1
|
Li N, Fan X, Xu M, Zhou Y, Wang B. Flu Virus Attenuates Memory Clearance of Pneumococcus via IFN-γ-Dependent Th17 and Independent Antibody Mechanisms. iScience 2020; 23:101767. [PMID: 33251497 PMCID: PMC7683269 DOI: 10.1016/j.isci.2020.101767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/16/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
Bacterial coinfection is a major cause of influenza-associated mortality. Most people have experienced infections with bacterial pathogens commonly associated with influenza A virus (IAV) coinfection before IAV exposure; however, bacterial clearance through the immunological memory response (IMR) in coinfected patients is inefficient, suggesting that the IMR to bacteria is impaired during IAV infection. Adoptive transfer of CD4+ T cells from mice that had experienced bacterial infection into IAV-infected mice revealed that memory protection against bacteria was weakened in the latter. Additionally, memory Th17 cell responses were impaired due to an IFN-γ-dependent reduction in Th17 cell proliferation and delayed migration of CD4+ T cells into the lungs. A bacterium-specific antibody-mediated memory response was also substantially reduced in coinfected mice, independently of IFN-γ. These findings provide additional perspectives on the pathogenesis of coinfection and suggest additional strategies for the treatment of defective antibacterial immunity and the design of bacterial vaccines against coinfection. Memory protection against bacteria was impaired in coinfection Memory Th17 response to bacteria was reduced by IAV-induced IFN-γ The Th17 reduction was caused by impeded Th17 proliferation and migration Bacteria-specific antibody was reduced in coinfection independent of IFN-γ
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Fan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiyi Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Grant SM, Lou M, Yao L, Germain RN, Radtke AJ. The lymph node at a glance - how spatial organization optimizes the immune response. J Cell Sci 2020; 133:133/5/jcs241828. [PMID: 32144196 DOI: 10.1242/jcs.241828] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A hallmark of the mammalian immune system is its ability to respond efficiently to foreign antigens without eliciting an inappropriate response to self-antigens. Furthermore, a robust immune response requires the coordination of a diverse range of cells present at low frequencies within the host. This problem is solved, in part, by concentrating antigens, antigen-presenting cells and antigen-responsive cells in lymph nodes (LNs). Beyond housing these cell types in one location, LNs are highly organized structures consisting of pre-positioned cells within well-defined microanatomical niches. In this Cell Science at a Glance article and accompanying poster, we outline the key cellular populations and components of the LN microenvironment that are present at steady state and chronicle the dynamic changes in these elements following an immune response. This review highlights the LN as a staging ground for both innate and adaptive immune responses, while providing an elegant example of how structure informs function.
Collapse
Affiliation(s)
- Spencer M Grant
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Meng Lou
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Li Yao
- Science Education Department, Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Andrea J Radtke
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Baker SM, Pociask D, Clements JD, McLachlan JB, Morici LA. Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia. Vaccine 2019; 37:808-816. [PMID: 30638799 DOI: 10.1016/j.vaccine.2018.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
Respiratory infections are a leading cause of morbidity and mortality globally. This is partially due to a lack of effective vaccines and a clear understanding of how vaccination route and formulation influence protective immunity in mucosal tissues such as the lung. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing acute pulmonary infections and is a leading cause of hospital-acquired and ventilator-associated pneumonia. With multidrug-resistant P. aeruginosa infections on the rise, the need for a vaccine against this pathogen is critical. Growing evidence suggests that a successful P. aeruginosa vaccine may require mucosal antibody and Th1- and Th17-type CD4+ T cells to prevent pulmonary infection. Intradermal immunization with adjuvants, such as the bacterial ADP-Ribosylating Enterotoxin Adjuvant (BARE) double mutant of E. coli heat-labile toxin (dmLT), can direct protective immune responses to mucosal tissues, including the lungs. We reasoned that intradermal immunization with P. aeruginosa outer membrane proteins (OMPs) adjuvanted with dmLT could drive neutralizing antibodies and migration of CD4+ T cells to the lungs and protect against P. aeruginosa pneumonia in a murine model. Here we show that mice immunized with OMPs and dmLT had significantly more antigen-specific IgG and Th1- and Th17-type CD4+ memory T cells in the pulmonary environment compared to control groups of mice. Furthermore, OMPs and dmLT immunized mice were significantly protected against an otherwise lethal lung infection. Protection was associated with early IFN-γ and IL-17 production in the lungs of immunized mice. These results indicate that intradermal immunization with dmLT can drive protective immunity to the lung mucosa and may be a viable vaccination strategy for a multitude of respiratory pathogens.
