1
|
He L, Kang J, Chen X, Qin P, Chen X. Evaluation of immunogenicity and protective efficacy of the outer membrane porin F (OprF) against Pseudomonas plecoglossicida in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109427. [PMID: 38316347 DOI: 10.1016/j.fsi.2024.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Large yellow croaker (Larimichthys crocea) farming dominates the marine aquaculture industry in China. However, the epidemic outbreaks of visceral white nodules disease (VWND), caused by bacterial pathogen Pseudomonas plecoglossicida, have emerged as a significant concern within the large yellow croaker industry. Although vaccination is considered to be an effective method for preventing and controlling P. plecoglossicida infection, there is currently no commercially available vaccine targeting this bacterium. In the present study, the outer membrane porin F (OprF) of P. plecoglossicida was characterized and revealed a high sequence similarity with that of other Pseudomonas species. The recombinant OprF protein (rOprF) produced in Escherichia coli was then evaluated for its immunogenicity and protective role against P. plecoglossicida in large yellow croaker. The rOprF was identified to have immunogenicity by Western blot using large yellow croaker anti-P. plecoglossicida sera. Additionally, the indirect immunofluorescence assay (IIFA) provided evidence indicating the surface exposure of OprF in P. plecoglossicida. Fish vaccinated twice via intraperitoneal (IP) injection with the purified rOprF combined with commercial adjuvant ISA 763A VG exhibited a relative percent survival (RPS) of 70.60% after challenge with virulent P. plecoglossicida strain through immersion. The administration of rOprF resulted in a notable increase in specific serum antibody levels and serum lysozyme activity compared to the control groups. The immune-related genes in the spleen and head kidney of rOprF-vaccinated fish were remarkably upregulated compared with the PBS-vaccinated sham group after the P. plecoglossicida challenge. In summary, the findings of this study suggest that rOprF exhibits considerable potential in inducing a robust immune response, making it a viable candidate for vaccination against P. plecoglossicida infection in large yellow croaker.
Collapse
Affiliation(s)
- Liangyin He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, College of Life Science, Ningde Normal University, Ningde, 352100, PR China
| | - Jiale Kang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xingfu Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Pan Qin
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
2
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Hou S, Wang S, Zhao X, Li W, Gao J, Wang Y, Zhang R, Gong L, Jiang S, Zhu Y. Establishment of indirect ELISA method for Salmonella antibody detection from ducks based on PagN protein. BMC Vet Res 2022; 18:424. [PMID: 36471338 PMCID: PMC9721058 DOI: 10.1186/s12917-022-03519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Salmonella as an important food-borne zoonotic bacterial pathogen, infection in ducks is a recessive infection, however, it can also cause high mortality and threat to food safety. Preventing and controlling the infection and transmission of Salmonella in ducks critically require rapid and sensitive detection method. Full-length Salmonella-specific protein PagN was induced and expressed in E.coil BL21 and was purified as an antigen to establish an indirect enzyme-linked immunosorbent assays (iELSA) detection kit. RESULTS The recombinant PagN protein has a molecular weight of 43 kDa containing a His-tag, was recognized by an anti-Salmonella positive serum by Western blot assay. The optimal concentration of PagN as a coating antigen in the iELISA was 1 μg/mL, and the optimal dilution of enzyme-labeled secondary antibody was 1:4000 (0.025 μg/mL). The cutoff OD450 value was established at 0.268. The iELISA kit showed high selectivity since no cross-reaction with E. coli, Staphylococcus aureus and Streptococcus was observed. iELISA method and Dot-blot test were performed on 100 clinical sera samples collected from duck farms, and the actual coincidence rate was 89% (89/100). 613 duck serum samples from 3 different farms were tested using established method and commercial ELISA kit. The concordance between the two methods was 94.1%. CONCLUSION Anti-PagN based iELISA can serve as a useful tool for diagnosis of Salmonella infection.
