1
|
Kumar P, Oster RA, Assimos DG, Ness TJ, Mitchell T. Bioenergetic profiles of peripheral mononuclear cells and systemic inflammation in women with Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). PLoS One 2024; 19:e0298981. [PMID: 38359038 PMCID: PMC10868762 DOI: 10.1371/journal.pone.0298981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammation is thought to contribute to the etiology of interstitial cystitis/bladder pain syndrome (IC/BPS). It is well-known that disruption in metabolism in immune cells contributes to inflammation in several inflammatory diseases. The purpose of this study was to investigate whether cellular bioenergetics is altered in monocytes and lymphocytes from women with IC/BPS, and if these alterations correlate with systemic inflammatory markers. Age and BMI matched adult healthy women (HS; n = 18) and women with IC/BPS (n = 18) were included in the study. Blood was collected to assess cellular bioenergetics in monocytes and lymphocytes using a Seahorse XF96 Analyzer and plasma cytokine levels were measured using Meso Scale Discovery immunoassays. The correlation between bioenergetic parameters, cytokines, and demographics was determined using Pearson correlation coefficients. Means of the two groups were compared using the two-group t-test. Patients with IC/BPS had reduced monocyte oxygen consumption rates and glycolytic rates compared to healthy subjects. In contrast, lymphocytes from these patients had increased oxygen consumption rates and glycolytic rates. Several cytokines and chemokines including Interferon-gamma (IFN-ɣ), tumor necrosis factor alpha (TNF-ɑ), Interleukin-6 (IL-6), Interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) levels were significantly elevated in the plasma of patients with IC/BPS. However, Transforming growth factor (TGF-β) and Interleukin-10 (IL-10) levels were significantly decreased in IC/BPS patients compared to HS. In addition, Interferon gamma (IFN-ɣ), TNF-ɑ, IL-8, and TGF-β levels correlated with several bioenergetic parameters in monocytes or lymphocytes from healthy subjects. In contrast, TNF-ɑ and IL-8 correlated with bioenergetic parameters in monocytes from IC/BPS patients. Monocyte and lymphocyte cellular bioenergetics and plasma cytokine levels are different in patients with IC/PBS compared to HS. It appears that systemic inflammation is greater in this cohort which may negatively impact immune cell function. The relationship between cellular bioenergetics and inflammation in monocytes and lymphocytes could be important in understanding the pathogenesis of IC/PBS and warrants further investigation.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Robert A. Oster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Dean G. Assimos
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Timothy J. Ness
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
2
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
3
|
Sibiya NP, Kayitesi E, Moteetee AN. Proximate Analyses and Amino Acid Composition of Selected Wild Indigenous Fruits of Southern Africa. PLANTS (BASEL, SWITZERLAND) 2021; 10:721. [PMID: 33917651 PMCID: PMC8068051 DOI: 10.3390/plants10040721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022]
Abstract
A literature survey revealed that several wild indigenous Southern African fruits had previously not been evaluated for their proximate and amino acid composition, as well as the total energy value (caloric value). Fourteen species including Carissa macrocarpa, Carpobrotus edulis, Dovyalis caffra, Halleria lucida, Manilkara mochisia, Pappea capensis, Phoenix reclinata, and Syzygium guineense were analyzed in this study. The nutritional values for several species such as C. edulis, H. lucida, P. reclinata, and M. mochisia are being reported here for the first time. The following fruits had the highest proximate values: C. macrocarpa (ash at 20.42 mg/100 g), S. guineense (fat at 7.75 mg/100 g), P. reclinata (fiber at 29.89 mg/100 g), and H. lucida (protein at 6.98 mg/100 g and carbohydrates at 36.98 mg/100 g). Essential amino acids such as histidine, isoleucine, lysine, methionine, phenylalanine, tryptophan, and valine were reported in all studied indigenous fruits. The high protein content in H. lucida was exhibited by the highest amino acid quantities for histidine. However, the fruits are a poor source of proteins since the content is lower than the recommended daily intake. The jacket-plum (Pappea capensis), on the other hand, meets and exceeds the required daily intake of lysine (0.0003 g/100 g or 13 mg/kg) recommended by the World Health Organization.
Collapse
Affiliation(s)
- Nozipho P. Sibiya
- Department of Botany and Plant Biotechnology, APK Campus, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa;
| | - Eugenie Kayitesi
- Department of Biotechnology and Food Technology, DFC Campus, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Annah N. Moteetee
- Department of Botany and Plant Biotechnology, APK Campus, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa;
| |
Collapse
|
4
|
Mohamed SA, Aldeaf SA, Elhassan R, Hussein A, Gassoum A, Abdrabo AEA. Association of SCN1A Mutations with Epilepsy among Sudanese Patients. NEUROSCIENCE AND MEDICINE 2021; 12:90-102. [DOI: 10.4236/nm.2021.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Mohammadi L, Khavasi HR. Anthracene-Tagged UiO-67-MOF as Highly Selective Aqueous Sensor for Nanoscale Detection of Arginine Amino Acid. Inorg Chem 2020; 59:13091-13097. [PMID: 32869635 DOI: 10.1021/acs.inorgchem.0c01045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present paper, new functionalized UiO-67 metal-organic frameworks (MOF) which contain aromatic tagged groups such as phenyl, naphthyl, and anthracene have been synthesized, characterized, and used for sensing water-soluble amino acids. The results show that anthracene-tagged UiO-67-MOF is shown to act as a highly efficient and selective aqueous sensor for arginine over other water-soluble amino acids in nanoscale. Upon adding an increasing amount of arginine, PL bands of the anth-UiO-67 MOF quenched completely, while there is no perturbation in the PL bands for other amino acid observed. This MOF allows a selective ratiometric detection of arginine without any interference from other amino acids.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| | - Hamid Reza Khavasi
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| |
Collapse
|
6
|
Osei-Bordom D, Bozward AG, Oo YH. The hepatic microenvironment and regulatory T cells. Cell Immunol 2020; 357:104195. [PMID: 32861844 DOI: 10.1016/j.cellimm.2020.104195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The human liver is regarded as a lymphoid organ that contributes to both local and systemic immune response. Intrahepatic immune cells including regulatory T cells (Tregs) reside in the hepatic microenvironment which is enriched with proinflammatory cytokines, chemokines and metabolites. In addition, the hepatic microenvironment has the unique ability to establish and maintain immune tolerance despite the continuous influx of the gut derived microbial products via the portal vein. Regulatory T cells play a crucial role in maintaining the hepatic tolerogenic state; however, the phenotypic stability, function and survival of Tregs in the inflamed liver microenvironment is still poorly understood. Despite this, Tregs immunotherapy remains as an appealing therapeutic option in autoimmune and immune mediated liver diseases. In order to advance cell therapy, it is important for us to further our understanding of the hepatic microenvironment, with the aim of developing ways to modify the hostile, inflamed environment to one which is more favourable. By doing so, T cell stability and function would be enhanced, resulting in improved clinical outcomes.
