investigated the effects of major surgery on ONS and systemic redox status and their potential associations with postoperative morbidity. METHODS Blood was collected from 56 patients at baseline, end of surgery (EoS) and the first postoperative day (day-1). Postoperative morbidity was recorded using the Clavien-Dindo classification and further categorised into minor, moderate and severe. Plasma/serum measures included markers of lipid oxidation (thiobarbituric acid-reactive substances; TBARS, 4-hydroxynonenal; 4-HNE, 8-iso-prostaglandin F2⍺; 8-isoprostanes). Total reducing capacity was measured using total free thiols (TFTs) and ferric-reducing ability of plasma (FRAP). Nitric oxide (NO) formation/metabolism was measured using cyclic guanosine monophosphate (cGMP), nitrite, nitrate and total nitroso-species (RxNO). Interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-⍺) were measured to evaluate inflammation. RESULTS Both oxidative stress (TBARS) and nitrosative stress (total nitroso-species) increased from baseline to EoS (+14%, P = 0.003 and +138%, P < 0.001, respectively), along with an increase in overall reducing capacity (+9%, P = 0.03) at EoS and protein-adjusted total free thiols (+12%, P = 0.001) at day-1 after surgery. Nitrite, nitrate and cGMP concentrations declined concomitantly from baseline to day-1. Baseline nitrate was 60% higher in the minor morbidity group compared to severe (P = 0.003). The increase in intraoperative TBARS was greater in severe compared to minor morbidity (P = 0.01). The decline in intraoperative nitrate was more marked in the minor morbidity group compared to severe (P < 0.001), whereas the cGMP decline was greatest in the severe morbidity group (P = 0.006). CONCLUSION In patients undergoing major HPB surgery, intraoperative oxidative and nitrosative stress increased, with a concomitant increase in reductive capacity. Baseline nitrate was inversely associated with postoperative morbidity, and the hallmarks of poor postoperative outcome include changes in both oxidative stress and NO metabolism.
Collapse
Affiliation(s)
- Jia L Stevens
- Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, NW3 2QG, UK.
- Royal Free Perioperative Research Group, Department of Anaesthesia, Royal Free Hospital, London, NW3 2QG, UK.
| | - Helen T McKenna
- Peninsula Medical School, University of Plymouth, John Bull Building, Plymouth, PL6 8BU, Devon, UK
| | - Helder Filipe
- Royal Free Perioperative Research Group, Department of Anaesthesia, Royal Free Hospital, London, NW3 2QG, UK
| | - Laurie Lau
- Clinical & Experimental Sciences and Integrative Physiology and Critical Illness Group, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences and Integrative Physiology and Critical Illness Group, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Martin Feelisch
- Clinical & Experimental Sciences and Integrative Physiology and Critical Illness Group, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Daniel S Martin
- Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, NW3 2QG, UK
- Peninsula Medical School, University of Plymouth, John Bull Building, Plymouth, PL6 8BU, Devon, UK
| |
Collapse
|
5
|
Antihistaminergic and Anticholinergic Properties of the Root Bark Aqueous Extract of Diospyros mespiliformis (Ebenaceae) on Hypersecretion of Gastric Acid Induced in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5190499. [PMID: 35140799 PMCID: PMC8820865 DOI: 10.1155/2022/5190499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
Objective The objective of this study was to elucidate the antisecretory mechanism of the root bark aqueous extract of Diospyros mespiliformis (RBAEDM) in Wistar rats. Materials and methods. RBAEDM was tested on three experimental animal models of gastric acid hypersecretion including pyloric ligation (PL), PL with histamine, and carbachol pretreatments. The ulcerated surface, mucus mass, pH, gastric acidity, and pepsin activity were determined. Some bioactive compounds revealed by qualitative phytochemistry were quantified. Some markers of oxidative stress in vivo such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and in vitro antioxidant tests (ABTS: 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid, DPPH: 2,2-diphenyl-2-picrylhydrazyl, and FRAP: ferric reducing antioxidant power) were determined. Results In the three models studied, RBAEDM resulted in increases in the percentages of inhibition ranging from 9.50 to 59.52% of gastric ulcer and mucus mass. This increase was accompanied by the reduction in acidity and pepsin activity. The administration of RBAEDM resulted in a significant decrease (p < 0.05, p < 0.01) in MDA levels correlated with a significant increase (p < 0.05, p < 0.01) in CAT and nitrite levels compared with the negative control. RBAEDM has the ability to scavenge ABTS and DPPH radicals and to reduce FRAP, and the inhibitory concentration of 50% (IC50) of the ABTS radical was 220 μg/mL compared with the butylhydroxytoluene (BHT) control (175 μg/mL). Quantitative phytochemistry revealed abundant polyphenols, flavonoids, tannins, saponins, and anthocyanin. Conclusion RBAEDM protected gastric mucous membrane for gastric acid by mechanisms that would involve both anticholinergic and antihistaminergic pathways.
