1
|
Yin XF, Ye T, Chen HL, Liu J, Mu XF, Li H, Wang J, Hu YJ, Cao H, Kang WQ. The microbiome compositional and functional differences between rectal mucosa and feces. Microbiol Spectr 2024; 12:e0354923. [PMID: 38916335 PMCID: PMC11302734 DOI: 10.1128/spectrum.03549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, most studies on the gut microbiome have primarily focused on feces samples, leaving the microbial communities in the intestinal mucosa relatively unexplored. To address this gap, our study employed shotgun metagenomics to analyze the microbial compositions in normal rectal mucosa and matched feces from 20 patients with colonic polyps. Our findings revealed a pronounced distinction of the microbial communities between these two sample sets. Compared with feces, the mucosal microbiome contains fewer genera, with Burkholderia being the most discriminating genus between feces and mucosa, highlighting its significant influence on the mucosa. Furthermore, based on the microbial classification and KEGG Orthology (KO) annotation results, we explored the association between rectal mucosal microbiota and factors such as age, gender, BMI, and polyp risk level. Notably, we identified novel biomarkers for these phenotypes, such as Clostridium ramosum and Enterobacter cloacae in age. The mucosal microbiota showed an enrichment of KO pathways related to sugar transport and short chain fatty acid metabolism. Our comprehensive approach not only bridges the knowledge gap regarding the microbial community in the rectal mucosa but also underscores the complexity and specificity of microbial interactions within the human gut, particularly in the Chinese population. IMPORTANCE This study presents a system-level map of the differences between feces and rectal mucosal microbial communities in samples with colorectal cancer risk. It reveals the unique microecological characteristics of rectal mucosa and its potential influence on health. Additionally, it provides novel insights into the role of the gut microbiome in the pathogenesis of colorectal cancer and paves the way for the development of new prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiao-Fei Yin
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Taoyu Ye
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Han-Lin Chen
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junyan Liu
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Xue-Feng Mu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hao Li
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Jun Wang
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuan-Jia Hu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hongzhi Cao
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- Department of Digital Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Wen-Quan Kang
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential therapeutic targets of macrophages in inhibiting immune damage and fibrotic processes in musculoskeletal diseases. Front Immunol 2023; 14:1219487. [PMID: 37545490 PMCID: PMC10400722 DOI: 10.3389/fimmu.2023.1219487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach. Vaccines (Basel) 2023; 11:vaccines11030525. [PMID: 36992108 DOI: 10.3390/vaccines11030525] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and is the second-highest in cancer-related deaths worldwide. The changes in gut homeostasis and microbial dysbiosis lead to the initiation of the tumorigenesis process. Several pathogenic gram-negative bacteria including Fusobacterium nucleatum are the principal contributors to the induction and pathogenesis of CRC. Thus, inhibiting the growth and survival of these pathogens can be a useful intervention strategy. Fibroblast activation protein-2 (Fap2) is an essential membrane protein of F. nucleatum that promotes the adherence of the bacterium to the colon cells, recruitment of immune cells, and induction of tumorigenesis. The present study depicts the design of an in silico vaccine candidate comprising the B-cell and T-cell epitopes of Fap2 for improving cell-mediated and humoral immune responses against CRC. Notably, this vaccine participates in significant protein–protein interactions with human Toll-like receptors, especially with TLR6 reveals, which is most likely to be correlated with its efficacy in eliciting potential immune responses. The immunogenic trait of the designed vaccine was verified by immune simulation approach. The cDNA of the vaccine construct was cloned in silico within the expression vector pET30ax for protein expression. Collectively, the proposed vaccine construct may serve as a promising therapeutic in intervening F. nucleatum-induced human CRC.
Collapse
|
5
|
Luddy KA, Teer JK, Freischel A, O’Farrelly C, Gatenby R. Evolutionary selection identifies critical immune-relevant genes in lung cancer subtypes. Front Genet 2022; 13:921447. [PMID: 36092893 PMCID: PMC9451599 DOI: 10.3389/fgene.2022.921447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
In an evolving population, proliferation is dependent on fitness so that a numerically dominant population typically possesses the most well adapted phenotype. In contrast, the evolutionary "losers" typically disappear from the population so that their genetic record is lost. Historically, cancer research has focused on observed genetic mutations in the dominant tumor cell populations which presumably increase fitness. Negative selection, i.e., removal of deleterious mutations from a population, is not observable but can provide critical information regarding genes involved in essential cellular processes. Similar to immunoediting, "evolutionary triage" eliminates mutations in tumor cells that increase susceptibility to the host immune response while mutations that shield them from immune attack increase proliferation and are readily observable (e.g., B2M mutations). These dynamics permit an "inverse problem" analysis linking the fitness consequences of a mutation to its prevalence in a tumor cohort. This is evident in "driver mutations" but, equally important, can identify essential genes in which mutations are seen significantly less than expected by chance. Here we utilized this new approach to investigate evolutionary triage in immune-related genes from TCGA lung adenocarcinoma cohorts. Negative selection differs between the two cohorts and is observed in endoplasmic reticulum aminopeptidase genes, ERAP1 and ERAP2 genes, and DNAM-1/TIGIT ligands. Targeting genes or molecular pathways under positive or negative evolutionary selection may permit new treatment options and increase the efficacy of current immunotherapy.
