1
|
Sacharczuk M, Mickael ME, Kubick N, Kamińska A, Horbańczuk JO, Atanasov AG, Religa P, Ławiński M. The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS. Curr Issues Mol Biol 2024; 46:7846-7861. [PMID: 39194682 DOI: 10.3390/cimb46080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Agnieszka Kamińska
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Piotr Religa
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
2
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
3
|
Simonson AW, Zeppa JJ, Bucsan AN, Chao MC, Pokkali S, Hopkins F, Chase MR, Vickers AJ, Sutton MS, Winchell CG, Myers AJ, Ameel CL, Kelly R, Krouse B, Hood LE, Li J, Lehman CC, Kamath M, Tomko J, Rodgers MA, Donlan R, Chishti H, Jacob Borish H, Klein E, Scanga CA, Fortune S, Lin PL, Maiello P, Roederer M, Darrah PA, Seder RA, Flynn JL. CD4 T cells and CD8α+ lymphocytes are necessary for intravenous BCG-induced protection against tuberculosis in macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594183. [PMID: 38798646 PMCID: PMC11118459 DOI: 10.1101/2024.05.14.594183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tuberculosis (TB) is a major cause of morbidity and mortality worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the route and dose of BCG vaccination from 5×105 CFU ID to 5×107 CFU intravenous (IV) resulted in prevention of infection and disease in a rigorous, highly susceptible non-human primate model of TB. Identifying the immune mechanisms of protection for IV BCG will facilitate development of more effective vaccines against TB. Here, we depleted select lymphocyte subsets in IV BCG vaccinated macaques prior to Mtb challenge to determine the cell types necessary for that protection. Depletion of CD4 T cells or all CD8α expressing lymphoycytes (both innate and adaptive) resulted in loss of protection in most macaques, concomitant with increased bacterial burdens (~4-5 log10 thoracic CFU) and dissemination of infection. In contrast, depletion of only adaptive CD8αβ+ T cells did not significantly reduce protection against disease. Our results demonstrate that CD4 T cells and innate CD8α+ lymphocytes are critical for IV BCG-induced protection, supporting investigation of how eliciting these cells and their functions can improve future TB vaccines.
Collapse
Affiliation(s)
- Andrew W. Simonson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Joseph J. Zeppa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Allison N. Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Michael C. Chao
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Supriya Pokkali
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Forrest Hopkins
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Michael R. Chase
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Andrew J. Vickers
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Matthew S. Sutton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Amy J. Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Ryan Kelly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Ben Krouse
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Luke E. Hood
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Jiaxiang Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Chelsea C. Lehman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Rachel Donlan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Harris Chishti
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Animal Laboratory Resources, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Sarah Fortune
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Department of Pediatrics, Children’s Hospital of the University of Pittsburgh of UPMC; Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| |
Collapse
|
4
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
5
|
Makatsa MS, Omondi FMA, Bunjun R, Wilkinson RJ, Riou C, Burgers WA. Characterization of Mycobacterium tuberculosis-Specific Th22 Cells and the Effect of Tuberculosis Disease and HIV Coinfection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:446-455. [PMID: 35777848 PMCID: PMC9339498 DOI: 10.4049/jimmunol.2200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
The development of a highly effective tuberculosis (TB) vaccine is likely dependent on our understanding of what constitutes a protective immune response to TB. Accumulating evidence suggests that CD4+ T cells producing IL-22, a distinct subset termed "Th22" cells, may contribute to protective immunity to TB. Thus, we characterized Mycobacterium tuberculosis-specific Th22 (and Th1 and Th17) cells in 72 people with latent TB infection or TB disease, with and without HIV-1 infection. We investigated the functional properties (IFN-γ, IL-22, and IL-17 production), memory differentiation (CD45RA, CD27, and CCR7), and activation profile (HLA-DR) of M. tuberculosis-specific CD4+ T cells. In HIV-uninfected individuals with latent TB infection, we detected abundant circulating IFN-γ-producing CD4+ T cells (median, 0.93%) and IL-22-producing CD4+ T cells (median, 0.46%) in response to M. tuberculosis The frequency of IL-17-producing CD4+ T cells was much lower, at a median of 0.06%. Consistent with previous studies, IL-22 was produced by a distinct subset of CD4+ T cells and not coexpressed with IL-17. M. tuberculosis-specific IL-22 responses were markedly reduced (median, 0.08%) in individuals with TB disease and HIV coinfection compared with IFN-γ responses. M. tuberculosis-specific Th22 cells exhibited a distinct memory and activation phenotype compared with Th1 and Th17 cells. Furthermore, M. tuberculosis-specific IL-22 was produced by conventional CD4+ T cells that required TCR engagement. In conclusion, we confirm that Th22 cells are a component of the human immune response to TB. Depletion of M. tuberculosis-specific Th22 cells during HIV coinfection may contribute to increased risk of TB disease.