Collapse
|
6
|
Acute Effects of Dietary Nitrate on Exercise Tolerance, Muscle Oxygenation, and Cardiovascular Function in Patients With Peripheral Arterial Disease. Int J Sport Nutr Exerc Metab 2021; 31:385-396. [PMID: 34284348 DOI: 10.1123/ijsnem.2021-0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
Previous studies have used supplements to increase dietary nitrate intake in clinical populations. Little is known about whether effects can also be induced through vegetable consumption. Therefore, the aim of this study was to assess the impact of dietary nitrate, through nitrate-rich vegetables (NRV) and beetroot juice (BRJ) supplementation, on plasma nitrate and nitrite concentrations, exercise tolerance, muscle oxygenation, and cardiovascular function in patients with peripheral arterial disease. In a randomized crossover design, 18 patients with peripheral arterial disease (age: 73 ± 8 years) followed a nitrate intake protocol (∼6.5 mmol) through the consumption of NRV, BRJ, and nitrate-depleted BRJ (placebo). Blood samples were taken, blood pressure and arterial stiffness were measured in fasted state and 150 min after intervention. Each intervention was followed by a maximal walking exercise test to determine claudication onset time and peak walking time. Gastrocnemius oxygenation was measured by near-infrared spectroscopy. Blood samples were taken and blood pressure was measured 10 min after exercise. Mean plasma nitrate and nitrite concentrations increased (nitrate; Time × Intervention interaction; p < .001), with the highest concentrations after BRJ (494 ± 110 μmol/L) compared with NRV (202 ± 89 μmol/L) and placebo (80 ± 19 μmol/L; p < .001). Mean claudication onset time and peak walking time did not differ between NRV (413 ± 187 s and 745 ± 220 s, respectively), BRJ (392 ± 154 s and 746 ± 176 s), and placebo (403 ± 176 s and 696 ± 222 s) (p = .762 and p = .165, respectively). Gastrocnemius oxygenation, blood pressure, and arterial stiffness were not affected by the intervention. NRV and BRJ intake markedly increase plasma nitrate and nitrite, but this does not translate to improved exercise tolerance, muscle oxygenation, and/or cardiovascular function.
Collapse
|
7
|
Uyanga VA, Jiao H, Zhao J, Wang X, Lin H. Dietary L-citrulline supplementation modulates nitric oxide synthesis and anti-oxidant status of laying hens during summer season. J Anim Sci Biotechnol 2020; 11:103. [PMID: 33062264 PMCID: PMC7549236 DOI: 10.1186/s40104-020-00507-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background L-citrulline (L-Cit), a non-protein amino acid, has been implicated in several physiological functions including anti-inflammatory, anti-oxidative, and hypothermic roles, however, there is a paucity of information with regards to its potential in poultry production. Methods This study was designed to investigate the effects of dietary L-Cit supplementation on the production performance, nitric oxide production, and antioxidant status of laying hens during summer period. Hy-Line Brown laying hens (n = 288, 34 weeks old) were allotted to four treatment, 6 replicates of 12 chickens each. Dietary treatments of control (basal diets), 0.25%, 0.50% and 1.00% L-Cit supplementation were fed to chickens for eight (8) weeks. Production performance, free amino acid profiles, nitric oxide production, and antioxidant properties were measured. Blood samples were collected at the 4th and 8th weeks of the experiment. Results Air temperature monitoring indicated an average daily minimum and maximum temperatures of 25.02 °C and 31.01 °C respectively. Dietary supplementation with L-Cit did not influence (P > 0.05) the production performance, and rectal temperature of laying hens. Egg shape index was increased (P < 0.05) with increasing levels of L-Cit. Serum-free content of arginine, citrulline, ornithine, tryptophan, histidine, GABA, and cystathionine were elevated, but taurine declined with L-Cit diets. Plasma nitric oxide (NOx) concentration was highest at 1% L-Cit. Likewise, nitric oxide synthase (NOS) activity for total NOS (tNOS) and inducible NOS (iNOS) were upregulated with increasing L-Cit levels, although, tNOS was not affected at the 4th week. Anti-oxidant enzymes including catalase and superoxide dismutase (SOD) were increased with L-Cit supplementation, however, SOD activity was unchanged at 4th week, while total anti-oxidant capacity increased at the 8th week. L-Cit supplementation attenuated the extent of lipid peroxidation, and also inhibited glutathione peroxidase activity. Conclusion Dietary L-Cit supplementation modulated systemic arginine metabolism, nitric oxide synthesis, antioxidant defense system, and increased the egg shape index of laying hens during the summer season. 1% L-Cit supplementation proved most effective in potentiating these effects and may be adopted for feed formulation strategies.
