1
|
Meade E, Rowan N, Garvey M. Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines (Basel) 2023; 11:992. [PMID: 37243096 PMCID: PMC10223144 DOI: 10.3390/vaccines11050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging, re-emerging and zoonotic viral pathogens represent a serious threat to human health, resulting in morbidity, mortality and potentially economic instability at a global scale. Certainly, the recent emergence of the novel SARS-CoV-2 virus (and its variants) highlighted the impact of such pathogens, with the pandemic creating unprecedented and continued demands for the accelerated production of antiviral therapeutics. With limited effective small molecule therapies available for metaphylaxis, vaccination programs have been the mainstay against virulent viral species. Traditional vaccines remain highly effective at providing high antibody titres, but are, however, slow to manufacture in times of emergency. The limitations of traditional vaccine modalities may be overcome by novel strategies, as outlined herein. To prevent future disease outbreaks, paradigm shift changes in manufacturing and distribution are necessary to advance the production of vaccines, monoclonal antibodies, cytokines and other antiviral therapies. Accelerated paths for antivirals have been made possible due to advances in bioprocessing, leading to the production of novel antiviral agents. This review outlines the role of bioprocessing in the production of biologics and advances in mitigating viral infectious disease. In an era of emerging viral diseases and the proliferation of antimicrobial resistance, this review provides insight into a significant method of antiviral agent production which is key to protecting public health.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
2
|
Song HY, Kim KI, Han JM, Park WY, Seo HS, Lim S, Byun EB. Ionizing radiation technology to improve the physicochemical and biological properties of natural compounds by molecular modification: A review. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Unger H, Kangethe RT, Liaqat F, Viljoen GJ. Advances in Irradiated Livestock Vaccine Research and Production Addressing the Unmet Needs for Farmers and Veterinary Services in FAO/IAEA Member States. Front Immunol 2022; 13:853874. [PMID: 35418985 PMCID: PMC8997582 DOI: 10.3389/fimmu.2022.853874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The Animal Production and Health section (APH) of the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture at the International Atomic Energy Agency has over the last 58 years provided technical and scientific support to more than 100 countries through co-ordinated research activities and technical co-operation projects in peaceful uses of nuclear technologies. A key component of this support has been the development of irradiated vaccines targeting diseases that are endemic to participating countries. APH laboratories has over the last decade developed new techniques and has put in place a framework that allows researchers from participating member states to develop relevant vaccines targeting local diseases while using irradiation as a tool for improving livestock resources.
Collapse
Affiliation(s)
- Hermann Unger
- Animal Production and Health Section, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Richard T Kangethe
- Animal Production and Health Section, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Fatima Liaqat
- Animal Production and Health Section, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Gerrit J Viljoen
- Animal Production and Health Section, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
4
|
Singleton EV, Gates CJ, David SC, Hirst TR, Davies JB, Alsharifi M. Enhanced Immunogenicity of a Whole-Inactivated Influenza A Virus Vaccine Using Optimised Irradiation Conditions. Front Immunol 2021; 12:761632. [PMID: 34899711 PMCID: PMC8652198 DOI: 10.3389/fimmu.2021.761632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus presents a constant pandemic threat due to the mutagenic nature of the virus and the inadequacy of current vaccines to protect against emerging strains. We have developed a whole-inactivated influenza vaccine using γ-irradiation (γ-Flu) that can protect against both vaccine-included strains as well as emerging pandemic strains. γ-irradiation is a widely used inactivation method and several γ-irradiated vaccines are currently in clinical or pre-clinical testing. To enhance vaccine efficacy, irradiation conditions should be carefully considered, particularly irradiation temperature. Specifically, while more damage to virus structure is expected when using higher irradiation temperatures, reduced radiation doses will be required to achieve sterility. In this study, we compared immunogenicity of γ-Flu irradiated at room temperature, chilled on ice or frozen on dry ice using different doses of γ-irradiation to meet internationally accepted sterility assurance levels. We found that, when irradiating at sterilising doses, the structural integrity and vaccine efficacy were well maintained in all preparations regardless of irradiation temperature. In fact, using a higher temperature and lower radiation dose appeared to induce higher neutralising antibody responses and more effective cytotoxic T cell responses. This outcome is expected to simplify irradiation protocols for manufacturing of highly effective irradiated vaccines.