Collapse
Affiliation(s)
- Mohau S Makatsa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - F Millicent A Omondi
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rubina Bunjun
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Imperial College London, London, U.K.; and
- Francis Crick Institute Mill Hill laboratory, London, U.K
| | - Catherine Riou
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa;
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. ADVANCED THERAPEUTICS 2022; 5:2100193. [PMID: 36203881 PMCID: PMC9531895 DOI: 10.1002/adtp.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/10/2022]
Abstract
Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.
Collapse
Affiliation(s)
- Anirudh Gairola
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aaron Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Mitchell J, Kannourakis G. Does CD1a Expression Influence T Cell Function in Patients With Langerhans Cell Histiocytosis? Front Immunol 2021; 12:773598. [PMID: 34956202 PMCID: PMC8702800 DOI: 10.3389/fimmu.2021.773598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Langerhans cell histiocytosis lesions are characterized by CD1a+ myeloid lineage LCH cells and an inflammatory infiltrate of cytokines and immune cells, including T cells. T cells that recognize CD1a may be implicated in the pathology of many disease states including cancer and autoimmunity but have not been studied in the context of LCH despite the expression of CD1a by LCH cells. In this perspective article, we discuss the expression of CD1a by LCH cells, and we explore the potential for T cells that recognize CD1a to be involved in LCH pathogenesis.
Collapse
Affiliation(s)
- Jenée Mitchell
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
- *Correspondence: George Kannourakis,
| |
Collapse
|
8
|
Muruganandah V, Kupz A. Immune responses to bacterial lung infections and their implications for vaccination. Int Immunol 2021; 34:231-248. [PMID: 34850883 DOI: 10.1093/intimm/dxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/28/2021] [Indexed: 11/14/2022] Open
Abstract
The pulmonary immune system plays a vital role in protecting the delicate structures of gaseous exchange against invasion from bacterial pathogens. With antimicrobial resistance becoming an increasing concern, finding novel strategies to develop vaccines against bacterial lung diseases remains a top priority. In order to do so, a continued expansion of our understanding of the pulmonary immune response is warranted. Whilst some aspects are well characterised, emerging paradigms such as the importance of innate cells and inducible immune structures in mediating protection provide avenues of potential to rethink our approach to vaccine development. In this review, we aim to provide a broad overview of both the innate and adaptive immune mechanisms in place to protect the pulmonary tissue from invading bacterial organisms. We use specific examples from several infection models and human studies to depict the varying functions of the pulmonary immune system that may be manipulated in future vaccine development. Particular emphasis has been placed on emerging themes that are less reviewed and underappreciated in vaccine development studies.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
9
|
Ets1 Promotes the Differentiation of Post-Selected iNKT Cells through Regulation of the Expression of Vα14Jα18 T Cell Receptor and PLZF. Int J Mol Sci 2021; 22:ijms222212199. [PMID: 34830080 PMCID: PMC8621504 DOI: 10.3390/ijms222212199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Ets1 is essential for the development/differentiation of invariant Natural Killer T (iNKT) cells at multiple stages. However, its mechanisms of action and target genes in iNKT cells are still elusive. Here, we show that Ets1 is required for the optimal expression of the Vα14Jα18 T cell receptor (TCR) in post-selected thymic iNKT cells and their immediate differentiation. Ets1 is also critical for maintaining the peripheral homeostasis of iNKT cells, which is a role independent of the expression of the Vα14Jα18 TCR. Genome-wide transcriptomic analyses of post-selected iNKT cells further reveal that Ets1 controls leukocytes activation, proliferation differentiation, and leukocyte-mediated immunity. In addition, Ets1 regulates the expression of ICOS and PLZF in iNKT cells. More importantly, restoring the expression of PLZF and the Vα14Jα18 TCR partially rescues the differentiation of iNKT cells in the absence of Ets1. Taken together, our results establish a detailed molecular picture of how Ets1 regulates the stepwise differentiation of iNKT cells.
Collapse
|
10
|
Robertson H, Li J, Kim HJ, Rhodes JW, Harman AN, Patrick E, Rogers NM. Transcriptomic Analysis Identifies A Tolerogenic Dendritic Cell Signature. Front Immunol 2021; 12:733231. [PMID: 34745103 PMCID: PMC8564488 DOI: 10.3389/fimmu.2021.733231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DC) are central to regulating innate and adaptive immune responses. Strategies that modify DC function provide new therapeutic opportunities in autoimmune diseases and transplantation. Current pharmacological approaches can alter DC phenotype to induce tolerogenic DC (tolDC), a maturation-resistant DC subset capable of directing a regulatory immune response that are being explored in current clinical trials. The classical phenotypic characterization of tolDC is limited to cell-surface marker expression and anti-inflammatory cytokine production, although these are not specific. TolDC may be better defined using gene signatures, but there is no consensus definition regarding genotypic markers. We address this shortcoming by analyzing available transcriptomic data to yield an independent set of differentially expressed genes that characterize human tolDC. We validate this transcriptomic signature and also explore gene differences according to the method of tolDC generation. As well as establishing a novel characterization of tolDC, we interrogated its translational utility in vivo, demonstrating this geneset was enriched in the liver, a known tolerogenic organ. Our gene signature will potentially provide greater understanding regarding transcriptional regulators of tolerance and allow researchers to standardize identification of tolDC used for cellular therapy in clinical trials.