Collapse
Affiliation(s)
- Victoria A Uyanga
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, 271018 Shandong China
| | - Hongchao Jiao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, 271018 Shandong China
| | - Jingpeng Zhao
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, 271018 Shandong China
| | - Xiaojuan Wang
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, 271018 Shandong China
| | - Hai Lin
- Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Shandong Agricultural University, No. 61 Daizong Street, Tai'an, 271018 Shandong China
| |
Collapse
|
8
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
9
|
Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F. Gasotransmitters and the immune system: Mode of action and novel therapeutic targets. Eur J Pharmacol 2018; 834:92-102. [PMID: 30016662 DOI: 10.1016/j.ejphar.2018.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Gasotransmitters are a group of gaseous molecules, with pleiotropic biological functions. These molecules include nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). Abnormal production and metabolism of these molecules have been observed in several pathological conditions. The understanding of the role of gasotransmitters in the immune system has grown significantly in the past years, and independent studies have shed light on the effect of exogenous and endogenous gasotransmitters on immune responses. Moreover, encouraging results come from the efficacy of NO-, CO- and H2S -donors in preclinical animal models of autoimmune, acute and chronic inflammatory diseases. To date, data on the influence of gasotransmitters in immunity and immunopathology are often scattered and partial, and the scarcity of clinical trials using NO-, CO- and H2S -donors, reveals that more effort is warranted. This review focuses on the role of gasotransmitters in the immune system and covers the evidences on the possible use of gasotransmitters for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Klaus Bendtzen
- Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
10
|
Lucas ML, Carraro CC, Belló-Klein A, Kalil AN, Aerts NR, Carvalho FB, Fernandes MC, Zettler CG. Oxidative Stress in Aortas of Patients with Advanced Occlusive and Aneurysmal Diseases. Ann Vasc Surg 2018; 52:216-224. [PMID: 29758327 DOI: 10.1016/j.avsg.2018.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/05/2018] [Accepted: 02/23/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Aortoiliac occlusive disease (AOD) and abdominal aortic aneurysm (AAA) are very important cardiovascular diseases that present different aspects of pathophysiology; however, oxidative stress and inflammatory response seem be relevant in both of them. Our objective was to evaluate oxidative damage and degree of inflammatory infiltrate in aortas of patients surgically treated for AOD and AAA. MATERIALS AND METHODS Levels of reactive oxygen species (ROS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and myeloperoxidase (MPO) expression as well as nitrite levels and superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in aortas of patients with AOD (n = 16) or AAA (n = 14), while the control group was formed by cadaveric organ donors (n = 10). We also analyzed the degree of inflammatory infiltrate in these aortas. RESULTS There was an increase in ROS levels and NADPH oxidase activity in patients with AOD and AAA when compared with the control group, and the AOD group demonstrated higher ROS production and NADPH oxidase activity and also nitrite levels when compared with the AAA group (P < 0.001). On the other hand, an increase of SOD activity in the AOD group and CAT activity in the AAA group was observed. Inflammatory infiltrate and MPO expression were higher in the AOD group when compared with the control group (P < 0.05). CONCLUSIONS Oxidative stress is relevant in both AOD and AAA, though AOD presented higher ROS levels and NADPH activity. Increased activities of antioxidant enzymes may be a compensatory phenomenon which occurs in aortas of patients with AOD and AAA. Perhaps, a relationship between oxidative stress and degree of inflammatory infiltrate may exist in the pathophysiology of AOD and AAA.
Collapse
Affiliation(s)
- Márcio L Lucas
- Post-Graduating Course of Medical Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Vascular Surgery, Santa Casa de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Cristina C Carraro
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio N Kalil
- Post-Graduating Course of Medical Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Newton R Aerts
- Department of Vascular Surgery, Santa Casa de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano B Carvalho
- Post-Graduating Course of Pathology, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marilda C Fernandes
- Post-Graduating Course of Pathology, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Claudio G Zettler