Collapse
Affiliation(s)
- Shaopeng Hou
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Shuyang Wang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Xinyuan Zhao
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Wei Li
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Jing Gao
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Yanjun Wang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Ruihua Zhang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Lingling Gong
- Shandong Provincial Quality Inspection Center of Animal Feed and Veterinary Medicine, Jinan, 250010 China
| | - Shijin Jiang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Yanli Zhu
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| |
Collapse
|
4
|
Nikam PS, Kingston JJ, Belagal Motatis AK. Oral co-administration of bivalent protein r-BL with U-Omp19 elicits mucosal immune responses and reduces S. Typhimurium shedding in BALB/c mice. Immunol Lett 2021; 231:61-67. [PMID: 33460704 DOI: 10.1016/j.imlet.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023]
Abstract
The increase in international food trade and travel has dramatically increased the global incidences of Salmonellosis. In the light of widespread resistance to frontline antibiotics, oral vaccines remain the most reliable alternative. In this study, the fusion protein, r-BL was rationally constructed by splicing the Salmonella Typhimurium sseB and ompL genes through G4S linker by over-lap extension PCR. The oral coadministration of r-BL with B. abortus U-Omp19 protein with known protease inhibitor activity resulted in significant increase of mucosal IgA titres to antilog 4.5051 (p < 0.0001) and 4.806 (p < 0.0001) in the fecal samples and intestinal washes respectively. Antibody isotyping of the intestinal washes demonstrated increase in mucosal IgM, IgG1 and IgG2a isotypes also and demonstrated a significant reduction in fecal shedding of S. Typhimurium in challenge study. The r-BL + U-Omp19 treated mice demonstrated a complete termination of Salmonella fecal shedding by the 12th day of challenge as compared to other study groups. In summary, the bivalent protein r-BL when administered with the mucosal adjuvant U-Omp19 was successful in triggering mucosal arm of the immune system which forms the first line of defence in combating the infections caused by the enteric pathogen like Salmonella.
Collapse
Affiliation(s)
- Pradnya Sukhadev Nikam
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysuru, Karnataka, 570011, India.
| | - Joseph J Kingston
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysuru, Karnataka, 570011, India.
| | - Anil Kumar Belagal Motatis
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysuru, Karnataka, 570011, India.
| |
Collapse
|
5
|
Salerno-Gonçalves R, Tettelin H, Luo D, Guo Q, Ardito MT, Martin WD, De Groot AS, Sztein MB. Differential functional patterns of memory CD4 + and CD8 + T-cells from volunteers immunized with Ty21a typhoid vaccine observed using a recombinant Escherichia coli system expressing S. Typhi proteins. Vaccine 2019; 38:258-270. [PMID: 31629569 DOI: 10.1016/j.vaccine.2019.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 02/01/2023]
Abstract
It is widely accepted that CD4+ and CD8+ T-cells play a significant role in protection against Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever. However, the antigen specificity of these T-cells remains largely unknown. Previously, we demonstrated the feasibility of using a recombinant Escherichia coli (E. coli) expression system to uncover the antigen specificity of CD4+ and CD8+ T cells. Here, we expanded these studies to include the evaluation of 12 additional S. Typhi proteins: 4 outer membrane proteins (OmpH, OmpL, OmpR, OmpX), 3 Vi-polysaccharide biosynthesis proteins (TviA, TviB, TviE), 3 cold shock proteins (CspA, CspB, CspC), and 2 conserved hypothetical proteins (Chp 1 and Chp2), all selected based on the bioinformatic analyses of the content of putative T-cell epitopes. CD4+ and CD8+ T cells from 15 adult volunteers, obtained before and 42 days after immunization with oral live attenuated Ty21a vaccine, were assessed for their functionality (i.e., production of cytokines and cytotoxic expression markers in response to stimulation with selected antigens) as measured by flow cytometry. Although volunteers differed on their T-cell antigen specificity, we observed T-cell immune responses against all S. Typhi proteins evaluated. These responses included 9 proteins, OmpH, OmpR, TviA, TviE, CspA, CspB, CspC, Chp 1 and Chp 2, which have not been previously reported to elicit T-cell responses. Interestingly, we also observed that, regardless of the protein, the functional patterns of the memory T-cells were different between CD4+ and CD8+ T cells. In sum, these studies demonstrated the feasibility of using bioinformatic analysis and the E. coli expressing system described here to uncover novel immunogenic T-cell proteins that could serve as potential targets for the production of protein-based vaccines.