Collapse
Affiliation(s)
- Eve Victoria Singleton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Chloe Jayne Gates
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shannon Christa David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Timothy Raymond Hirst
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| | - Justin Bryan Davies
- Irradiations Group, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| |
Collapse
|
5
|
Shahrudin S, Chen C, David SC, Singleton EV, Davies J, Kirkwood CD, Hirst TR, Beard M, Alsharifi M. Gamma-irradiated rotavirus: A possible whole virus inactivated vaccine. PLoS One 2018; 13:e0198182. [PMID: 29879130 PMCID: PMC5991763 DOI: 10.1371/journal.pone.0198182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Rotavirus (RV) causes significant morbidity and mortality in developing countries, where children and infants are highly susceptible to severe disease symptoms. While live attenuated vaccines are available, reduced vaccine efficacy in developing countries illustrates the need for highly immunogenic alternative vaccines. Here, we studied the possible inactivation of RV using gamma(γ)-irradiation, and assessed the sterility and immunogenicity of γ-irradiated RV (γ-RV) as a novel vaccine candidate. Interestingly, the inactivation curve of RV did not show a log-linear regression following exposure to increased doses of γ-rays, and consequently the radiation dose required to achieve the internationally accepted Sterility Assurance Level could not be calculated. Nonetheless, we performed sterility testing based on serial passages of γ-RV, and our data clearly illustrate the lack of infectivity of γ-RV preparations irradiated with 50 kGy. In addition, we tested the immunogenicity of 50 kGy γ-RV in mice and our data illustrate the induction of strong RV-specific neutralising antibody responses following administration of γ-RV without using adjuvant. Therefore, whilst γ-RV may not constitute a replacement for current RV vaccines, this study represents a proof-of-concept that γ-irradiation can be applied to inactivate RV for vaccine purposes. Further investigation will be required to address whether γ-irradiation can be applied to improve safety and efficacy of existing live attenuated vaccines.
Collapse
Affiliation(s)
- Shabihah Shahrudin
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Cheng Chen
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shannon C. David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Eve V. Singleton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Carl D. Kirkwood
- Enteric Virus Group, Murdoch Childrens Research Institute, Parkville, VIC, Australia
| | - Timothy R. Hirst
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, Australia
| | - Michael Beard
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, Australia
- * E-mail:
| |
Collapse
|
6
|
Soema PC, Rosendahl Huber SK, Willems GJ, Jacobi R, Hendriks M, Soethout E, Jiskoot W, de Jonge J, van Beek J, Kersten GFA, Amorij JP. Whole-Inactivated Influenza Virus Is a Potent Adjuvant for Influenza Peptides Containing CD8 + T Cell Epitopes. Front Immunol 2018; 9:525. [PMID: 29593747 PMCID: PMC5861146 DOI: 10.3389/fimmu.2018.00525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Influenza peptide antigens coding for conserved T cell epitopes have the capacity to induce cross-protective influenza-specific immunity. Short peptide antigens used as a vaccine, however, often show poor immunogenicity. In this study, we demonstrate that whole-inactivated influenza virus (WIV) acts as an adjuvant for influenza peptide antigens, as shown by the induction of peptide-specific CD8+ T cells in HLA-A2.1 transgenic mice upon vaccination with the influenza-M1-derived GILGFVFTL peptide (GIL), formulated with WIV. By screening various concentrations of GIL and WIV, we found that both components contributed to the GIL-specific T cell response. Whereas co-localization of the peptide antigen and WIV adjuvant was found to be important, neither physical association between peptide and WIV nor fusogenic activity of WIV were relevant for the adjuvant effect of WIV. We furthermore show that WIV may adjuvate T cell responses to a variety of peptides, using pools of either conserved wild-type influenza peptides or chemically altered peptide ligands. This study shows the potential of WIV as an adjuvant for influenza peptides. The simple formulation process and the solid safety record of WIV make this an attractive adjuvant for T cell peptides, and may also be used for non-influenza antigens.