Collapse
Affiliation(s)
- Sarah M Baker
- Department of Microbiology and Immunology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA
| | - Derek Pociask
- Department of Medicine, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA
| | - John D Clements
- Department of Microbiology and Immunology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, USA.
| |
Collapse
|
4
|
Lane RS, Lund AW. Non-hematopoietic Control of Peripheral Tissue T Cell Responses: Implications for Solid Tumors. Front Immunol 2018; 9:2662. [PMID: 30498499 PMCID: PMC6249380 DOI: 10.3389/fimmu.2018.02662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
In response to pathological challenge, the host generates rapid, protective adaptive immune responses while simultaneously maintaining tolerance to self and limiting immune pathology. Peripheral tissues (e.g., skin, gut, lung) are simultaneously the first site of pathogen-encounter and also the location of effector function, and mounting evidence indicates that tissues act as scaffolds to facilitate initiation, maintenance, and resolution of local responses. Just as both effector and memory T cells must adapt to their new interstitial environment upon infiltration, tissues are also remodeled in the context of acute inflammation and disease. In this review, we present the biochemical and biophysical mechanisms by which non-hematopoietic stromal cells and extracellular matrix molecules collaborate to regulate T cell behavior in peripheral tissue. Finally, we discuss how tissue remodeling in the context of tumor microenvironments impairs T cell accumulation and function contributing to immune escape and tumor progression.
Collapse
Affiliation(s)
- Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.,Department of Dermatology, Oregon Health and Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
5
|
Chaker M, Minden A, Chen S, Weiss RH, Chini EN, Mahipal A, Azmi AS. Rho GTPase effectors and NAD metabolism in cancer immune suppression. Expert Opin Ther Targets 2017; 22:9-17. [PMID: 29207896 DOI: 10.1080/14728222.2018.1413091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Sustained proliferative signaling and de-regulated cellular bioenergetics are two of the chief hallmarks of cancer. Alterations in the Ras pathway and its downstream effectors are among the major drivers for uncontrolled cell growth in many cancers. The GTPases are one of the signaling molecules that activate crucial signal transducing pathways downstream of Ras through several effector proteins. The GTPases (GTP bound) interact with several effectors and modulate a number of different biological pathways including those that regulate cytoskeleton, cellular motility, cytokinesis, proliferation, apoptosis, transcription and nuclear signaling. Similarly, the altered glycolytic pathway, the so-called 'Warburg effect', rewires tumor cell metabolism to support the biosynthetic requirements of uncontrolled proliferation. There exists strong evidence for the critical role of the glycolytic pathway's rate limiting enzymes in promoting immunosuppression. Areas covered: We review the emerging roles of GTPase effector proteins particularly the p21 activated kinase 4 (PAK4) and nicotinamide biosynthetic pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT) as signaling molecules in immune surveillance and the immune response. Expert opinion: In this expert opinion article we highlight the recent information on the role of GTPases and the metabolic enzymes on the immune microenvironment and propose some unique immune therapeutic opportunities.