Collapse
Affiliation(s)
- Harry Robertson
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Li
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.,Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW, Australia.,Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Wilson PA, Santos Franco S, He L, Galwey NW, Meakin J, McIntyre R, McHugh SM, Nolan MA, Spain SL, Carlson T, Lobera M, Rubio JP, Davis B, McCarthy LC. Transcriptomic effects of rs4845604, an IBD and allergy-associated RORC variant, in stimulated ex vivo CD4+ T cells. PLoS One 2021; 16:e0258316. [PMID: 34673799 PMCID: PMC8530322 DOI: 10.1371/journal.pone.0258316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
RORγt is an isoform of RORC, preferentially expressed in Th17 cells, that functions as a critical regulator of type 3 immunity. As murine Th17-driven inflammatory disease models were greatly diminished in RORC knock-out mice, this receptor was prioritised as an attractive therapeutic target for the treatment of several autoimmune diseases. Human genetic studies indicate a significant contributory role for RORC in several human disease conditions. Furthermore, genome-wide association studies (GWAS) report a significant association between inflammatory bowel disease (IBD) and the RORC regulatory variant rs4845604. To investigate if the rs4845604 variant may affect CD4+ T cell differentiation events, naïve CD4+ T cells were isolated from eighteen healthy subjects homozygous for the rs4845604 minor (A) or major (G) allele). Isolated cells from each subject were differentiated into distinct T cell lineages by culturing in either T cell maintenance medium or Th17 driving medium conditions for six days in the presence of an RORC inverse agonist (to prevent constitutive receptor activity) or an inactive diastereomer (control). Our proof of concept study indicated that genotype had no significant effect on the mean number of naïve CD4 T cells isolated, nor the frequency of Th1-like and Th17-like cells following six days of culture in any of the four culture conditions. Analysis of the derived RNA-seq count data identified genotype-driven transcriptional effects in each of the four culture conditions. Subsequent pathway enrichment analysis of these profiles reported perturbation of metabolic signalling networks, with the potential to affect the cellular detoxification response. This investigation reveals that rs4845604 genotype is associated with transcriptional effects in CD4+ T cells that may perturb immune and metabolic pathways. Most significantly, the rs4845604 GG, IBD risk associated, genotype may be associated with a differential detoxification response. This observation justifies further investigation in a larger cohort of both healthy and IBD-affected individuals.
Collapse
Affiliation(s)
- Paul A. Wilson
- Human Genetics, GlaxoSmithKline Medicine Research Centre, Stevenage, England
| | - Sara Santos Franco
- Clinical Unit Cambridge, Addenbrooke’s Centre for Clinical Investigation, GlaxoSmithKline, Cambridge, England
| | - Liu He
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Nicholas W. Galwey
- Research Statistics, GlaxoSmithKline Medicines Research Centre, Stevenage, England
| | - Jackie Meakin
- Functional Genomics, GlaxoSmithKline Medicines Research Centre, Stevenage, England
| | | | - Simon M. McHugh
- Clinical Unit Cambridge, Addenbrooke’s Centre for Clinical Investigation, GlaxoSmithKline, Cambridge, England
| | | | | | - Thaddeus Carlson
- Adaptive Immunity, GSK Pharma Research & Development, Cambridge, MA, United States of America
| | - Mercedes Lobera
- Adaptive Immunity, GSK Pharma Research & Development, Cambridge, MA, United States of America
| | - Justin P. Rubio
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Bill Davis
- Clinical Unit Cambridge, Addenbrooke’s Centre for Clinical Investigation, GlaxoSmithKline, Cambridge, England
| | - Linda C. McCarthy
- Human Genetics, GlaxoSmithKline Medicine Research Centre, Stevenage, England
- * E-mail:
| |
Collapse
|
12
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
13
|
Ingram Z, Madan S, Merchant J, Carter Z, Gordon Z, Carey G, Webb TJ. Targeting Natural Killer T Cells in Solid Malignancies. Cells 2021; 10:1329. [PMID: 34072042 PMCID: PMC8227159 DOI: 10.3390/cells10061329] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer T (NKT) cells are a unique subset of lymphocytes that recognize lipid antigens in the context of the non-classical class I MHC molecule, CD1d, and serve as a link between the innate and adaptive immune system through their expeditious release of cytokines. Whereas NKT have well-established roles in mitigating a number of human diseases, herein, we focus on their role in cancer. NKT cells have been shown to directly and indirectly mediate anti-tumor immunity and manipulating their effector functions can have therapeutic significances in treatment of cancer. In this review, we highlight several therapeutic strategies that have been used to harness the effector functions of NKT cells to target different types of solid tumors. We also discuss several barriers to the successful utilization of NKT cells and summarize effective strategies being developed to harness the unique strengths of this potent population of T cells. Collectively, studies investigating the therapeutic potential of NKT cells serve not only to advance our understanding of this powerful immune cell subset, but also pave the way for future treatments focused on the modulation of NKT cell responses to enhance cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tonya J. Webb
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Z.I.); (S.M.); (J.M.); (Z.C.); (Z.G.); (G.C.)