Collapse
Affiliation(s)
- Daniel Osei-Bordom
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom; Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, United Kingdom
| | - Amber G Bozward
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom
| | - Ye Htun Oo
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom; Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, United Kingdom.
| |
Collapse
|
7
|
Chakraborty D, Pati S, Bose S, Dhar S, Dutta S, Sa G. Cancer immunotherapy: present scenarios and the future of immunotherapy. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
8
|
Tang CY, Mauro C. Similarities in the Metabolic Reprogramming of Immune System and Endothelium. Front Immunol 2017; 8:837. [PMID: 28785263 PMCID: PMC5519526 DOI: 10.3389/fimmu.2017.00837] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Cellular metabolism has been known for its role in bioenergetics. In recent years, much light has been shed on the reprogrammable cellular metabolism underlying many vital cellular processes, such as cell activation, proliferation, and differentiation. Metabolic reprogramming in immune and endothelial cells (ECs) is being studied extensively. These cell compartments are implicated in inflammation and pathogenesis of many diseases but their similarities in metabolic reprogramming have not been analyzed in detail. One of the most notable metabolic reprogramming is the Warburg-like effect, famously described as one of the hallmarks of cancer cells. Immune cells and ECs can display this phenotype that is characterized by a metabolic switch favoring glycolysis over oxidative phosphorylation (OXPHOS) in aerobic conditions. Though energy-inefficient, aerobic glycolysis confers many benefits to the respiring cells ranging from higher rate of adenosine triphosphate production to maintaining redox homeostasis. Chemical and biological regulators either promote or perturb this effect. In this review, nitric oxide, hypoxia-inducible factor, and adenosine monophosphate-activated protein kinase have been discussed for their common involvement in metabolic reprogramming of both systems. From in vitro and animal studies, various discrepancies exist regarding the effects of those regulators on metabolic switch. However, it is generally accepted that glycolysis favors inflammatory reactions while OXPHOS favors anti-inflammatory processes. The reasons for such observation are currently subject of intense studies and not completely understood. Finally, metabolic reprogramming in immune cells and ECs does not limit to the physiological state in health but can also be observed in pathological states, such as atherosclerosis and cancer. These new insights provide us with a better understanding of the similarities in metabolic reprogramming across a number of cell types, which could pave the way for future research and possible metabolic-based therapeutics.
Collapse
Affiliation(s)
- Chu-Yik Tang
- Barts and The London School of Medicine and Dentistry, Institute of Health Sciences Education, Queen Mary University of London, London, United Kingdom
| | - Claudio Mauro
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Aounallah M, Dagenais-Lussier X, El-Far M, Mehraj V, Jenabian MA, Routy JP, van Grevenynghe J. Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects. Cytokine Growth Factor Rev 2016; 28:1-10. [PMID: 26851985 DOI: 10.1016/j.cytogfr.2016.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/01/2016] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
HIV-1 infection leads to a depletion of CD4 T-cells associated with a persistent immune inflammation and changes in cellular metabolism. Most effort of managing HIV infection with combination of antiretroviral therapies (ART) has been focused on CD4 T-cell recovery, while control of persistent immune inflammation and metabolism were relatively underappreciated in the past. Recent discoveries on the interplay between innate immunity, inflammation (especially the inflammasome) and metabolic changes in the context of cancer and autoimmunity provide an emerging field for chronic viral infections including HIV-1. In a previous review, we described the deregulated metabolism contributing to immune dysfunctions such as alteration of memory T-cell responses, mucosal protection, and dendritic cell-related antigen presentation. Here, we summarize the latest knowledge on the detrimental influence of long-lasting inflammation and inflammasome activation induced by HIV-1, gut dysbiosis, and bacterial translocation, on metabolism during the course of viral infection. We also report on the inability of ART to fully counteract inflammation, resulting in partial metabolic improvement and leading to an insufficient decrease in the risk of non-AIDS events. Further advances in our understanding of the relationship between inflammation, altered metabolism, and long-term ART is warranted. Additionally, there is a critical need for developing new strategies to regulate the pro-inflammatory signals to enhance cellular metabolism and immune functions in order to improve the quality of life of individuals living with HIV-1.
Collapse
Affiliation(s)
- Mouna Aounallah
- INRS-Institut Armand Frappier, Laval, Quebec H7V 1B7, Canada
| | | | | | - Vikram Mehraj
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | |
Collapse
|