- Post-Graduating Course of Medical Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduating Course of Pathology, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Klawitter J, Hildreth KL, Christians U, Kohrt WM, Moreau KL. A relative L-arginine deficiency contributes to endothelial dysfunction across the stages of the menopausal transition. Physiol Rep 2018; 5:5/17/e13409. [PMID: 28904082 PMCID: PMC5599867 DOI: 10.14814/phy2.13409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial function declines across the menopause transition in women. We tested the hypothesis that reduced availability of the endothelial nitric oxide synthase [eNOS] substrate L‐arginine is an underlying mechanism to vascular endothelial dysfunction across menopause stages. Endothelial function (brachial artery flow‐mediated dilation [FMD]) and plasma markers of L‐arginine metabolism (citrulline, NG‐mono‐methyl‐ւ‐arginine [L‐NMMA] asymmetric dimethylarginine [ADMA] and NG‐N′G‐dimethyl‐l‐arginine [SDMA]), were measured in 129 women: 36 premenopausal (33 ± 7 years), 16 early‐ (49 ± 3 years) or 21 late‐ (50 ± 4 years) perimenopausal, and 21 early‐ (55 ± 3 years) or 35 late‐ (61 ± 4 years) postmenopausal. FMD was progressively reduced across menopause stages (P < 0.001). Menopause stage was associated with L‐arginine concentrations (P = 0.012), with higher levels in early postmenopausal compared to early and late perimenopausal women (P < 0.05). The methylarginine and eNOS inhibitor L‐NMMA was higher in early and late postmenopausal women compared to premenopausal and early and late perimenopausal women (all P < 0.001), and was inversely correlated with FMD (r = −0.30, P = 0.001). The L‐arginine/L‐NMMA ratio, a potential biomarker of relative L‐arginine levels, was lower in postmenopausal compared to either premenopausal or perimenopausal women (both P < 0.001), and was positively correlated with FMD (r = 0.33, P < 0.001). There were no differences in plasma citrulline, ADMA or SDMA across groups. These data suggest that a relative L‐arginine deficiency may be a mechanism underlying the decline in endothelial function with the menopause transition in women. The relative L‐arginine deficiency may be related to elevated levels of the methylarginine L‐NMMA, which would compete with L‐arginine for eNOS and for intracellular transport, reducing NO biosynthesis.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kerry L Hildreth
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Denver Veterans Administration Medical Center, Geriatric Research Education and Clinical Center, Denver, Colorado
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado .,Denver Veterans Administration Medical Center, Geriatric Research Education and Clinical Center, Denver, Colorado
| |
Collapse
|
12
|
Protective Role of Nitrate/Nitrite Reductase System during Transient Global Cerebral Ischemia. Bull Exp Biol Med 2018; 165:31-35. [DOI: 10.1007/s10517-018-4092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 10/16/2022]
|
13
|
Mitsuhashi T, Uemoto R, Ishikawa K, Yoshida S, Ikeda Y, Yagi S, Matsumoto T, Akaike M, Aihara KI. Endothelial Nitric Oxide Synthase-Independent Pleiotropic Effects of Pitavastatin Against Atherogenesis and Limb Ischemia in Mice. J Atheroscler Thromb 2017; 25:65-80. [PMID: 28592707 PMCID: PMC5770225 DOI: 10.5551/jat.37747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Statins have a protective impact against cardiovascular diseases through not only lipid-lowering effects but also pleiotropic effects, including activation of the endothelial nitric oxide synthase (eNOS) system. We aimed to clarify the protective effects of a statin against atherogenesis and ischemia in eNOS−/− mice. Methods: Study 1. eNOS−/−Apolipoprotein E (ApoE)−/− mice were treated with a vehicle or pitavastatin (0.3 mg/kg/day) for 4 weeks. Study 2. eNOS−/− mice were also treated with a vehicle or the same dose of pitavastatin for 2 weeks prior to hind-limb ischemia. Results: In Study 1, pitavastatin attenuated plaque formation and medial fibrosis of the aortic root with decreased macrophage infiltration in eNOS−/−ApoE−/− mice. PCR array analysis showed reductions in aortic gene expression of proatherogenic factors, including Ccl2 and Ccr2 in pitavastatin-treated double mutant mice. In addition, pitavastatin activated not only atherogenic p38MAPK and JNK but also anti-atherogenic ERK1/2 and ERK5 in the aorta of the double mutant mice. In Study 2, pitavastatin prolonged hind-limb survival after the surgery with increased BCL2-to-BAX protein ratio and inactivated JNK. Enhanced expression of anti-apoptotic genes, including Vegf, Api5, Atf5, Prdx2, and Dad1, was observed in the ischemic limb of pitavastatin-treated eNOS−/− mice. Furthermore, pitavastatin activated both aortic and skeletal muscle AMPK in the eNOS-deficient vascular injury models. Conclusion: Pitavastatin exerts eNOS-independent protective effects against atherogenesis and hindlimb ischemia in mice, which may occur via modifications on key molecules such as AMPK and diverse molecules.
Collapse
Affiliation(s)
| | - Ryoko Uemoto
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University
| | | | - Sumiko Yoshida
- Department of Hematology, Endocrinology & Metabolism, Tokushima University
| | | | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University
| | | | - Ken-Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University
| |
Collapse
|
14
|
Rae L, Fidler P, Gibran N. The Physiologic Basis of Burn Shock and the Need for Aggressive Fluid Resuscitation. Crit Care Clin 2016; 32:491-505. [PMID: 27600122 DOI: 10.1016/j.ccc.2016.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Burn trauma in the current age of medical care still portends a 3% to 8% mortality. Of patients who die from their burn injuries, 58% of deaths occur in the first 72 hours after injury, indicating death from the initial burn shock is still a major cause of burn mortality. Significant thermal injury incites an inflammatory response, which distinguishes burns from other trauma. This article focuses on the current understanding of the pathophysiology of burn shock, the inflammatory response, and the direction of research and targeted therapies to improve resuscitation, morbidity, and mortality.