| |
Collapse
|
14
|
Abstract
Nonclonal innate immune responses mediated by germ line-encoded receptors, such as Toll-like receptors or natural killer receptors, are commonly contrasted with diverse, clonotypic adaptive responses of lymphocyte antigen receptors generated by somatic recombination. However, the Variable (V) regions of antigen receptors include germ line-encoded motifs unaltered by somatic recombination, and theoretically available to mediate nonclonal, innate responses, that are independent of or largely override clonotypic responses. Recent evidence demonstrates that such responses exist, underpinning the associations of particular γδ T cell receptors (TCRs) with specific anatomical sites. Thus, TCRγδ can make innate and adaptive responses with distinct functional outcomes. Given that αβ T cells and B cells can also make nonclonal responses, we consider that innate responses of antigen receptor V-regions may be more widespread, for example, inducing states of preparedness from which adaptive clones are better selected. We likewise consider that potent, nonclonal T cell responses to microbial superantigens may reflect subversion of physiologic innate responses of TCRα/β chains.
Collapse
Affiliation(s)
- Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College, London, SE1 9RT, United Kingdom; .,Immunosurveillance Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College, London, SE1 9RT, United Kingdom; .,Immunosurveillance Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| |
Collapse
|
15
|
Visvabharathy L, Genardi S, Cao L, He Y, Alonzo F, Berdyshev E, Wang CR. Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathog 2020; 16:e1008443. [PMID: 32343740 PMCID: PMC7188215 DOI: 10.1371/journal.ppat.1008443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus (SA) is the causative agent of both skin/soft tissue infections as well as invasive bloodstream infections. Though vaccines have been developed to target both humoral and T cell-mediated immune responses against SA, they have largely failed due to lack of protective efficacy. Group 1 CD1-restricted T cells recognize lipid rather than peptide antigens. Previously found to recognize lipids derived from cell wall of Mycobacterium tuberculosis (Mtb), these cells were associated with protection against Mtb infection in humans. Using a transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg), we demonstrate that group 1 CD1-restricted T cells can recognize SA-derived lipids in both immunization and infection settings. Systemic infection of hCD1Tg mice showed that SA-specific group 1 CD1-restricted T cell response peaked at 10 days post-infection, and hCD1Tg mice displayed significantly decreased kidney pathology at this time point compared with WT control mice. Immunodominant SA lipid antigens recognized by group 1 CD1-restricted T cells were comprised mainly of cardiolipin and phosphatidyl glycerol, with little contribution from lysyl-phosphatidyl glycerol which is a unique bacterial lipid not present in mammals. Group 1 CD1-restricted T cell lines specific for SA lipids also conferred protection against SA infection in the kidney after adoptive transfer. They were further able to effectively control SA replication in vitro through direct antigen presentation by group 1 CD1-expressing BMDCs. Together, our data demonstrate a previously unknown role for group 1 CD1-restricted SA lipid-specific T cells in the control of systemic MRSA infection.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Samantha Genardi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, United States of America
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| |
Collapse
|
16
|
Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics (Basel) 2020; 9:antibiotics9010021. [PMID: 31936156 PMCID: PMC7168302 DOI: 10.3390/antibiotics9010021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of mortality and morbidity, particularly in developing countries, presenting a major threat to the public health. The currently recommended long term treatment regimen with multiple antibiotics is associated with poor patient compliance, which in turn, may contribute to the emergence of multi-drug resistant TB (MDR-TB). The low global treatment efficacy of MDR-TB has highlighted the necessity to develop novel treatment options. Host-directed therapy (HDT) together with current standard anti-TB treatments, has gained considerable interest, as HDT targets novel host immune mechanisms. These immune mechanisms would otherwise bypass the antibiotic bactericidal targets to kill Mycobacterium tuberculosis (Mtb), which may be mutated to cause antibiotic resistance. Additionally, host-directed therapies against TB have been shown to be associated with reduced lung pathology and improved disease outcome, most likely via the modulation of host immune responses. This review will provide an update of host-directed therapies and their mechanism(s) of action against Mycobacterium tuberculosis.