Collapse
Affiliation(s)
- Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA.
| | - Hervé Tettelin
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, 670 West Baltimore Street, HSF3, Baltimore, MD 21201, USA
| | - David Luo
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA
| | - Qin Guo
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, 670 West Baltimore Street, HSF3, Baltimore, MD 21201, USA
| | - Matthew T Ardito
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - William D Martin
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - Anne S De Groot
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Das S, Chowdhury R, Pal A, Okamoto K, Das S. Salmonella Typhi outer membrane protein STIV is a potential candidate for vaccine development against typhoid and paratyphoid fever. Immunobiology 2019; 224:371-382. [DOI: 10.1016/j.imbio.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/09/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023]
|
7
|
Hisham Y, Ashhab Y. Identification of Cross-Protective Potential Antigens against Pathogenic Brucella spp. through Combining Pan-Genome Analysis with Reverse Vaccinology. J Immunol Res 2018; 2018:1474517. [PMID: 30622973 PMCID: PMC6304850 DOI: 10.1155/2018/1474517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/04/2018] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonotic infectious disease caused by bacteria of the genus Brucella. Brucella melitensis, Brucella abortus, and Brucella suis are the most pathogenic species of this genus causing the majority of human and domestic animal brucellosis. There is a need to develop a safe and potent subunit vaccine to overcome the serious drawbacks of the live attenuated Brucella vaccines. The aim of this work was to discover antigen candidates conserved among the three pathogenic species. In this study, we employed a reverse vaccinology strategy to compute the core proteome of 90 completed genomes: 55 B. melitensis, 17 B. abortus, and 18 B. suis. The core proteome was analyzed by a metasubcellular localization prediction pipeline to identify surface-associated proteins. The identified proteins were thoroughly analyzed using various in silico tools to obtain the most potential protective antigens. The number of core proteins obtained from analyzing the 90 proteomes was 1939 proteins. The surface-associated proteins were 177. The number of potential antigens was 87; those with adhesion score ≥ 0.5 were considered antigen with "high potential," while those with a score of 0.4-0.5 were considered antigens with "intermediate potential." According to a cumulative score derived from protein antigenicity, density of MHC-I and MHC-II epitopes, MHC allele coverage, and B-cell epitope density scores, a final list of 34 potential antigens was obtained. Remarkably, most of the 34 proteins are associated with bacterial adhesion, invasion, evasion, and adaptation to the hostile intracellular environment of macrophages which is adjusted to deprive Brucella of required nutrients. Our results provide a manageable list of potential protective antigens for developing a potent vaccine against brucellosis. Moreover, our elaborated analysis can provide further insights into novel Brucella virulence factors. Our next step is to test some of these antigens using an appropriate antigen delivery system.