Collapse
Affiliation(s)
- Lisa Rae
- Department of Trauma, Surgical Critical Care and Emergency General Surgery, Vanderbilt University Medical Center, 1211 21st Avenue South, MAB 404, Nashville, TN 37212, USA.
| | - Philip Fidler
- Swedish Hospital, 601 E. Hampden Avenue, Englewood, CO 80113, USA
| | - Nicole Gibran
- UW Burn Center, 325 9th Avenue, Seattle, WA 98104, USA
| |
Collapse
|
15
|
Arginase inhibition attenuates arteriogenesis and interferes with M2 macrophage accumulation. J Transl Med 2016; 96:830-8. [PMID: 27239731 DOI: 10.1038/labinvest.2016.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/05/2016] [Accepted: 04/21/2016] [Indexed: 01/27/2023] Open
Abstract
l-Arginine is the common substrate for nitric oxide synthases (NOS) and arginase. Whereas the contribution of NOS to collateral artery growth (arteriogenesis) has been demonstrated, the functional role of arginase remains to be elucidated and was topic of the present study. Arteriogenesis was induced in mice by ligation of the femoral artery. Laser Doppler perfusion measurements demonstrated a significant reduction in arteriogenesis in mice treated with the arginase inhibitor nor-NOHA (N(ω)-hydroxy-nor-arginine). Accompanying in vitro results on murine primary arterial endothelial cells and smooth muscle cells revealed that nor-NOHA treatment interfered with cell proliferation and resulted in increased nitrate/nitrite levels, indicative for increased NO production. Immuno-histological analyses on tissue samples demonstrated that nor-NOHA administration caused a significant reduction in M2 macrophage accumulation around growing collateral arteries. Gene expression studies on isolated growing collaterals evidenced that nor-NOHA treatment abolished the differential expression of Icam1 (intercellular adhesion molecule 1). From our data we conclude that arginase activity is essential for arteriogenesis by promoting perivascular M2 macrophage accumulation as well as arterial cell proliferation.
Collapse
|
16
|
Thunberg CA, Morozowich ST, Ramakrishna H. Inhaled therapy for the management of perioperative pulmonary hypertension. Ann Card Anaesth 2016; 18:394-402. [PMID: 26139748 PMCID: PMC4881725 DOI: 10.4103/0971-9784.159811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Patients with pulmonary hypertension (PH) are at high risk for complications in the perioperative setting and often receive vasodilators to control elevated pulmonary artery pressure (PAP). Administration of vasodilators via inhalation is an effective strategy for reducing PAP while avoiding systemic side effects, chiefly hypotension. The prototypical inhaled pulmonary-specific vasodilator, nitric oxide (NO), has a proven track record but is expensive and cumbersome to implement. Alternatives to NO, including prostanoids (such as epoprostenol, iloprost, and treprostinil), NO-donating drugs (sodium nitroprusside, nitroglycerin, and nitrite), and phosphodiesterase inhibitors (milrinone, sildenafil) may be given via inhalation for the purpose of treating elevated PAP. This review will focus on the perioperative therapy of PH using inhaled vasodilators.
Collapse
Affiliation(s)
| | | | - Harish Ramakrishna
- Division of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
17
|
Deshpande D, Kethireddy S, Janero DR, Amiji MM. Therapeutic Efficacy of an ω-3-Fatty Acid-Containing 17-β Estradiol Nano-Delivery System against Experimental Atherosclerosis. PLoS One 2016; 11:e0147337. [PMID: 26840601 PMCID: PMC4740455 DOI: 10.1371/journal.pone.0147337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/31/2015] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis and its consequences remain prevalent clinical challenges throughout the world. Initiation and progression of atherosclerosis involves a complex, dynamic interplay among inflammation, hyperlipidemia, and endothelial dysfunction. A multicomponent treatment approach targeted for delivery within diseased vessels could prove beneficial in treating atherosclerosis. This study was undertaken to evaluate the multimodal effects of a novel ω-3-fatty acid-rich, 17-β-estradiol (17-βE)-loaded, CREKA-peptide-modified nanoemulsion system on experimental atherosclerosis. In vitro treatment of cultured human aortic endothelial cells (ECs) with the 17-βE-loaded, CREKA-peptide-modified nanoemulsion system increased cellular nitrate/nitrite, indicating improved nitric oxide formation. In vivo, systemic administration of this nanoemulsion system to apolipoprotein-E knock out (ApoE-/-) mice fed a high-fat diet significantly improved multiple parameters related to the etiology and development of occlusive atherosclerotic vasculopathy: lesion area, circulating plasma lipid levels, and expression of aortic-wall inflammatory markers. These salutary effects were attributed selectively to the 17-βE and/or ω-3 polyunsaturated fatty acid components of the nano-delivery system. At therapeutic doses, the 17-βE-loaded, CREKA-peptide modified nanoemulsion system appeared to be biocompatible in that it elicited no apparent adverse/toxic effects, as indexed by body weight, plasma alanine aminotransferase/aspartate aminotransferase levels, and liver and kidney histopathology. The study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nanoemulsion system against atherosclerosis in a multimodal fashion by reducing lesion size, lowering the levels of circulating plasma lipids and decreasing the gene expression of inflammatory markers associated with the disease.