Collapse
|
17
|
Herbert A. Contextual Cell Death in Adaptive Immunity: Selecting a Winning Response. Front Immunol 2019; 10:2898. [PMID: 31921159 PMCID: PMC6930443 DOI: 10.3389/fimmu.2019.02898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
Winning the game "Rock, Scissors, Paper" depends on what others do. There is no guarantee that one choice will always win. Does the adaptive immune system use the same intransitive logic to select winners? Here I propose that specialized receptor-ligand pairs, called clicks, initiate contextual cell death to select the best adaptive immune response to a particular challenge. The outcome depends heavily on the phenotypic plasticity of the immune system and upon cell assemblies built from different lineages. These assemblies are self-organizing and use clicks to determine the combination of cells best equipped to defeat a threat. The arrangement is highly adaptive and capable of rapid evolution. Opportunities exist to re-engineer click-based assemblies to produce novel therapeutics.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Inc., Charlestown, MA, United States
| |
Collapse
|
18
|
Zhou KL, Li X, Zhang XL, Pan Q. Mycobacterial mannose-capped lipoarabinomannan: a modulator bridging innate and adaptive immunity. Emerg Microbes Infect 2019; 8:1168-1177. [PMID: 31379262 PMCID: PMC6713153 DOI: 10.1080/22221751.2019.1649097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is a high molecular mass amphipathic lipoglycan identified in pathogenic Mycobacterium tuberculosis (M. tb) and M. bovis Bacillus Calmette-Guérin (BCG). ManLAM, serves as both an immunogen and a modulator of the host immune system, and its critical role in mycobacterial survival during infection has been well-characterized. ManLAM can be recognized by various types of receptors on both innate and adaptive immune cells, including macrophages, dendritic cells (DCs), neutrophils, natural killer T (NKT) cells, T cells and B cells. MamLAM has been shown to affect phagocytosis, cytokine production, antigen presentation, T cell activation and polarization, as well as antibody production. Exploring the mechanisms underlying the roles of ManLAM during mycobacterial infection will aid in improving tuberculosis (TB) prevention, diagnosis and treatment interventions. In this review, we highlight the interaction between ManLAM and receptors, intracellular signalling pathways triggered by ManLAM and its roles in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Kai-Liang Zhou
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China.,b The eighth hospital of Wuhan , Wuhan , People's Republic of China
| | - Xin Li
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Xiao-Lian Zhang
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Qin Pan
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| |
Collapse
|
19
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|
20
|
Taheri M, Danesh H, Bizhani F, Bahari G, Naderi M, Hashemi M. Association between genetic variants in CD1A and CD1D genes and pulmonary tuberculosis in an Iranian population. Biomed Rep 2019; 10:259-265. [PMID: 30972222 DOI: 10.3892/br.2019.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)1 molecules are a highly conserved family of MCH-like transmembrane glycoproteins that bind lipid and glycolipid antigens and present a diverse range of microbial and self-glycolipids to antigen-specific T cells. The current study aimed to find out the impact of CD1A and CD1D polymorphisms on pulmonary tuberculosis (PTB). This case-control study encompassed 172 PTB patients and 180 healthy subjects. Genotyping of CD1A and CD1D variants was achieved using the polymerase chain reaction restriction fragment length polymorphism method. The results revealed that CD1A rs411089 variant significantly increased the risk of PTB in recessive model [odds ratio (OR)=2.71, 95% confidence interval (CI)=1.38-5.57, CC vs. TT+TC, P=0.005]. CD1D rs859009 polymorphism significantly reduced the risk of PTB in heterozygous codominant (OR=0.50, 95% CI=0.29-0.86, P=0.011, GC vs. GG) and dominant (OR=0.53, 95% CI=0.31-0.88, P=0.019, GC+CC vs. GG) inheritance model. The CD1A rs366316, CD1D rs973742 and CD1D rs859010 were not associated with the risk/protection from PTB (P>0.05). The results of the present study suggest that CD1A rs411089 and CD1D rs859009 but not CD1A rs366316, CD1D rs973742 and CD1D rs859010 polymorphisms are associated with PTB in a sample of the Iranian population. Further investigation with different ethnicities and larger sample sizes are necessary to certify the findings of the present study.