Collapse
Affiliation(s)
- Kimberly A. Luddy
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jamie K. Teer
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Audrey Freischel
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Robert Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
6
|
Fang Y, Yan C, Zhao Q, Zhao B, Liao Y, Chen Y, Wang D, Tang D. The Association Between Gut Microbiota, Toll-Like Receptors, and Colorectal Cancer. Clin Med Insights Oncol 2022; 16:11795549221130549. [PMCID: PMC9634190 DOI: 10.1177/11795549221130549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
The large number of microbes found in the gut are involved in various critical biological processes in the human body and have dynamic and complex interactions with the immune system. Disruptions in the host’s gut microbiota and the metabolites produced during fermentation promote the development of intestinal inflammation and colorectal cancer (CRC). Toll-like receptors (TLRs) recognize specific microbial-associated molecular patterns specific to microorganisms whose signaling is involved in maintaining intestinal homeostasis or, under certain conditions, mediating dysbiosis-associated intestinal inflammation. The signaling pathways of TLRs are described first, followed by a discussion of the interrelationship between gut microbes and TLRs, including the activation of TLRs by gut microbes and the effect of TLRs on the distribution of gut microbiota, particularly the role of microbes in colorectal carcinogenesis via TLRs. Finally, we discuss the potential roles of various TLRs in colorectal cancer.
Collapse
Affiliation(s)
- Yongkun Fang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Cheng Yan
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
- The People’s Hospital Of QianNan, Duyun, China
| | - Qi Zhao
- Department of Clinical Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
- Changshu No.2 People’s Hospital, Suzhou, China
| | - Bin Zhao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yuji Chen
- Department of Clinical Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Hassan Ahmed S, Mostafa A, Abou-Elalla A. Antiproliferative Effect of Mesenchymal Stem Cells on Human Breast Carcinoma: New Insight on FOXO/lncRNA-AF085935 Axis. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: Cancer breast is one of the most common cancer in women leading to death; that is why we are in urgent need to develop new modalities of treatment. Mesenchymal stem cells (MSCs) have an anti-inflammatory effect due to capability to regenerate the damaged tissues.
METHODS: MCF7 breast cancer cells were divided into two groups; group 1: untreated cancer cells, group 2: cancer cell cocultured with MSCs; after 24 incubation the cells from the two groups were collected to assess cell proliferation, Interleukin-6 (IL-6) levels and genes expression of Nuclear factor-kappa B (NF-KB), FOXO, and LncRNA AF085935.
RESULTS: Statistically significant decrease in cancer cell proliferation and all other studied parameters in cancer cells after coculture with MSCs.
CONCLUSION: Breast carcinoma once initiated; it runs in a vicious circle due to stimulation of FOXO/LncRNA AF085935 axis by the inflammatory mediators released from cancer environment. FOXO/LncRNA AF085935 induces cancer proliferation and survival; furthermore, FOXO once induced, it produces further induction of inflammatory cytokines IL-6 and NF-KB and so on, MSCs due to its anti-inflammatory role could break this circle and thus inhibit cancer cell proliferation.
Collapse
|
8
|
Lin X, Fang Y, Jin X, Zhang M, Shi K. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5871-5896. [PMID: 35006894 DOI: 10.1021/acsabm.1c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are always some components in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), that help tumor cells escape the body's immune surveillance. Therefore, this situation can lead to tumor growth, progression, and metastasis, resulting in low response rates for cancer therapy. Macrophages play an important role with strong plasticity and functional diversity. Facing different microenvironmental stimulations, macrophages undergo a dynamic change in phenotype and function into two major macrophage subpopulations, namely classical activation/inflammation (M1) and alternative activation/regeneration (M2) type. Through various signaling pathways, macrophages polarize into complex groups, which can perform different immune functions. In this review, we emphasize the use of nanopreparations for macrophage related immunotherapy based on the pathological knowledge of TAMs phenotype. These macrophages targeted nanoparticles re-edit and re-educate macrophages by attenuating M2 macrophages and reducing aggregation to the TME, thereby relieving or alleviating immunosuppression. Among them, we describe in detail the cellular mechanisms and regulators of several major signaling pathways involved in the plasticity and polarization functions of macrophages. The advantages and challenges of those nanotherapeutics for these pathways have been elucidated, providing the basis and insights for the diagnosis and treatment strategies of various diseases centered on macrophages.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Mingming Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Kai Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350 Tianjin, China
| |
Collapse
|
9
|
Ketpueak T, Thiennimitr P, Apaijai N, Chattipakorn SC, Chattipakorn N. Association of Chronic Opisthorchis Infestation and Microbiota Alteration on Tumorigenesis in Cholangiocarcinoma. Clin Transl Gastroenterol 2020; 12:e00292. [PMID: 33464733 PMCID: PMC8345922 DOI: 10.14309/ctg.0000000000000292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a common hepatobiliary cancer in East and Southeast Asia. The data of microbiota contribution in CCA are still unclear. Current available reports have demonstrated that an Opisthorchis viverrini (OV) infection leads to dysbiosis in the bile duct. An increase in the commensal bacteria Helicobacter spp. in OV-infected CCA patients is associated with bile duct inflammation, severity of bile duct fibrosis, and cholangiocyte proliferation. In addition, secondary bile acids, major microbial metabolites, can mediate cholangiocyte inflammation and proliferation in the liver. A range of samples from CCA patients (stool, bile, and tumor) showed different degrees of dysbiosis. The evidence from these samples suggests that OV infection is associated with alterations in microbiota and could potentially have a role in CCA. In this comprehensive review, reports from in vitro, in vivo, and clinical studies that demonstrate possible links between OV infection, microbiota, and CCA pathogenesis are summarized and discussed. Understanding these associations may pave ways for novel potential adjunct intervention in gut microbiota in CCA patients.