Collapse
Affiliation(s)
- Dipti Deshpande
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Sravani Kethireddy
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - David R. Janero
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
- Center for Drug Discovery, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
18
|
Endothelial nitric oxide synthase induces heat shock protein HSPA6 (HSP70B') in human arterial smooth muscle cells. Nitric Oxide 2015; 52:41-8. [PMID: 26656590 DOI: 10.1016/j.niox.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is the major source of nitric oxide (NO) production in blood vessels. One of the pleitropic functions of eNOS derived NO is to inhibit vascular smooth muscle cell proliferation in the blood vessel wall, and whose dysfunction is a primary cause of atherosclerosis and restenosis. In this study there was an interest in examining the gene profile of eNOS adenoviral (Ad-eNOS) transduced human coronary artery smooth muscle cells (HCASMC) to further understand the eNOS inhibitory effect on smooth muscle cell proliferation. To this aim a whole genome wide analysis of eNOS transduced HCASMCs was performed. A total of 19 genes were up regulated, and 31 genes down regulated in Ad-eNOS transduced HCASMCs compared to cells treated with an empty adenovirus. Noticeably, a cluster of HSP70 gene family members was amongst the genes up regulated. Quantitative PCR confirmed that transcripts for HSPA1A (HSP70A), HSPA1B (HSP70B) and HSPA6 (HSP70B') were elevated 2, 1.7 and 14-fold respectively in Ad-eNOS treated cells. The novel gene HSPA6 was further explored as a potential mediator of eNOS signaling in HCASMC. Immunoblotting showed that HSPA6 protein was induced by Ade-NOS. To functionally examine the effect of HSPA6 on SMCs, an adenovirus harboring the HSPA6 gene under the control of a constitutive promoter was generated. Transduction of HCASMCs with Ad-HSPA6 inhibited SMC proliferation at 3 and 6 days post serum growth stimulation, and paralleled the Ad-eNOS inhibition of SMC growth. The identification in this study that HSPA6 overexpression inhibits SMC proliferation coupled with the recent finding that inhibition of HSP90 has a similar effect, progresses the field of targeting HSPs for vascular repair.
Collapse
|
19
|
Restoration of Endothelial Function in Pparα (-/-) Mice by Tempol. PPAR Res 2015; 2015:728494. [PMID: 26649033 PMCID: PMC4663011 DOI: 10.1155/2015/728494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator activated receptor alpha (PPARα) is one of the PPAR isoforms belonging to the nuclear hormone receptor superfamily that regulates genes involved in lipid and lipoprotein metabolism. PPARα is present in the vascular wall and is thought to be involved in protection against vascular disease. To determine if PPARα contributes to endothelial function, conduit and cerebral resistance arteries were studied in Pparα−/− mice using isometric and isobaric tension myography, respectively. Aortic contractions to PGF2α and constriction of middle cerebral arteries to phenylephrine were not different between wild type (WT) and Pparα−/−; however, relaxation/dilation to acetylcholine (ACh) was impaired. There was no difference in relaxation between WT and Pparα−/− aorta to treatment with a nitric oxide (NO) surrogate indicating impairment in endothelial function. Endothelial NO levels as well as NO synthase expression were reduced in Pparα−/− aortas, while superoxide levels were elevated. Two-week feeding with the reactive oxygen species (ROS) scavenger, tempol, normalized ROS levels and rescued the impaired endothelium-mediated relaxation in Pparα−/− mice. These results suggest that Pparα−/− mice have impaired endothelial function caused by decreased NO bioavailability. Therefore, activation of PPARα receptors may be a therapeutic target for maintaining endothelial function and protection against cardiovascular disease.
Collapse
|
20
|
Yang Y, Qi P, Yang Z, Huang N. Nitric oxide based strategies for applications of biomedical devices. BIOSURFACE AND BIOTRIBOLOGY 2015. [DOI: 10.1016/j.bsbt.2015.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
21
|
Predonzani A, Calì B, Agnellini AHR, Molon B. Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide. World J Exp Med 2015; 5:64-76. [PMID: 25992321 PMCID: PMC4436941 DOI: 10.5493/wjem.v5.i2.64] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, nitric oxide (NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still represent the prototype of NO-producing cells. Notwithstanding, additional cell subsets belonging to both innate and adaptive immunity have been documented to sustain NO propagation by means of the enzymatic activity of different nitric oxide synthase isoforms. Furthermore, due to its chemical characteristics, NO could rapidly react with other free radicals to generate different reactive nitrogen species (RNS), which have been intriguingly associated with many pathological conditions. Nonetheless, the plethora of NO/RNS-mediated effects still remains extremely puzzling. The aim of this manuscript is to dig into the broad literature on the topic to provide intriguing insights on NO-mediated circuits within immune system. We analysed NO and RNS immunological clues arising from their biochemical properties, immunomodulatory activities and finally dealing with their impact on different pathological scenarios with far prompting intriguing perspectives for their pharmacological targeting.
Collapse
|
22
|
Arginase as a Critical Prooxidant Mediator in the Binomial Endothelial Dysfunction-Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:924860. [PMID: 26064427 PMCID: PMC4434223 DOI: 10.1155/2015/924860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022]
Abstract
Arginase is a metalloenzyme which hydrolyzes L-arginine to L-ornithine and urea. Since its discovery, in the early 1900s, this enzyme has gained increasing attention, as literature reports have progressively pointed to its critical participation in regulating nitric oxide bioavailability. Indeed, accumulating evidence in the following years would picture arginase as a key player in vascular health. Recent studies have highlighted the arginase regulatory role in the progression of atherosclerosis, the latter an essentially prooxidant state. Apart from the fact that arginase has been proven to impair different metabolic pathways, and also as a consequence of this, the repercussions of the actions of such enzyme go further than first thought. In fact, such metalloenzyme exhibits direct implications in multiple cardiometabolic diseases, among which are hypertension, type 2 diabetes, and hypercholesterolemia. Considering the epidemiological repercussions of these clinical conditions, arginase is currently seen under the spotlights of the search for developing specific inhibitors, in order to mitigate its deleterious effects. That said, the present review focuses on the role of arginase in endothelial function and its participation in the establishment of atherosclerotic lesions, discussing the main regulatory mechanisms of the enzyme, also highlighting the potential development of pharmacological strategies in related cardiovascular diseases.