Collapse
Affiliation(s)
- Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Hiva Danesh
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Fatemeh Bizhani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Naderi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Hashemi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| |
Collapse
|
21
|
Shang S, Kats D, Cao L, Morgun E, Velluto D, He Y, Xu Q, Wang CR, Scott EA. Induction of Mycobacterium Tuberculosis Lipid-Specific T Cell Responses by Pulmonary Delivery of Mycolic Acid-Loaded Polymeric Micellar Nanocarriers. Front Immunol 2018; 9:2709. [PMID: 30538700 PMCID: PMC6277542 DOI: 10.3389/fimmu.2018.02709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
Mycolic acid (MA), a major lipid component of Mycobacterium tuberculosis (Mtb) cell wall, can be presented by the non-polymorphic antigen presenting molecule CD1b to T cells isolated from Mtb-infected individuals. These MA-specific CD1b-restricted T cells are cytotoxic, produce Th1 cytokines, and form memory populations, suggesting that MA can be explored as a potential subunit vaccine candidate for TB. However, the controlled elicitation of MA-specific T cell responses has been challenging due to difficulties in the targeted delivery of lipid antigens and a lack of suitable animal models. In this study, we generated MA-loaded micellar nanocarriers (MA-Mc) comprised of self-assembled poly(ethylene glycol)-bl-poly(propylene sulfide; PEG-PPS) copolymers conjugated to an acid sensitive fluorophore to enhance intracellular delivery of MA to phagocytic immune cells. Using humanized CD1 transgenic (hCD1Tg) mice, we found these nanobiomaterials to be endocytosed by bone marrow-derived dendritic cells (DCs) and localized to lysosomal compartments. Additionally, MA-Mc demonstrated superior efficacy over free MA in activating MA-specific TCR transgenic (DN1) T cells in vitro. Following intranasal immunization, MA-Mc were primarily taken up by alveolar macrophages and DCs in the lung and induced activation and proliferation of adoptively transferred DN1 T cells. Furthermore, intranasal immunization with MA-Mc induced MA-specific T cell responses in the lungs of hCD1Tg mice. Collectively, our data demonstrates that pulmonary delivery of MA via PEG-PPS micelles to DCs can elicit potent CD1b-restricted T cell responses both in vitro and in vivo and MA-Mc could be explored as subunit vaccines against Mtb infection.
Collapse
Affiliation(s)
- Shaobin Shang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Dina Kats
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Liang Cao
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Eva Morgun
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Diana Velluto
- Diabetes Research Institute and Cell Transplant Center, University of Miami School of Medicine, Miami, FL, United States
| | - Ying He
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Qichen Xu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| | - Evan A Scott
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Simpson Querrey Institute, Northwestern University, Chicago, IL, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| |
Collapse
|
22
|
Mitchell JM, Berzins SP, Kannourakis G. A potentially important role for T cells and regulatory T cells in Langerhans cell histiocytosis. Clin Immunol 2018; 194:19-25. [DOI: 10.1016/j.clim.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/27/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
|
23
|
Lertjuthaporn S, Khowawisetsut L, Keawvichit R, Polsrila K, Chuansumrit A, Chokephaibulkit K, Thitilertdecha P, Onlamoon N, Ansari AA, Pattanapanyasat K. Identification of changes in dendritic cell subsets that correlate with disease severity in dengue infection. PLoS One 2018; 13:e0200564. [PMID: 30001408 PMCID: PMC6042784 DOI: 10.1371/journal.pone.0200564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne viral disease in humans. DENV causes a spectrum of illness ranging from mild to potentially severe complications. Dendritic cells (DCs) play a critical role in initiating and regulating highly effective antiviral immune response that include linking innate and adaptive immune responses. This study was conducted to comparatively characterize in detail the relative proportion, phenotypic changes, and maturation profile of subsets of both myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in children with dengue fever (DF), dengue hemorrhagic fever (DHF) and for purposes of control healthy individuals. The mDCs (Lin-CD11c+CD123lo), the pDCs (Lin-CD11c-CD123+) and the double negative (DN) subset (Lin-/HLA-DR+/CD11c-CD123-) were analyzed by polychromatic flow cytometry. The data were first analyzed on blood samples collected from DENV-infected patients at various times post-infection. Results showed that the relative proportion of mDCs were significantly decreased which was associated with an increase in disease severity in samples from DENV-infected patients. While there was no significant difference in the relative proportion of pDCs between healthy and DENV-infected patients, there was a marked increase in the DN subset. Analysis of the kinetics of changes of pDCs showed that there was an increase but only during the early febrile phase. Additionally, samples from patients during acute disease showed marked decreases in the relative proportion of CD141+ and CD16+ mDC subsets that were the major mDC subsets in healthy individuals. In addition, there was a significant decrease in the level of CD33-expressing mDCs in DENV patients. While the pDCs showed an up-regulation of maturation profile during acute DENV infection, the mDCs showed an alteration of maturation status. This study suggests that different relative proportion and phenotypic changes as well as alteration of maturation profile of DC subsets may play a critical role in the dengue pathogenesis and disease outcome.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rassamon Keawvichit
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Korakot Polsrila
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattawat Onlamoon
- Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kovit Pattanapanyasat
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
24
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
25
|
Inhibition of endocytic lipid antigen presentation by common lipophilic environmental pollutants. Sci Rep 2017; 7:2085. [PMID: 28522830 PMCID: PMC5437007 DOI: 10.1038/s41598-017-02229-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental pollutants as non-heritable factors are now recognized as triggers for multiple human inflammatory diseases involving T cells. We postulated that lipid antigen presentation mediated by cluster of differentiation 1 (CD1) proteins for T cell activation is susceptible to lipophilic environmental pollutants. To test this notion, we determined whether the common lipophilic pollutants benzo[a]pyrene and diesel exhaust particles impact on the activation of lipid-specific T cells. Our results demonstrated that the expression of CD1a and CD1d proteins, and the activation of CD1a- and CD1d-restricted T cells were sensitively inhibited by benzo[a]pyrene even at the low concentrations detectable in exposed human populations. Similarly, diesel exhaust particles showed a marginal inhibitory effect. Using transcriptomic profiling, we discovered that the gene expression for regulating endocytic and lipid metabolic pathways was perturbed by benzo[a]pyrene. Imaging flow cytometry also showed that CD1a and CD1d proteins were retained in early and late endosomal compartments, respectively, supporting an impaired endocytic lipid antigen presentation for T cell activation upon benzo[a]pyrene exposure. This work conceptually demonstrates that lipid antigen presentation for T cell activation is inhibited by lipophilic pollutants through profound interference with gene expression and endocytic function, likely further disrupting regulatory cytokine secretion and ultimately exacerbating inflammatory diseases.