Collapse
Affiliation(s)
- Thanika Ketpueak
- Division of Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Hossam N, Matboli M, Shehata HH, Aboelhussein MM, Hassan MK, Eissa S. Toll-like receptor immune modulatory role in personalized management of colorectal cancer, review of literature. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1816136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nourhan Hossam
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan H. Shehata
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa M. Aboelhussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Kamel Hassan
- Zewail city for science and Technology, Helmy Institute for medical science, Center for Genomics, Giza, Egypt
- Department of Biology/Zoology, Biotechnology Program, Port Said University, Port Said, Egypt
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Angrini M, Varthaman A, Cremer I. Toll-Like Receptors (TLRs) in the Tumor Microenvironment (TME): A Dragon-Like Weapon in a Non-fantasy Game of Thrones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:145-173. [DOI: 10.1007/978-3-030-44518-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Gowing SD, Cool-Lartigue JJ, Spicer JD, Seely AJE, Ferri LE. Toll-like receptors: exploring their potential connection with post-operative infectious complications and cancer recurrence. Clin Exp Metastasis 2020; 37:225-239. [PMID: 31975313 DOI: 10.1007/s10585-020-10018-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Cancer is the leading cause of death in North America. Despite modern advances in cancer therapy, many patients will ultimately develop cancer metastasis resulting in mortality. Surgery to resect early stage solid malignancies remains the cornerstone of cancer treatment. However, surgery places patients at risk of developing post-operative infectious complications that are linked to earlier cancer metastatic recurrence and cancer mortality. Toll-like receptors (TLRs) are evolutionarily-conserved sentinel receptors of the innate immune system that are activated by microbial products present during infection, leading to activation of innate immunity. Numerous types of solid cancer cells also express TLRs, with their activation augmenting their ability to metastasize. Similarly, healthy host-tissue TLRs activated during infection induce a prometastatic environment in the host. Cancer cells additionally secrete TLR activating ligands that activate both cancer TLRs and host TLRs to promote metastasis. Consequently, TLRs are an attractive therapeutic candidate to target infection-induced cancer metastasis and progression.
Collapse
Affiliation(s)
- S D Gowing
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada. .,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| | - J J Cool-Lartigue
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - J D Spicer
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - A J E Seely
- Department of Thoracic Surgery, Ottawa General Hospital, University of Ottawa, Ottawa, Canada
| | - L E Ferri
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| |
Collapse
|
13
|
Schramm HM. The Epithelial-Myeloid-Transition (EMyeT) of cancer cells as a wrongly perceived primary inflammatory process eventually progressing to a bone remodeling malignancy: the alternative pathway for Epithelial- Mesenchymal-Transition hypothesis (EMT)? J Cancer 2019; 10:3798-3809. [PMID: 31333797 PMCID: PMC6636288 DOI: 10.7150/jca.31364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer cells express multiple markers expressed by mesenchymal as well as myeloid cells in common and in addition specific markers of the myeloid lineages, especially those of dendritic cells, macrophages and preosteoclasts. It has also been possible to identify monocyte-macrophage gene clusters in cancer cell specimens as well as in cancer cell lines. Accordingly, like myeloid cells cancer cells often express pro-inflammatory cytokines, and consequently the carcinoma may be perceived by the organism as a primary inflammatory process comparable to the immune inflammatory reactions in the eye or in the case of arthritis. This would explain why a carcinoma may induce a certain alarm state in the organism by increasing a fatal sympathetic tone in the patient, supplying the carcinomas with nutrients at the cost of other requirements, inducing tolerance against the cancer cells mistaken as myeloid cells, provoking fibrosis and neoangiogenesis, and increasing inflammatory cells at the carcinoma site. This seemingly inflammatory process of Epithelial-Myeloid-Transition (EMyeT) is superimposed by the progression of part of the myeloid cancer cells to stages comparable to preosteoclasts and osteoclasts, and their development to metastasizing carcinomas often at the site of bone. This concept of carcinogenesis and malignant progression described here challenges the widely accepted EMT-hypotheses and could deliver the rationale for the various peculiar aspects of cancer and the variety of therapeutic antitumoral measures.