Collapse
Affiliation(s)
- Mahmoud Chaker
- a Department of Oncology , Wayne State University School of Medicine, Karmanos Cancer Institute , Detroit , MI , USA
| | - Audrey Minden
- b Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology , Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway , NJ , USA
| | - Suzie Chen
- b Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology , Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway , NJ , USA
| | - Robert H Weiss
- c Division of Nephrology, Department of Internal Medicine , University of California , Davis , CA , USA.,d Cancer Center , University of California , Davis , CA , USA.,e Medical Service , VA Northern California Health Care System , Mather , CA , USA
| | - Eduardo N Chini
- f Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology , Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Amit Mahipal
- f Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology , Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Asfar S Azmi
- a Department of Oncology , Wayne State University School of Medicine, Karmanos Cancer Institute , Detroit , MI , USA
| |
Collapse
|
6
|
Wang H, Li J, Han Q, Yang F, Xiao Y, Xiao M, Xu Y, Su L, Cui N, Liu D. IL-12 Influence mTOR to Modulate CD8 + T Cells Differentiation through T-bet and Eomesodermin in Response to Invasive Pulmonary Aspergillosis. Int J Med Sci 2017; 14:977-983. [PMID: 28924369 PMCID: PMC5599921 DOI: 10.7150/ijms.20212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/18/2017] [Indexed: 11/05/2022] Open
Abstract
Objective: To investigate whether mTOR signaling pathway regulate the proliferation and differentiation of CD8+ T cells by transcription factors T-bet and Eomes, and explore the role of IL-12 in this biological procedure. Methods: Aspergillus fumigatus spore suspension nasal inhalation was used to establish the invasive pulmonary aspergillosis (IPA) mouse model. After inoculation, rapamycin (2mg/kg) each day or IL-12 (5ug/kg) every other day was given for 7 days. The blood samples were obtained before the mice sacrificed and lung specimens were taken. Pathological sections were stained with hematoxylin and eosin (HE). The number of CD8+effective memory T cells (Tem) and the expression of IFN-γ, mTOR, ribosomal protein S6 kinase (S6K), T-bet and EOMES were measured by flow cytometry. The levels of IL-6, IL-10 and Galactomannan (GM) were determined by ELISA. Results: After IL-12 treatment, the number of CD8+ Tem and the expression of IFN-γ increased significantly; while quite the opposite results were observed when the mTOR pathway was blocked by rapamycin. The expression of mTOR and S6K as well as the level of IFN-γ of the IL-12 treatment group were significantly higher than those in IPA and IPA + rapamycin groups. In addition, IL-12 promoted increasing T-bet and down regulating Eomes to make the Tem transformation. The final immune effector was high level of inflammatory cytokines (IL-6) and low level of anti-inflammatory factors (IL-10) and this strengthened immune response to the Aspergillus infection. Conclusions: The biological effects of Tem could significantly affect IPA infection host immune regulation, which depended on the activation of mTOR signaling pathway by IL-12.
Collapse
Affiliation(s)
- Hao Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jingdong Li
- Department of Critical Care Medicine, 4 th Peoples' Hospital of Shenyang, Liaoning Province, China
| | - Qiyang Han
- Department of Critical Care Medicine, Dalizhou People's Hospital, Yunnan Province, China
| | - Fei Yang
- Department of Critical Care Medicine, Chifeng City Hospital, Inner Mongolia, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
7
|
Ng HI, Fernando GJP, Depelsenaire ACI, Kendall MAF. Potent response of QS-21 as a vaccine adjuvant in the skin when delivered with the Nanopatch, resulted in adjuvant dose sparing. Sci Rep 2016; 6:29368. [PMID: 27404789 PMCID: PMC4941647 DOI: 10.1038/srep29368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/07/2016] [Indexed: 12/30/2022] Open
Abstract
Adjuvants play a key role in boosting immunogenicity of vaccines, particularly for subunit protein vaccines. In this study we investigated the induction of antibody response against trivalent influenza subunit protein antigen and a saponin adjuvant, QS-21. Clinical trials of QS-21 have demonstrated the safety but, also a need of high dose for optimal immunity, which could possibly reduce patient acceptability. Here, we proposed the use of a skin delivery technology - the Nanopatch - to reduce both adjuvant and antigen dose but also retain its immune stimulating effects when compared to the conventional needle and syringe intramuscular (IM) delivery. We have demonstrated that Nanopatch delivery to skin requires only 1/100(th) of the IM antigen dose to induce equivalent humoral response. QS-21 enhanced humoral response in both skin and muscle route. Additionally, Nanopatch has demonstrated 30-fold adjuvant QS-21 dose sparing while retaining immune stimulating effects compared to IM. QS-21 induced localised, controlled cell death in the skin, suggesting that the danger signals released from dead cells contributed to the enhanced immunogenicity. Taken together, these findings demonstrated the suitability of reduced dose of QS-21 and the antigen using the Nanopatch to enhance humoral responses, and the potential to increase patient acceptability of QS-21 adjuvant.