Collapse
Affiliation(s)
- Yasmin Hisham
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, State of Palestine
| | - Yaqoub Ashhab
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, State of Palestine
| |
Collapse
|
8
|
Thu Nguyen TT, Nguyen HT, Vu-Khac H, Wang PC, Chen SC. Identification of protective protein antigens for vaccination against Streptococcus dysgalactiae in cobia (Rachycentron canadum). FISH & SHELLFISH IMMUNOLOGY 2018; 80:88-96. [PMID: 29859310 DOI: 10.1016/j.fsi.2018.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Streptococcus dysgalactiae is considered a causative agent of severe infection and economic loss for the cobia industry in Taiwan. In this study, protective antigens of this pathogenic bacterium were identified and screened in cobia (Rachycentron canadum). Outer surface proteins (OMPs) of this pathogen were extracted using mutanolysin digestion. Immunogenic targets were detected by western blot and then subjected to peptide sequencing using NanoLC-MS/MS. Two surface proteins, namely phosphoenolpyruvate protein phosphotransferase (PtsA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), showed strong reactions with cobia antisera against S. dysgalactiae. Recombinant proteins were produced in Escherichia coli cells and their protective efficacies were investigated in cobia. Fish immunised with recombinant proteins, rPtsA + ISA (ISA 763 AVG) and rGAPDH + ISA, elicited higher levels of specific antibody responses against the recombinant proteins and had high levels of lysozyme activity. Notably, vaccinated fish were protected from lethal challenge with relative percentage of survival (RPS) values for rPtsA + ISA and rGAPDH + ISA groups being 91.67% and 83.33%, while 0% RPS value was found in both ISA injected and control groups. The results presented in the study demonstrate that the GAPDH and PtsA are promising vaccine candidates for preventing S. dysgalactiae disease in cobia.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan
| | - Hai Trong Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan
| | - Hung Vu-Khac
- Institute of Veterinary Research and Development of Central Vietnam, km 4, 2/4 St., Vinh Hoa, Nha Trang, Khanh Hoa, Viet Nam
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan; Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan; Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| |
Collapse
|
9
|
Darton TC, Baker S, Randall A, Dongol S, Karkey A, Voysey M, Carter MJ, Jones C, Trappl K, Pablo J, Hung C, Teng A, Shandling A, Le T, Walker C, Molina D, Andrews J, Arjyal A, Basnyat B, Pollard AJ, Blohmke CJ. Identification of Novel Serodiagnostic Signatures of Typhoid Fever Using a Salmonella Proteome Array. Front Microbiol 2017; 8:1794. [PMID: 28970824 PMCID: PMC5609549 DOI: 10.3389/fmicb.2017.01794] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022] Open
Abstract
Current diagnostic tests for typhoid fever, the disease caused by Salmonella Typhi, are poor. We aimed to identify serodiagnostic signatures of typhoid fever by assessing microarray signals to 4,445 S. Typhi antigens in sera from 41 participants challenged with oral S. Typhi. We found broad, heterogeneous antibody responses with increasing IgM/IgA signals at diagnosis. In down-selected 250-antigen arrays we validated responses in a second challenge cohort (n = 30), and selected diagnostic signatures using machine learning and multivariable modeling. In four models containing responses to antigens including flagellin, OmpA, HlyE, sipC, and LPS, multi-antigen signatures discriminated typhoid (n = 100) from other febrile bacteremia (n = 52) in Nepal. These models contained combinatorial IgM, IgA, and IgG responses to 5 antigens (ROC AUC, 0.67 and 0.71) or 3 antigens (0.87), although IgA responses to LPS also performed well (0.88). Using a novel systematic approach we have identified and validated optimal serological diagnostic signatures of typhoid fever.
Collapse
Affiliation(s)
- Thomas C Darton
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, and the Oxford National Institutes for Health Research Biomedical Research Centre, University of OxfordOxford, United Kingdom.,The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research UnitHo Chi Minh City, Vietnam.,Department of Infection, Immunity and Cardiovascular Disease, The University of SheffieldSheffield, United Kingdom
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research UnitHo Chi Minh City, Vietnam
| | - Arlo Randall
- Antigen Discovery Incorporated, IrvineCA, United States
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health SciencesKathmandu, Nepal
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health SciencesKathmandu, Nepal
| | - Merryn Voysey