Collapse
Affiliation(s)
- Henning M Schramm
- Institute for Integral Cancer Research (IFIK), CH-4144 Arlesheim/Switzerland
| |
Collapse
|
14
|
Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer 2019; 120:871-882. [PMID: 30936499 PMCID: PMC6734657 DOI: 10.1038/s41416-019-0441-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Significant progress in the development of new immunotherapies has led to successful clinical trials for malignant melanoma and non-small cell lung cancer; however, for the majority of solid tumours of the gastrointestinal tract, little or no progress has been seen. The efficacy of immunotherapies is limited by the complexities of a diverse set of immune cells, and interactions between the tumour cells and all other cells in the local microenvironment of solid tumours. A large fraction of immune cells present in and around solid tumours derive from the innate arm of the immune system and using these cells against tumours offers an alternative immunotherapeutic option, especially as current strategies largely harness the adaptive arm of the immune system. This option is currently being investigated and attempts at using the innate immune system for gastrointestinal cancers are showing initial results. Several important factors, including cytokines, chemotherapeutics and the microbiome, influence the plasticity and functionality of innate (myeloid) cells in the microenvironment, and this complexity of regulation has limited translation into successful trials so far. In this review, current concepts of the immunobiology of the innate arm in the tumour microenvironment are presented in the context of clinical translation.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,German Translational Cancer Consortium (DKTK), Heidelberg, Germany.,Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. .,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany. .,Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany.
| |
Collapse
|
15
|
Intracellular RNA Sensing in Mammalian Cells: Role in Stress Response and Cancer Therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 344:31-89. [DOI: 10.1016/bs.ircmb.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Royer DJ, Elliott MH, Le YZ, Carr DJJ. Corneal Epithelial Cells Exhibit Myeloid Characteristics and Present Antigen via MHC Class II. Invest Ophthalmol Vis Sci 2018; 59:1512-1522. [PMID: 29625473 PMCID: PMC5861930 DOI: 10.1167/iovs.17-23279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose To explore the impact of ocular surface insults on the immunomodulatory capacity and phenotype of corneal epithelial cells (CECs) with a focus on epithelial-mesenchymal transition (EMT). Methods Corneas were harvested from mice 6 days following scratch injury, ragweed pollen-induced allergy, or herpes simplex virus type 1 (HSV-1) infection and compared to healthy tissue controls. Corneas were enzymatically digested and CECs phenotypically characterized using flow cytometry. CECs were defined as epithelial cell adhesion molecule (EpCAM)-positive CD45-negative cells. CECs were assessed by PCR to evaluate EMT-associated transcripts. Recombinant HSV-1 and transgenic mice were utilized to investigate the role of vascular endothelial growth factor A (VEGFA) on the phenotype observed. The immunomodulatory potential of CECs was assessed in coculture assays with ovalbumin-specific CD4 T cells. Results Ectopic expression of classic "myeloid" antigens Ly6G, CCR2, and CX3CR1 was identified in CEC subsets from all groups with evidence supporting an underlying partial EMT event resulting from loss of cell-cell contacts. Corneal HSV-1 infection induced Ly6C expression and major histocompatibility complex (MHC)-II upregulation in CECs through a VEGFA-linked mechanism. These Ly6C+ MHC-II+ CECs were found to function as amateur antigen-presenting cells and induced CD4 T cell proliferation in vitro. Conclusions This study characterizes a novel immunomodulatory CEC phenotype with possible implications for immune privilege, chronic inflammation, and tissue fibrosis. Moreover, the identification of CECs masquerading with multiple "myeloid" antigens warrants careful evaluation of flow cytometry data involving corneal digests.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael H Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Yun Z Le
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
17
|
Parmar N, Chandrakar P, Vishwakarma P, Singh K, Mitra K, Kar S. Leishmania donovani Exploits Tollip, a Multitasking Protein, To Impair TLR/IL-1R Signaling for Its Survival in the Host. THE JOURNAL OF IMMUNOLOGY 2018; 201:957-970. [DOI: 10.4049/jimmunol.1800062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
|
18
|
Tilg H, Adolph TE, Gerner RR, Moschen AR. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018; 33:954-964. [PMID: 29657127 DOI: 10.1016/j.ccell.2018.03.004] [Citation(s) in RCA: 490] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Experimental evidence from the past years highlights a key role for the intestinal microbiota in inflammatory and malignant gastrointestinal diseases. Diet exhibits a strong impact on microbial composition and provides risk for developing colorectal carcinoma (CRC). Large metagenomic studies in human CRC associated microbiome signatures with the colorectal adenoma-carcinoma sequence, suggesting a fundamental role of the intestinal microbiota in the evolution of gastrointestinal malignancy. Basic science established a critical function for the intestinal microbiota in promoting tumorigenesis. Further studies are needed to decipher the mechanisms of tumor promotion and microbial co-evolution in CRC, which may be exploited therapeutically in the future.