Collapse
|
26
|
Bian Y, Shang S, Siddiqui S, Zhao J, Joosten SA, Ottenhoff THM, Cantor H, Wang CR. MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog 2017; 13:e1006384. [PMID: 28475642 PMCID: PMC5435364 DOI: 10.1371/journal.ppat.1006384] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
A number of nonclassical MHC Ib molecules recognizing distinct microbial antigens have been implicated in the immune response to Mycobacterium tuberculosis (Mtb). HLA-E has been identified to present numerous Mtb peptides to CD8+ T cells, with multiple HLA-E-restricted cytotoxic T lymphocyte (CTL) and regulatory T cell lines isolated from patients with active and latent tuberculosis (TB). In other disease models, HLA-E and its mouse homolog Qa-1 can act as antigen presenting molecules as well as regulators of the immune response. However, it is unclear what precise role(s) HLA-E/Qa-1 play in the immune response to Mtb. In this study, we found that murine Qa-1 can bind and present Mtb peptide antigens to CD8+ T effector cells during aerosol Mtb infection. Further, mice lacking Qa-1 (Qa-1-/-) were more susceptible to high-dose Mtb infection compared to wild-type controls, with higher bacterial burdens and increased mortality. The increased susceptibility of Qa-1-/- mice was associated with dysregulated T cells that were more activated and produced higher levels of pro-inflammatory cytokines. T cells from Qa-1-/- mice also had increased expression of inhibitory and apoptosis-associated cell surface markers such as CD94/NKG2A, KLRG1, PD-1, Fas-L, and CTLA-4. As such, they were more prone to cell death and had decreased capacity in promoting the killing of Mtb in infected macrophages. Lastly, comparing the immune responses of Qa-1 mutant knock-in mice deficient in either Qa-1-restricted CD8+ Tregs (Qa-1 D227K) or the inhibitory Qa-1-CD94/NKG2A interaction (Qa-1 R72A) with Qa-1-/- and wild-type controls indicated that both of these Qa-1-mediated mechanisms were involved in suppression of the immune response in Mtb infection. Our findings reveal that Qa-1 participates in the immune response to Mtb infection by presenting peptide antigens as well as regulating immune responses, resulting in more effective anti-Mtb immunity. The disease tuberculosis (TB) is caused by the microbe Mycobacterium tuberculosis (Mtb), and remains a major public health concern. More research is needed to understand the diverse immune responses against Mtb to develop better vaccines. Mouse Qa-1 and its human counterpart HLA-E are nonclassical MHC I molecules that can activate or inhibit immune responses in a variety of diseases. However, their role during the immune response to Mtb remains unknown. We found that Qa-1 can present Mtb peptides to activate CD8+ T effector cells during aerosol Mtb infection. Further, Mtb-infected mice that lacked Qa-1 (Qa-1-/-) had higher numbers of bacteria and died more often than infected mice that expressed Qa-1 (Qa-1+/+). The lack of Qa-1 results in over-activation of the immune response upon infection, which is less efficient in controlling Mtb. Using mice expressing different mutant forms of Qa-1, we showed that Qa-1 can regulate immune responses against Mtb through the interaction with inhibitory CD94/NKG2A receptors as well as the activation of regulatory CD8+ T cells. We believe our study sheds light on the diverse mechanisms at play in generating protective immune responses against Mtb and will inform future mouse and human studies.