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, and the Oxford National Institutes for Health Research Biomedical Research Centre, University of OxfordOxford, United Kingdom.,Nuffield Department of Primary Care Health Sciences, University of OxfordOxford, United Kingdom
| | - Michael J Carter
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, and the Oxford National Institutes for Health Research Biomedical Research Centre, University of OxfordOxford, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, and the Oxford National Institutes for Health Research Biomedical Research Centre, University of OxfordOxford, United Kingdom
| | - Krista Trappl
- Antigen Discovery Incorporated, IrvineCA, United States
| | - Jozelyn Pablo
- Antigen Discovery Incorporated, IrvineCA, United States
| | - Chris Hung
- Antigen Discovery Incorporated, IrvineCA, United States
| | - Andy Teng
- Antigen Discovery Incorporated, IrvineCA, United States
| | | | - Tim Le
- Antigen Discovery Incorporated, IrvineCA, United States
| | | | | | - Jason Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, StanfordCA, United States
| | - Amit Arjyal
- Nuffield Department of Primary Care Health Sciences, University of OxfordOxford, United Kingdom
| | - Buddha Basnyat
- Nuffield Department of Primary Care Health Sciences, University of OxfordOxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, and the Oxford National Institutes for Health Research Biomedical Research Centre, University of OxfordOxford, United Kingdom
| | - Christoph J Blohmke
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, and the Oxford National Institutes for Health Research Biomedical Research Centre, University of OxfordOxford, United Kingdom
| |
Collapse
|
10
|
Use of a novel antigen expressing system to study the Salmonella enterica serovar Typhi protein recognition by T cells. PLoS Negl Trop Dis 2017; 11:e0005912. [PMID: 28873442 PMCID: PMC5600385 DOI: 10.1371/journal.pntd.0005912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever, is a pathogen of great public health importance. Typhoid vaccines have the potential to be cost-effective measures towards combating this disease, yet the antigens triggering host protective immune responses are largely unknown. Given the key role of cellular-mediated immunity in S. Typhi protection, it is crucial to identify S. Typhi proteins involved in T-cell responses. Here, cells from individuals immunized with Ty21a typhoid vaccine were collected before and after immunization and used as effectors. We also used an innovative antigen expressing system based on the infection of B-cells with recombinant Escherichia coli (E. coli) expressing one of four S. Typhi gene products (i.e., SifA, OmpC, FliC, GroEL) as targets. Using flow cytometry, we found that the pattern of response to specific S. Typhi proteins was variable. Some individuals responded to all four proteins while others responded to only one or two proteins. We next evaluated whether T-cells responding to recombinant E. coli also possess the ability to respond to purified proteins. We observed that CD4+ cell responses, but not CD8+ cell responses, to recombinant E. coli were significantly associated with the responses to purified proteins. Thus, our results demonstrate the feasibility of using an E. coli expressing system to uncover the antigen specificity of T-cells and highlight its applicability to vaccine studies. These results also emphasize the importance of selecting the stimuli appropriately when evaluating CD4+ and CD8+ cell responses. Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of the life-threatening typhoid fever that affects 11.9–20.6 million individuals annually in low-income and middle-income countries. The T-cells, CD4+ and CD8+ T cells, play a significant role in protection against S. Typhi infection. Yet, the antigens triggering host protective immune responses recognized by these cells are largely unknown. To address this shortcoming, in this study we used an E. coli expression system methodology for identifying immunogenic proteins of S. Typhi. We found that although the pattern of response to individual S. Typhi proteins was variable among the typhoid vaccinees, the E. coli expressing system uncovered the antigen specificity of T-cells, and highlight its applicability to vaccine studies.
Collapse
|
11
|
Lee SJ, Benoun J, Sheridan BS, Fogassy Z, Pham O, Pham QM, Puddington L, McSorley SJ. Dual Immunization with SseB/Flagellin Provides Enhanced Protection against Salmonella Infection Mediated by Circulating Memory Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1353-1361. [PMID: 28710253 PMCID: PMC5548602 DOI: 10.4049/jimmunol.1601357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 06/19/2017] [Indexed: 01/09/2023]
Abstract