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Role of Pattern Recognition Receptors in KSHV Infection. Cancers (Basel) 2018; 10:cancers10030085. [PMID: 29558453 PMCID: PMC5876660 DOI: 10.3390/cancers10030085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus or Human herpesvirus-8 (KSHV/HHV-8), an oncogenic human herpesvirus and the leading cause of cancer in HIV-infected individuals, is a major public health concern with recurring reports of epidemics on a global level. The early detection of KSHV virus and subsequent activation of the antiviral immune response by the host’s immune system are crucial to prevent KSHV infection. The host’s immune system is an evolutionary conserved system that provides the most important line of defense against invading microbial pathogens, including viruses. Viruses are initially detected by the cells of the host innate immune system, which evoke concerted antiviral responses via the secretion of interferons (IFNs) and inflammatory cytokines/chemokines for elimination of the invaders. Type I IFN and cytokine gene expression are regulated by multiple intracellular signaling pathways that are activated by germline-encoded host sensors, i.e., pattern recognition receptors (PRRs) that recognize a conserved set of ligands, known as ‘pathogen-associated molecular patterns (PAMPs)’. On the contrary, persistent and dysregulated signaling of PRRs promotes numerous tumor-causing inflammatory events in various human cancers. Being an integral component of the mammalian innate immune response and due to their constitutive activation in tumor cells, targeting PRRs appears to be an effective strategy for tumor prevention and/or treatment. Cellular PRRs are known to respond to KSHV infection, and KSHV has been shown to be armed with an array of strategies to selectively inhibit cellular PRR-based immune sensing to its benefit. In particular, KSHV has acquired specific immunomodulatory genes to effectively subvert PRR responses during the early stages of primary infection, lytic reactivation and latency, for a successful establishment of a life-long persistent infection. The current review aims to comprehensively summarize the latest advances in our knowledge of role of PRRs in KSHV infections.
Collapse
|
20
|
Bugge M, Bergstrom B, Eide OK, Solli H, Kjønstad IF, Stenvik J, Espevik T, Nilsen NJ. Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem 2017; 292:15408-15425. [PMID: 28717003 PMCID: PMC5602399 DOI: 10.1074/jbc.m117.784090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) are innate immune receptors for sensing microbial molecules and damage-associated molecular patterns released from host cells. Double-stranded RNA and the synthetic analog polyinosinic:polycytidylic acid (poly(I:C)) bind and activate TLR3. This stimulation leads to recruitment of the adaptor molecule TRIF (Toll/IL-1 resistance (TIR) domain-containing adapter-inducing interferon β) and activation of the transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3), classically inducing IFNβ production. Here we report that, unlike non-metastatic intestinal epithelial cells (IECs), metastatic IECs express TLR3 and that TLR3 promotes invasiveness of these cells. In response to poly(I:C) addition, the metastatic IECs also induced the chemokine CXCL10 in a TLR3-, TRIF-, and IRF3-dependent manner but failed to produce IFNβ. This was in contrast to healthy and non-metastatic IECs, which did not respond to poly(I:C) stimulation. Endolysosomal acidification and the endosomal transporter protein UNC93B1 was required for poly(I:C)-induced CXCL10 production. However, TLR3-induced CXCL10 was triggered by immobilized poly(I:C), was only modestly affected by inhibition of endocytosis, and could be blocked with an anti-TLR3 antibody, indicating that TLR3 can still signal from the cell surface of these cells. Furthermore, plasma membrane fractions from metastatic IECs contained both full-length and cleaved TLR3, demonstrating surface expression of both forms of TLR3. Our results imply that metastatic IECs express surface TLR3, allowing it to sense extracellular stimuli that trigger chemokine responses and promote invasiveness in these cells. We conclude that altered TLR3 expression and localization may have implications for cancer progression.
Collapse
Affiliation(s)
- Marit Bugge
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and.,the Clinic of Medicine, St. Olav's University Hospital, 7030 Trondheim, Norway
| | - Bjarte Bergstrom
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Oda K Eide
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Helene Solli
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Ingrid F Kjønstad
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Jørgen Stenvik
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Terje Espevik
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Nadra J Nilsen
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and .,the Clinic of Medicine, St. Olav's University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
21
|
Loo LWM, Lemire M, Le Marchand L. In silico pathway analysis and tissue specific cis-eQTL for colorectal cancer GWAS risk variants. BMC Genomics 2017; 18:381. [PMID: 28506205 PMCID: PMC5432975 DOI: 10.1186/s12864-017-3750-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/02/2017] [Indexed: 02/08/2023] Open
Abstract
Background Genome-wide association studies have identified 55 genetic variants associated with colorectal cancer risk to date. However, potential causal genes and pathways regulated by these risk variants remain to be characterized. Therefore, we performed gene ontology enrichment and pathway analyses to determine if there was an enrichment of genes in proximity to the colorectal cancer risk variants that could further elucidate the probable causal genes and pathways involved in colorectal cancer biology. Results For the 65 unique genes that either contained, or were immediately neighboring up- and downstream, of these variants there was a significant enrichment for the KEGG pathway, Pathways in Cancer (p-value = 2.67 × 10−5) and an enrichment for multiple biological processes (FDR < 0.05), such as cell junction organization, tissue morphogenesis, regulation of SMAD protein phosphorylation, and odontogenesis identified through Gene Ontology analysis. To identify potential causal genes, we conducted a cis-expression quantitative trait loci (cis-eQTL) analysis using gene expression and genotype data from the Genotype-Tissue Expression (GTEx) Project portal in normal sigmoid (n = 124) and transverse (n = 169) colon tissue. In addition, we also did a cis-eQTL analysis on colorectal tumor tissue (n = 147) from The Cancer Genome Atlas (TCGA). We identified two risk alleles that were significant cis-eQTLs for FADS2 (rs1535) and COLCA1 and 2 (rs3802842) genes in the normal transverse colon tissue and two risk alleles that were significant cis-eQTLs for the CABLES2 (rs2427308) and LIPG (rs7229639) genes in the normal sigmoid colon tissue, but not tumor tissue. Conclusions Our data reaffirm the potential to identify an enrichment for biological processes and candidate causal genes based on expression profiles correlated with genetic risk alleles of colorectal cancer, however, the identification of these significant cis-eQTLs is context and tissue specific. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3750-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenora W M Loo
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA.