Collapse
Affiliation(s)
- Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands.,Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Sietske K Rosendahl Huber
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Geert-Jan Willems
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| | - Ronald Jacobi
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marion Hendriks
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Ernst Soethout
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands.,Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| |
Collapse
|
7
|
David SC, Lau J, Singleton EV, Babb R, Davies J, Hirst TR, McColl SR, Paton JC, Alsharifi M. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine. Vaccine 2017; 35:1071-1079. [PMID: 28109709 DOI: 10.1016/j.vaccine.2016.12.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/25/2016] [Accepted: 12/16/2016] [Indexed: 11/27/2022]
Abstract
Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses.
Collapse
Affiliation(s)
- Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Josyane Lau
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rachelle Babb
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT 2600, Australia
| | - Shaun R McColl
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT 2600, Australia.
| |
Collapse
|
8
|
Enhanced protective responses to a serotype-independent pneumococcal vaccine when combined with an inactivated influenza vaccine. Clin Sci (Lond) 2016; 131:169-180. [PMID: 27885052 DOI: 10.1042/cs20160475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
Streptococcus pneumoniae and influenza are the world's foremost bacterial and viral respiratory pathogens. We have previously described a γ-irradiated influenza A virus (γ-FLU) vaccine that provides cross-protective immunity against heterosubtypic infections. More recently, we reported a novel non-adjuvanted γ-irradiated S pneumoniae (γ-PN) vaccine that elicits serotype-independent protection. Considering the clinical synergism of both pathogens, combination of a serotype-independent pneumococcal vaccine with a broad-spectrum influenza vaccine to protect against both infections would have a considerable clinical impact. In the present study, we co-immunized C57BL/6 mice intranasally (IN) with a mixture of γ-PN (whole inactivated cells) and γ-FLU (whole inactivated virions) and examined protective efficacy. Co-immunization enhanced γ-PN vaccine efficacy against virulent pneumococcal challenge, which was dependent on CD4+ T-cell responses. In contrast, vaccination with γ-PN alone, co-immunization enhanced pneumococcal-specific effector T-helper 17 cell (Th17) and Th1 memory cell, promoted development of CD4+ tissue-resident memory (TRM) cells and enhanced Pneumococcus-specific antibody responses. Furthermore, co-immunization elicited significant protection against lethal influenza challenge, as well as against co-infection with both influenza and S pneumoniae. This is the first report showing the synergistic effect of combining whole cell and whole virion vaccines to both S pneumoniae and influenza as a single vaccine to protect against individual and co-infection, without compromising pathogen-specific immunity.
Collapse
|
9
|
Chan J, Babb R, David SC, McColl SR, Alsharifi M. Vaccine-Induced Antibody Responses Prevent the Induction of Interferon Type I Responses Upon a Homotypic Live Virus Challenge. Scand J Immunol 2016; 83:165-73. [DOI: 10.1111/sji.12410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022]
Affiliation(s)
- J. Chan
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - R. Babb
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - S. C. David
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - S. R. McColl
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - M. Alsharifi
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| |
Collapse
|
10
|
Furuya Y, Ludewick HP, Müllbacher A. Mysteries of type I IFN response: benefits versus detriments. Front Immunol 2015; 6:21. [PMID: 25674090 PMCID: PMC4309204 DOI: 10.3389/fimmu.2015.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College , Albany, NY , USA
| | - Herbert P Ludewick
- Center for Immunology and Microbial Disease, Albany Medical College , Albany, NY , USA
| | - Arno Müllbacher
- Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| |
Collapse
|