The development of a subunit Salmonella vaccine has been hindered by the absence of detailed information about antigenic targets of protective Salmonella-specific T and B cells. Recent studies have identified SseB as a modestly protective Ag in susceptible C57BL/6 mice, but the mechanism of protective immunity remains undefined. In this article, we report that simply combining Salmonella SseB with flagellin substantially enhances protective immunity, allowing immunized C57BL/6 mice to survive for up to 30 d following challenge with virulent bacteria. Surprisingly, the enhancing effect of flagellin did not require flagellin Ag targeting during secondary responses or recognition of flagellin by TLR5. Although coimmunization with flagellin did not affect SseB-specific Ab responses, it modestly boosted CD4 responses. In addition, protective immunity was effectively transferred in circulation to parabionts of immunized mice, demonstrating that tissue-resident memory is not required for vaccine-induced protection. Finally, protective immunity required host expression of IFN-γR but was independent of induced NO synthase expression. Taken together, these data indicate that Salmonella flagellin has unique adjuvant properties that improve SseB-mediated protective immunity provided by circulating memory.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Joseph Benoun
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Brian S Sheridan
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Zachary Fogassy
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Oanh Pham
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Quynh-Mai Pham
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Stephen J McSorley
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616;
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| |
Collapse
|
12
|
A recombinant protein of Salmonella Typhi induces humoral and cell-mediated immune responses including memory responses. Vaccine 2017; 35:4523-4531. [PMID: 28739115 DOI: 10.1016/j.vaccine.2017.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022]
Abstract
Gram negative enteric bacteria, Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever is a major public health problem in developing countries. While a permanent solution to the problem would require improved sanitation, food and water hygiene, controlling the infection by vaccination is urgently required due to the emergence of multidrug resistant strains in multiple countries. The currently licensed vaccines are moderately efficacious with limited applicability, and no recommended vaccines exist for younger children. We had previously reported that a candidate vaccine based on recombinant outer membrane protein (rT2544) of S. Typhi is highly immunogenic and protective in mice. Here we show that rT2544-specific antiserum is capable of mediating bacterial lysis by the splenocytes through Antibody-Dependent Cellular Cytotoxicity (ADCC). Increased populations of rT2544-specific IgA and IgG secreting plasma cells are found in the spleen, mesenteric lymph nodes and peyer's patches. Cell-Mediated Immune Responses (CMIR) induced by rT2544 consist of Th1 cell differentiation and generation of cytotoxic T lymphocytes (CTL), which produce IFN-γ and are capable of destroying cells displaying T2544-derived antigens. rT2544 elicits pro-inflammatory cytokines (TNF-α, IL-6) from Bone Marrow-Derived Dendritic cells (BMDCs), while in vitro re-stimulation of rT2544-primed CD4+ T cells induces cell proliferation and generates higher amounts of Th1 cytokines, such as IFN-gamma, TNF-α and IL-2. Finally, the candidate vaccine induces immunological memory in the form of memory B and T lymphocytes. Taken together, the study further supports the potential of rT2544 as a novel and improved vaccine candidate against S. Typhi.
Collapse
|
13
|
Kurtz JR, Goggins JA, McLachlan JB. Salmonella infection: Interplay between the bacteria and host immune system. Immunol Lett 2017; 190:42-50. [PMID: 28720334 DOI: 10.1016/j.imlet.2017.07.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Salmonella infection causes morbidity and mortality throughout the world with the host immune response varying depending on whether the infection is acute and limited, or systemic and chronic. Additionally, Salmonella bacteria have evolved multiple mechanisms to avoid or subvert immunity to its own benefit and often the anatomical location of infection plays a role in both the immune response and bacterial fate. Here, we provide an overview of the interplay between the immune system and Salmonella, while discussing how different host and bacterial factors influence the outcome of infection.
Collapse
Affiliation(s)
- Jonathan R Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - J Alan Goggins
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
14
|
Abstract
Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti-Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy.