| | - Mathieu Lemire
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
22
|
Sewda K, Coppola D, Enkemann S, Yue B, Kim J, Lopez AS, Wojtkowiak JW, Stark VE, Morse B, Shibata D, Vignesh S, Morse DL. Cell-surface markers for colon adenoma and adenocarcinoma. Oncotarget 2017; 7:17773-89. [PMID: 26894861 PMCID: PMC4951249 DOI: 10.18632/oncotarget.7402] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/24/2016] [Indexed: 12/26/2022] Open
Abstract
Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.
Collapse
Affiliation(s)
- Kamini Sewda
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Steven Enkemann
- Department of Molecular Genomics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Binglin Yue
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alexis S Lopez
- Department of Tissue Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Valerie E Stark
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Brian Morse
- Department of Diagnostic Imaging, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shivakumar Vignesh
- Division of Gastroenterology and Hepatology, SUNY Health Sciences Center at Brooklyn, Brooklyn, NY 11203, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
23
|
Canevari RA, Marchi FA, Domingues MAC, de Andrade VP, Caldeira JRF, Verjovski-Almeida S, Rogatto SR, Reis EM. Identification of novel biomarkers associated with poor patient outcomes in invasive breast carcinoma. Tumour Biol 2016; 37:13855-13870. [PMID: 27485113 DOI: 10.1007/s13277-016-5133-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/06/2016] [Indexed: 12/20/2022] Open
Abstract
Breast carcinoma (BC) corresponds to 23 % of all cancers in women, with 1.38 million new cases and 460,000 deaths worldwide annually. Despite the significant advances in the identification of molecular markers and different modalities of treatment for primary BC, the ability to predict its metastatic behavior is still limited. The purpose of this study was to identify novel molecular markers associated with distinct clinical outcomes in a Brazilian cohort of BC patients. We generated global gene expression profiles using tumor samples from 24 patients with invasive ductal BC who were followed for at least 5 years, including a group of 15 patients with favorable outcomes and another with nine patients who developed metastasis. We identified a set of 58 differentially expressed genes (p ≤ 0.01) between the two groups. The prognostic value of this metastasis signature was corroborated by its ability to stratify independent BC patient datasets according to disease-free survival and overall survival. The upregulation of B3GNT7, PPM1D, TNKS2, PHB, and GTSE1 in patients with poor outcomes was confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) in an independent sample of patients with BC (47 with good outcomes and eight that presented metastasis). The expression of BCL2-associated agonist of cell death (BAD) protein was determined in 1276 BC tissue samples by immunohistochemistry and was consistent with the reduced BAD mRNA expression levels in metastatic cases, as observed in the oligoarray data. These findings point to novel prognostic markers that can distinguish breast carcinomas with metastatic potential from those with favorable outcomes.
Collapse
Affiliation(s)
- Renata A Canevari
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | - Fabio A Marchi
- CIPE - AC Camargo Cancer Center, São Paulo, SP, 01508-010, Brazil
| | - Maria A C Domingues
- Departamento de Patologia, Faculdade de Medicina, Universidade do Estado de São Paulo - UNESP, Botucatu, SP, 18618-000, Brazil
| | | | - José R F Caldeira
- Departamento de Senologia, Hospital Amaral Carvalho, Jaú, SP, 17210-080, Brazil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo - USP, Av. Prof. Lineu Prestes, 748, Cidade Universitaria, São Paulo, SP, 05508-900, Brazil.,Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Silvia R Rogatto
- CIPE - AC Camargo Cancer Center, São Paulo, SP, 01508-010, Brazil. .,Department of Clinical Genetics Vejle Sygehus, Vejle, Denmark. .,Institute of Regional Health, University of Southern Denmark, Vejle, Denmark.
| | - Eduardo M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo - USP, Av. Prof. Lineu Prestes, 748, Cidade Universitaria, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
24
|
Drewes JL, Housseau F, Sears CL. Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. Br J Cancer 2016; 115:273-80. [PMID: 27380134 PMCID: PMC4973155 DOI: 10.1038/bjc.2016.189] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota has been hailed as an accessory organ, with functions critical to the host including dietary metabolic activities and assistance in the development of a proper functioning immune system. However, an aberrant microbiota (dysbiosis) may influence disease processes such as colorectal cancer. In this review, we discuss recent advances in our understanding of the contributions of the microbiota to prevention, initiation/progression, and treatment of colorectal cancer, with a major focus on biofilms and the antimicrobial and antitumoural immune response.