Collapse
Affiliation(s)
- Hwee-Ing Ng
- The University of Queensland, Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering & Nanotechnology, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Germain J. P. Fernando
- The University of Queensland, Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering & Nanotechnology, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alexandra C. I. Depelsenaire
- The University of Queensland, Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering & Nanotechnology, Brisbane, Queensland 4072, Australia
| | - Mark A. F. Kendall
- The University of Queensland, Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering & Nanotechnology, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland, Faculty of Medicine and Biomedical Sciences, Royal Brisbane and Women’s Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
8
|
Guo H, Cheng Y, Shapiro J, McElwee K. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol 2015; 11:1335-51. [PMID: 26548356 DOI: 10.1586/1744666x.2015.1085306] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alopecia areata (AA) development is associated with both innate and adaptive immune cell activation, migration to peri- and intra-follicular regions, and hair follicle disruption. Both CD4(+) and CD8(+) lymphocytes are abundant in AA lesions; however, CD8(+) cytotoxic T lymphocytes are more likely to enter inside hair follicles, circumstantially suggesting that they have a significant role to play in AA development. Several rodent models recapitulate important features of the human autoimmune disease and demonstrate that CD8(+) cytotoxic T lymphocytes are fundamentally required for AA induction and perpetuation. However, the initiating events, the self-antigens involved, and the molecular signaling pathways, all need further exploration. Studying CD8(+) cytotoxic T lymphocytes and their fate decisions in AA development may reveal new and improved treatment approaches.
Collapse
Affiliation(s)
- Hongwei Guo
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,b 2 Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yabin Cheng
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Jerry Shapiro
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,c 3 Department of Dermatology, New York University, Langone Medical Center, New York, USA
| | - Kevin McElwee
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,d 4 Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Omenetti S, Brogi M, Goodman WA, Croniger CM, Eid S, Huang AY, Laffi G, Roskams T, Cominelli F, Pinzani M, Pizarro TT. Dysregulated intrahepatic CD4 + T-cell activation drives liver inflammation in ileitis-prone SAMP1/YitFc mice. Cell Mol Gastroenterol Hepatol 2015; 1. [PMID: 26213712 PMCID: PMC4511857 DOI: 10.1016/j.jcmgh.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Liver inflammation is a common extraintestinal manifestation of inflammatory bowel disease (IBD); however, whether liver involvement is a consequence of a primary intestinal defect or results from alternative pathogenic processes remains unclear. Therefore, we sought to determine the potential pathogenic mechanism(s) of concomitant liver inflammation in an established murine model of IBD. METHODS Liver inflammation and immune cell subsets were characterized in ileitis-prone SAMP1/YitFc (SAMP) and AKR/J (AKR) control mice, lymphocyte-depleted SAMP (SAMPxRag-1-/-), and immunodeficient SCID recipient mice receiving SAMP or AKR donor CD4+ T-cells. Proliferation and suppressive capacity of CD4+ T-effector (Teff) and T-regulatory (Treg) cells from gut-associated lymphoid tissue (GALT) and livers of SAMP and AKR mice were measured. RESULTS Surprisingly, prominent inflammation was detected in 4-wk-old SAMP livers, prior to histologic evidence of ileitis, while both disease phenotypes were absent in age-matched AKRs. SAMP liver disease was characterized by abundant infiltration of lymphocytes, required for hepatic inflammation to occur, a Th1-skewed environment, and phenotypically-activated CD4+ T-cells. SAMP intrahepatic CD4+ T-cells also had the ability to induce liver and ileal inflammation when adoptively transferred into SCID recipients, whereas GALT-derived CD4+ T-cells produced milder ileitis, but not liver inflammation. Interestingly, SAMP intrahepatic CD4+ Teff cells showed increased proliferation compared to both SAMP GALT- and AKR liver-derived CD4+ Teff cells, while SAMP intrahepatic Tregs were decreased among CD4+ T-cells and impaired in in vitro suppressive function compared to AKR. CONCLUSIONS Activated intrahepatic CD4+ T-cells induce liver inflammation and contribute to experimental ileitis via locally-impaired hepatic immunosuppressive function.