Collapse
|
15
|
Guo M, Dou J. Advances and perspectives of colorectal cancer stem cell vaccine. Biomed Pharmacother 2015; 76:107-20. [PMID: 26653557 DOI: 10.1016/j.biopha.2015.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is essentially an environmental and genetic disease featured by uncontrolled cell growth and the capability to invade other parts of the body by forming metastases, which inconvertibly cause great damage to tissues and organs. It has become one of the leading causes of cancer-related mortality in the developed countries such as United States, and approximately 1.2 million new cases are yearly diagnosed worldwide, with the death rate of more than 600,000 annually and incidence rates are increasing in most developing countries. Apart from the generally accepted theory that pathogenesis of colorectal cancer consists of genetic mutation of a certain target cell and diversifications in tumor microenvironment, the colorectal cancer stem cells (CCSCs) theory makes a different explanation, stating that among millions of colon cancer cells there is a specific and scanty cellular population which possess the capability of self-renewal, differentiation and strong oncogenicity, and is tightly responsible for drug resistance and tumor metastasis. Based on these characteristics, CCSCs are becoming a novel target cells both in the clinical and the basic studies, especially the study of CCSCs vaccines due to induced efficient immune response against CCSCs. This review provides an overview of CCSCs and preparation technics and targeting factors related to CCSCs vaccines in detail.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Gibani MM, Jin C, Darton TC, Pollard AJ. Control of Invasive Salmonella Disease in Africa: Is There a Role for Human Challenge Models? Clin Infect Dis 2015; 61 Suppl 4:S266-71. [PMID: 26449941 PMCID: PMC4596929 DOI: 10.1093/cid/civ673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Invasive Salmonella disease in Africa is a major public health concern. With evidence of the transcontinental spread of the Salmonella Typhi H58 haplotype, improved estimates of the burden of infection and understanding of the complex interplay of factors affecting disease transmission are needed to assist with efforts aimed at disease control. In addition to Salmonella Typhi, invasive nontyphoidal Salmonella are increasingly recognized as an important cause of febrile illness and mortality in sub-Saharan Africa. Human experimental oral challenge studies with Salmonella can be used as a model to offer unique insights into host-pathogen interactions as well as a platform to efficiently test new diagnostic and vaccine candidates. In this article, we review the background and use of human challenge studies to date and discuss how findings from these studies may lead to progress in the control of invasive Salmonella disease in Africa.
Collapse
Affiliation(s)
- Malick M Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| |
Collapse
|
17
|
López-Macías C, Cunningham AF. Editorial: How Salmonella Infection can Inform on Mechanisms of Immune Function and Homeostasis. Front Immunol 2015; 6:451. [PMID: 26388874 PMCID: PMC4558537 DOI: 10.3389/fimmu.2015.00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/20/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Constantino López-Macías
- Medical Research Unit on Immunochemistry, National Medical Centre "Siglo XXI", Mexican Institute for Social Security, Specialties Hospital , Mexico City , Mexico
| | - Adam F Cunningham
- Institute for Biomedical Research, School of Immunity and Infection, University of Birmingham , Birmingham , UK
| |
Collapse
|
18
|
Matsui H, Fukiya S, Kodama-Akaboshi C, Eguchi M, Yamamoto T. Mouse models for assessing the cross-protective efficacy of oral non-typhoidal Salmonella vaccine candidates harbouring in-frame deletions of the ATP-dependent protease lon and other genes. J Med Microbiol 2015; 64:295-302. [PMID: 25589672 DOI: 10.1099/jmm.0.000014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In BALB/c mouse models of Salmonella enterica serovar Typhimurium infection, a single oral immunization with a mutant strain with an insertion of the chloramphenicol resistance gene into the ATP-dependent protease clpP or lon gene decreased the number of salmonellae in each tissue sample 5 days after oral challenge with virulent S. Typhimurium at weeks 26 and 54 post-immunization. These data suggested that an oral immunization with the ClpP- or Lon-disrupted S. Typhimurium strain could provide long-term protection against oral challenge with virulent S. Typhimurium. Accordingly, recombinant oral non-typhoidal Salmonella (NTS) vaccines were constructed by incorporating mutants of both S. Typhimurium and S. enterica serovar Enteritidis harbouring stable in-frame markerless deletions of the clpP-lon-sulA (suppressor of lon), lon-sulA or lon-msbB (acyltransferase) genes. Amongst these orally administered vaccine candidates, those with the lon-sulA gene deletion mutants of S. Typhimurium and S. Enteritidis protected BALB/c and C57BL/6J mice against oral challenge with both virulent S. Typhimurium and virulent S. Enteritidis. Therefore, the in-frame markerless lon-sulA gene deletion mutant of S. Typhimurium or S. Enteritidis could be a promising cross-protective NTS live vaccine candidate for practical use in humans.
Collapse
Affiliation(s)
- Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoru Fukiya
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Chie Kodama-Akaboshi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tomoko Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|