Collapse
Affiliation(s)
- Julia L Drewes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Franck Housseau
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia L Sears
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| |
Collapse
|
25
|
Cao S, Su X, Zeng B, Yan H, Huang Y, Wang E, Yun H, Zhang Y, Liu F, Li W, Wei H, Che Y, Yang R. The Gut Epithelial Receptor LRRC19 Promotes the Recruitment of Immune Cells and Gut Inflammation. Cell Rep 2016; 14:695-707. [PMID: 26776522 PMCID: PMC4742566 DOI: 10.1016/j.celrep.2015.12.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/02/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
Commensal microbes are necessary for a healthy gut immune system. However, the mechanism involving these microbes that establish and maintain gut immune responses is largely unknown. Here, we have found that the gut immune receptor leucine-rich repeat (LRR) C19 is involved in host-microbiota interactions. LRRC19 deficiency not only impairs the gut immune system but also reduces inflammatory responses in gut tissues. We demonstrate that the LRRC19-associated chemokines CCL6, CCL9, CXCL9, and CXCL10 play a critical role in immune cell recruitment and intestinal inflammation. The expression of these chemokines is associated with regenerating islet-derived (REG) protein-mediated microbiotas. We also found that the expression of REGs may be regulated by gut Lactobacillus through LRRC19-mediated activation of NF-κB. Therefore, our study establishes a regulatory axis of LRRC19, REGs, altered microbiotas, and chemokines for the recruitment of immune cells and the regulation of intestinal inflammation. The gut immune receptor LRRC19 is involved in host-microbiota interactions LRRC19-associated chemokines control immune cell recruitment and gut inflammation Chemokines are regulated by REG protein-mediated gut microbiotas Lactobacillus may modulate the expression of REG proteins through LRRC19
Collapse
Affiliation(s)
- Shuisong Cao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing 404100, China
| | - Hui Yan
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yugang Huang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Enlin Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Yun
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Feifei Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Wenxia Li
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing 404100, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University, Chongqing 404100, China
| | - Yongzhe Che
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Wang Y, Cai J, Zeng X, Chen Y, Yan W, Ouyang Y, Xiao D, Zeng Z, Huang L, Liu A. Downregulation of toll-like receptor 4 induces suppressive effects on hepatitis B virus-related hepatocellular carcinoma via ERK1/2 signaling. BMC Cancer 2015; 15:821. [PMID: 26514586 PMCID: PMC4627624 DOI: 10.1186/s12885-015-1866-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) infection is a major risk factor which can lead to development of hepatocellular carcinoma (HCC). In this study, we aimed to explore the effects of toll-like receptor 4 (TLR4) downregulation on the growth and survival of HBV-related HCC cells and to examine the molecular mechanisms been involved. Methods The expression levels of TLR4 were examined in a panel of HCC cell lines (HepG2, SMMC7721, Huh7, HepG2.2.15 and Hep3B). The effects of TLR4 downregulation on the proliferation, apoptosis, and tumorigenicity of HBV-related HepG2.2.15 cells were determined. The effects of TLR4 downregulation on multiple signaling pathways were also measured. Co-immunoprecipitation and immunofluoresence staining assays were performed to investigate the interaction between TLR4 and HBV X protein (HBx). Results The mRNA and protein levels of TLR4 were significantly increased in HepG2.2.15 cells than those in the other cells which have been studied. Downregulation of TLR4 significantly decreased the proliferation and induced G2/M cell cycle arrest and apoptosis in HepG2.2.15 cells. TLR4 depletion inhibited HepG2.2.15 cell colony formation and tumor growth in nude mice. TLR4 silencing decreased the phosphorylation of ERK1/2 but not JNK1/2, p38, or NF-κB. Chemical inhibition of ERK1/2 approximately phenocopied the growth-suppressive effect of TLR4 downregulation on HepG2.2.15 cells. In addition, TLR4 showed a physical interaction with HBx. Conclusions Taken together, TLR4 plays a tumor-promoting role in HBV-related HCC cells, which is associated with regulation of ERK1/2 activation and interaction with HBx. Therefore, TLR4 may be a potential therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Jing Cai
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Xiaoli Zeng
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yajie Chen
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Wei Yan
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yuming Ouyang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Dan Xiao
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Zhiming Zeng
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Long Huang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Anwen Liu
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
27
|
Abstract
The dysregulation of the relationship between gut microbiota and innate immune homeostasis can lead to a range of complex diseases. In this issue, Man et al. reveal that the intracellular innate sensor AIM2 regulates microbial and stem cell homeostasis in the gut to protect against colorectal cancer.