Collapse
Affiliation(s)
- Sara Omenetti
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,“DENOThe” Center, University of Florence, Florence, Italy
| | - Marco Brogi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,“DENOThe” Center, University of Florence, Florence, Italy
| | - Wendy A. Goodman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Colleen M. Croniger
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alex Y. Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Giacomo Laffi
- “DENOThe” Center, University of Florence, Florence, Italy
| | - Tania Roskams
- Department of Morphology and Molecular Pathology, University of Leuven, Leuven, Belgium
| | - Fabio Cominelli
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,“DENOThe” Center, University of Florence, Florence, Italy,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Massimo Pinzani
- “DENOThe” Center, University of Florence, Florence, Italy,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio,UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, United Kingdom
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,“DENOThe” Center, University of Florence, Florence, Italy,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio,Correspondence Address correspondence to: Theresa T. Pizarro, PhD, Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, WRB 5534, Cleveland, Ohio 44106. fax: (216) 368-0494.
| |
Collapse
|
10
|
Luddy KA, Robertson-Tessi M, Tafreshi NK, Soliman H, Morse DL. The role of toll-like receptors in colorectal cancer progression: evidence for epithelial to leucocytic transition. Front Immunol 2014; 5:429. [PMID: 25368611 PMCID: PMC4202790 DOI: 10.3389/fimmu.2014.00429] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023] Open
Abstract
Toll-like receptors (TLRs) are expressed by immune cells, intestinal epithelium, and tumor cells. In the homeostatic setting, they help to regulate control over invading pathogens and maintain the epithelial lining of the large and small intestines. Aberrant expression of certain TLRs by tumor cells can induce growth inhibition while others contribute to tumorigenesis and progression. Activation of these TLRs can induce inflammation, tumor cell proliferation, immune evasion, local invasion, and distant metastasis. These TLR-influenced behaviors have similarities with properties observed in leukocytes, suggesting that tumors may be hijacking immune programs to become more aggressive. The concept of epithelial to leucocytic-transition (ELT) is proposed, akin to epithelial to mesenchymal transition, in which tumors develop the ability to activate leucocytic traits otherwise inaccessible to epithelial cells. Understanding the mechanisms of ELT could lead to novel therapeutic strategies for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Kimberly A Luddy
- Department of Cancer Imaging and Metabolism, Imaging and Technology Center of Excellence, H. Lee Moffitt Cancer Center , Tampa, FL , USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center , Tampa, FL , USA
| | - Narges K Tafreshi
- Department of Cancer Imaging and Metabolism, Imaging and Technology Center of Excellence, H. Lee Moffitt Cancer Center , Tampa, FL , USA
| | - Hatem Soliman
- Don and Erika Wallace Comprehensive Breast Program, Center for Women's Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL , USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, Imaging and Technology Center of Excellence, H. Lee Moffitt Cancer Center , Tampa, FL , USA
| |
Collapse
|