Collapse
|
23
|
Shah DA, Khalil RA. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol 2015; 95:211-26. [PMID: 25916268 DOI: 10.1016/j.bcp.2015.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/17/2015] [Indexed: 12/29/2022]
Abstract
Preeclampsia is a pregnancy-associated disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality; however, the pathophysiological mechanisms involved are unclear. Predisposing demographic, genetic and environmental risk factors could cause localized abnormalities in uteroplacental cytoactive factors such as integrins, matrix metalloproteinases, cytokines and major histocompatibility complex molecules leading to decreased vascular remodeling, uteroplacental vasoconstriction, trophoblast cells apoptosis, and abnormal development of the placenta. Defective placentation and decreased trophoblast invasion of the myometrium cause reduction in uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia, an important event in preeclampsia. RUPP could stimulate the release of circulating bioactive factors such as the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin that cause imbalance with the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or cause the release of inflammatory cytokines, reactive oxygen species, hypoxia-induced factor-1 and AT1 angiotensin receptor agonistic autoantibodies. The circulating bioactive factors target endothelial cells causing generalized endotheliosis, endothelial dysfunction, decreased vasodilators such as nitric oxide and prostacyclin and increased vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction. The bioactive factors also stimulate the mechanisms of VSM contraction including Ca(2+), protein kinase C, and Rho-kinase and induce extracellular matrix remodeling leading to further vasoconstriction and hypertension. While therapeutic options are currently limited, understanding the underlying mechanisms could help design new interventions for management of preeclampsia.
Collapse
Affiliation(s)
- Dania A Shah
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Wobst J, Kessler T, Dang TA, Erdmann J, Schunkert H. Role of sGC-dependent NO signalling and myocardial infarction risk. J Mol Med (Berl) 2015; 93:383-94. [PMID: 25733135 DOI: 10.1007/s00109-015-1265-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
The NO/cGMP pathway plays an important role in many physiological functions and pathophysiological conditions. In the last few years, several genetic and functional studies pointed to an underestimated role of this pathway in the development of atherosclerosis. Indeed, several genetic variants of key enzymes modulating the generation of NO and cGMP have been strongly associated with coronary artery disease and myocardial infarction risk. In this review, we aim to place the genomic findings on components of the NO/cGMP pathway, namely endothelial nitric oxide synthase, soluble guanylyl cyclase and phosphodiesterase 5A, in context of preventive and therapeutic strategies for treating atherosclerosis and its sequelae.
Collapse
Affiliation(s)
- Jana Wobst
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany
| | | | | | | | | |
Collapse
|
25
|
Kuzenkov VS, Krushynsky AL. [A protective role of the nitrite/nitrate reductase system in ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:58-66. [PMID: 26978642 DOI: 10.17116/jnevro201511512258-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To reveal a protective role of the nitrite/nitrate reductase system in NO- synthase (NOS) inhibition in ischemic stroke. MATERIAL AND METHODS An effect of the non-selective NOS inhibitor Nω-nitro-L-arginine (L-NNA) introduced in dose of 25 mg/kg and nitrates (КNO3, NaNO3, Mg(NO3)2, Ca(NO3) in doses of 5 mg/kg) on ischemic stroke induced by the occlusion of carotid arteries in an experimental model was studied. The animals (Wistar rats) were stratified into 20 experimental groups (n=480) and 4 control groups (n=96). One of nitrates or L-NNA along with one of nitrates or L-NNA alone were administered to experimental groups 1h before brain ischemia or 5s after carotid artery occlusion. 0.9% NaCl was used in the control rats. RESULTS L-NNA increases neurological deficit and lethality in brain ischemia. Depending on a cation, the nitrite/nitrate reductase system may play a protective role in the inhibition of NOS-system in brain ischemia. CONCLUSION In brain ischemia and NOS inhibition, Mg(NO3)2 has the greatest protective effect.