Collapse
|
28
|
Pandey S, Singh S, Anang V, Bhatt AN, Natarajan K, Dwarakanath BS. Pattern Recognition Receptors in Cancer Progression and Metastasis. CANCER GROWTH AND METASTASIS 2015; 8:25-34. [PMID: 26279628 PMCID: PMC4514171 DOI: 10.4137/cgm.s24314] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
Abstract
The innate immune system is an integral component of the inflammatory response to pathophysiological stimuli. Toll-like receptors (TLRs) and inflammasomes are the major sensors and pattern recognition receptors (PRRs) of the innate immune system that activate stimulus (signal)-specific pro-inflammatory responses. Chronic activation of PRRs has been found to be associated with the aggressiveness of various cancers and poor prognosis. Involvement of PRRs was earlier considered to be limited to infection- and injury-driven carcinogenesis, where they are activated by pathogenic ligands. With the recognition of damage-associated molecular patterns (DAMPs) as ligands of PRRs, the role of PRRs in carcinogenesis has also been implicated in other non-pathogen-driven neoplasms. Dying (apoptotic or necrotic) cells shed a plethora of DAMPs causing persistent activation of PRRs, leading to chronic inflammation and carcinogenesis. Such chronic activation of TLRs promotes tumor cell proliferation and enhances tumor cell invasion and metastasis by regulating pro-inflammatory cytokines, metalloproteinases, and integrins. Due to the decisive role of PRRs in carcinogenesis, targeting PRRs appears to be an effective cancer-preventive strategy. This review provides a brief account on the association of PRRs with various cancers and their role in carcinogenesis.
Collapse
Affiliation(s)
- Sanjay Pandey
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India. ; Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Saurabh Singh
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| | - Vandana Anang
- Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Anant N Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| | - K Natarajan
- Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Bilikere S Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Delhi, India
| |
Collapse
|
29
|
Abstract
Cancers progress through a series of events that can be characterized as "somatic evolution." A central premise of Darwinian evolutionary theory is that the environment imparts pressure to select for species that are most fit within that particular microenvironmental context. Furthermore, the rate of evolution is proportional to both (1) the strength of the environmental selection and (2) the phenotypic variance of the selected population. It is notable that, during the progression of cancers from carcinogenesis to local invasion to metastasis, the selective landscape continuously changes, and throughout this process, there is increased selection for cells that have altered metabolic phenotypes: implying that these phenotypes impart a selective advantage during the process of environmental selection. One of the most prevalent selected phenotypes is that of aerobic glycolysis, that is, the continued fermentation of glucose even in the presence of adequate oxygen. The mechanisms of this so-called "Warburg effect" have been well studied, and there are multiple models to explain how this occurs at the molecular level. Herein, we propose that unifying insights can be gained by evaluating the environmental context within which this phenotype arises. In other words, we focus not on the "how" but the "why" do cancer cells exhibit high aerobic glycolysis. This is best approached by examining the sequelae of aerobic glycolysis that may impart a selective advantage. Many of these have been considered, including generation of anabolic substrates, response rates of glycolysis vis-à-vis respiration, and generation of antioxidants. A further sequeala considered here is that aerobic glycolysis results in a high rate of lactic acid production; resulting in acidification of the extracellular space. Indeed, it has been shown that a low extracellular pH promotes local invasion, promotes metastasis, and inhibits antitumor immunity. In naturally occurring cancers, low extracellular pH is a strong negative prognostic indicator of metastasis-free survival. Furthermore, it has been shown that inhibition of extracellular acidosis can inhibit metastasis and promote antitumor immunity. Hence, we propose that excess acid production confers a selective advantage for cells during the somatic evolution of cancers.
Collapse
Affiliation(s)
- Robert J Gillies
- From the Departments of Cancer Imaging and Metabolism and Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | |
Collapse
|
30
|
Graves CL, Harden SW, LaPato M, Nelson M, Amador B, Sorenson H, Frazier CJ, Wallet SM. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function. J Immunol Methods 2014; 414:20-31. [PMID: 25193428 PMCID: PMC4384334 DOI: 10.1016/j.jim.2014.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 12/29/2022]
Abstract
Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors.
Collapse
Affiliation(s)
- Christina L Graves
- Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL, USA; Department of Periodontology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL 32610-0434, USA.
| | - Scott W Harden
- Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, P.O. Box 100244, Gainesville 32610, FL, USA.
| | - Melissa LaPato
- Department of Periodontology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL 32610-0434, USA.
| | - Michael Nelson
- Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL, USA; Department of Periodontology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL 32610-0434, USA.
| | - Byron Amador
- Department of Periodontology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL 32610-0434, USA.
| | - Heather Sorenson
- Department of Periodontology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL 32610-0434, USA.
| | - Charles J Frazier
- Department of Neuroscience, College of Medicine, University of Florida, P.O. Box 100244, Gainesville 32610, FL, USA; Department of Pharmacodynamics, College of Medicine, University of Florida, P.O. Box 100244, Gainesville, FL 32610, USA.
| | - Shannon M Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL, USA; Department of Periodontology, College of Dentistry, University of Florida, P.O. Box 100434, Gainesville, FL 32610-0434, USA.
| |
Collapse
|