Collapse
|
26
|
Medical Management of Serum Lipids and Coronary Heart Disease. Coron Artery Dis 2015. [DOI: 10.1007/978-1-4471-2828-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
The evolution of nitric oxide signalling in vertebrate blood vessels. J Comp Physiol B 2014; 185:153-71. [DOI: 10.1007/s00360-014-0877-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
28
|
Lucas R, Fulton D, Caldwell RW, Romero MJ. Arginase in the vascular endothelium: friend or foe? Front Immunol 2014; 5:589. [PMID: 25452758 PMCID: PMC4233309 DOI: 10.3389/fimmu.2014.00589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA ; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA ; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | - Robert William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | - Maritza J Romero
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA ; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| |
Collapse
|
29
|
Wang L, Bhatta A, Toque HA, Rojas M, Yao L, Xu Z, Patel C, Caldwell RB, Caldwell RW. Arginase inhibition enhances angiogenesis in endothelial cells exposed to hypoxia. Microvasc Res 2014; 98:1-8. [PMID: 25445030 DOI: 10.1016/j.mvr.2014.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/29/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
Abstract
Hypoxia-induced arginase elevation plays an essential role in several vascular diseases but influence of arginase on hypoxia-mediated angiogenesis is completely unknown. In this study, in vitro network formation in bovine aortic endothelial cells (BAEC) was examined after exposure to hypoxia for 24h with or without arginase inhibition. Arginase activity, protein levels of the two arginase isoforms, eNOS, and VEGF as well as production of NO and ROS were examined to determine the involvement of arginase in hypoxia-mediated angiogenesis. Hypoxia elevated arginase activity and arginase 2 expression but reduced active p-eNOS(Ser1177) and NO levels in BAEC. In addition, both VEGF protein levels and endothelial elongation and network formation were reduced with continued hypoxia, whereas ROS levels increased and NO levels decreased. Arginase inhibition limited ROS, restored NO formation and VEGF expression, and prevented the reduction of angiogenesis. These results suggest a fundamental role of arginase activity in regulating angiogenic function.
Collapse
Affiliation(s)
- Lin Wang
- Department of Plastic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Anil Bhatta
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Modesto Rojas
- Vascular Biology Center, Georgia Regents University, Charlie Norwood VA Medical Center, Augusta GA, 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Zhimin Xu
- Vascular Biology Center, Georgia Regents University, Charlie Norwood VA Medical Center, Augusta GA, 30912, USA
| | - Chintan Patel
- Vascular Biology Center, Georgia Regents University, Charlie Norwood VA Medical Center, Augusta GA, 30912, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Georgia Regents University, Charlie Norwood VA Medical Center, Augusta GA, 30912, USA
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
30
|
Nomura J, Busso N, Ives A, Matsui C, Tsujimoto S, Shirakura T, Tamura M, Kobayashi T, So A, Yamanaka Y. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep 2014; 4:4554. [PMID: 24686534 PMCID: PMC3971401 DOI: 10.1038/srep04554] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE(-/-) mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE(-/-) mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis.
Collapse
Affiliation(s)
- Johji Nomura
- 1] Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan [2] Service of Rheumatology, Department of l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Annette Ives
- Service of Rheumatology, Department of l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Chieko Matsui
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Syunsuke Tsujimoto
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Takashi Shirakura
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Mizuho Tamura
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Tsunefumi Kobayashi
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Alexander So
- Service of Rheumatology, Department of l'Appareil Locomoteur, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Yoshihiro Yamanaka
- Pharmaceutical Department Research Laboratories, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| |
Collapse
|
31
|
Li J, Jia W, Zhao Q. Excessive nitrite affects zebrafish valvulogenesis through yielding too much NO signaling. PLoS One 2014; 9:e92728. [PMID: 24658539 PMCID: PMC3962429 DOI: 10.1371/journal.pone.0092728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
Sodium nitrite, a common food additive, exists widely not only in the environment but also in our body. Excessive nitrite causes toxicological effects on human health; however, whether it affects vertebrate heart valve development remains unknown. In vertebrates, developmental defects of cardiac valves usually lead to congenital heart disease. To understand the toxic effects of nitrite on valvulogenesis, we exposed zebrafish embryos with different concentrations of sodium nitrite. Our results showed that sodium nitrite caused developmental defects of zebrafish heart dose dependently. It affected zebrafish heart development starting from 36 hpf (hour post fertilization) when heart initiates looping process. Comprehensive analysis on the embryos at 24 hpf and 48 hpf showed that excessive nitrite did not affect blood circulation, vascular network, myocardium and endocardium development. But development of endocardial cells in atrioventricular canal (AVC) of the embryos at 48 hpf was disrupted by too much nitrite, leading to defective formation of primitive valve leaflets at 76 hpf. Consistently, excessive nitrite diminished expressions of valve progenitor markers including bmp4, has2, vcana and notch1b at 48 hpf. Furthermore, 3', 5'-cyclic guanosine monophosphate (cGMP), downstream of nitric oxide (NO) signaling, was increased its level significantly in the embryos exposed with excessive nitrite and microinjection of soluble guanylate cyclase inhibitor ODQ (1H-[1], [2], [4]Oxadiazolo[4,3-a] quinoxalin-1-one), an antagonist of NO signaling, into nitrite-exposed embryos could partly rescue the cardiac valve malformation. Taken together, our results show that excessive nitrite affects early valve leaflet formation by producing too much NO signaling.
Collapse
Affiliation(s)
- Junbo Li
- Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Wenshuang Jia
- Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Qingshun Zhao
- Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| |
Collapse
|