Collapse
Affiliation(s)
- Yao Bian
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Shaobin Shang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Sarah Siddiqui
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Jie Zhao
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School Boston, Massachusetts, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody DB, Gudjonsson JE, Wang CR. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest 2017; 127:2339-2352. [PMID: 28463230 DOI: 10.1172/jci92217] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
A large proportion of human T cells are autoreactive to group 1 CD1 proteins, which include CD1a, CD1b, and CD1c. However, the physiological role of the CD1 proteins remains poorly defined. Here, we have generated a double-transgenic mouse model that expresses human CD1b and CD1c molecules (hCD1Tg) as well as a CD1b-autoreactive TCR (HJ1Tg) in the ApoE-deficient background (hCD1Tg HJ1Tg Apoe-/- mice) to determine the role of CD1-autoreactive T cells in hyperlipidemia-associated inflammatory diseases. We found that hCD1Tg HJ1Tg Apoe-/- mice spontaneously developed psoriasiform skin inflammation characterized by T cell and neutrophil infiltration and a Th17-biased cytokine response. Anti-IL-17A treatment ameliorated skin inflammation in vivo. Additionally, phospholipids and cholesterol preferentially accumulated in diseased skin and these autoantigens directly activated CD1b-autoreactive HJ1 T cells. Furthermore, hyperlipidemic serum enhanced IL-6 secretion by CD1b+ DCs and increased IL-17A production by HJ1 T cells. In psoriatic patients, the frequency of CD1b-autoreactive T cells was increased compared with that in healthy controls. Thus, this study has demonstrated the pathogenic role of CD1b-autoreactive T cells under hyperlipidemic conditions in a mouse model of spontaneous skin inflammation. As a large proportion of psoriatic patients are dyslipidemic, this finding is of clinical significance and indicates that self-lipid-reactive T cells might serve as a possible link between hyperlipidemia and psoriasis.
Collapse
Affiliation(s)
- Sreya Bagchi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hong Zhang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ildiko Van Rhijn
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Infectious Diseases and Immunology, School of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - D Branch Moody
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
28
|
|
29
|
Effects of Invariant NKT Cells on Parasite Infections and Hygiene Hypothesis. J Immunol Res 2016; 2016:2395645. [PMID: 27563682 PMCID: PMC4987483 DOI: 10.1155/2016/2395645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are unique subset of innate-like T cells recognizing glycolipids. iNKT cells can rapidly produce copious amounts of cytokines upon antigen stimulation and exert potent immunomodulatory activities for a wide variety of immune responses and diseases. We have revealed the regulatory effect of iNKT cells on autoimmunity with a serial of publications. On the other hand, the role of iNKT cells in parasitic infections, especially in recently attractive topic “hygiene hypothesis,” has not been clearly defined yet. Bacterial and parasitic cell wall is a cellular structure highly enriched in a variety of glycolipids and lipoproteins, some of which may serve as natural ligands of iNKT cells. In this review, we mainly summarized the recent findings on the roles and underlying mechanisms of iNKT cells in parasite infections and their cross-talk with Th1, Th2, Th17, Treg, and innate lymphoid cells. In most cases, iNKT cells exert regulatory or direct cytotoxic roles to protect hosts against parasite infections. We put particular emphasis as well on the identification of the natural ligands from parasites and the involvement of iNKT cells in the hygiene hypothesis.
Collapse
|
30
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
31
|
Haeryfar SMM, Mallevaey T. Editorial: CD1- and MR1-Restricted T Cells in Antimicrobial Immunity. Front Immunol 2015; 6:611. [PMID: 26697007 PMCID: PMC4666986 DOI: 10.3389/fimmu.2015.00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Affiliation(s)
- S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Division of Clinical Immunology and Allergy, Department of Medicine, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
32
|
Markikou-Ouni W, Drini S, Bahi-Jaber N, Chenik M, Meddeb-Garnaoui A. Immunomodulatory Effects of Four Leishmania infantum Potentially Excreted/Secreted Proteins on Human Dendritic Cells Differentiation and Maturation. PLoS One 2015; 10:e0143063. [PMID: 26581100 PMCID: PMC4651425 DOI: 10.1371/journal.pone.0143063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022] Open
Abstract
Leishmania parasites and some molecules they secrete are known to modulate innate immune responses through effects on dendritic cells (DCs) and macrophages. Here, we characterized four Leishmania infantum potentially excreted/secreted recombinant proteins (LipESP) identified in our laboratory: Elongation Factor 1 alpha (LiEF-1α), a proteasome regulatory ATPase (LiAAA-ATPase) and two novel proteins with unknown functions, which we termed LiP15 and LiP23, by investigating their effect on in vitro differentiation and maturation of human DCs and on cytokine production by DCs and monocytes. During DCs differentiation, LipESP led to a significant decrease in CD1a. LiP23 and LiEF-1α, induced a decrease of HLA-DR and an increase of CD86 surface expression, respectively. During maturation, an up-regulation of HLA-DR and CD80 was found in response to LiP15, LiP23 and LiAAA-ATPase, while an increase of CD40 expression was only observed in response to LiP15. All LipESP induced an over-expression of CD86 with significant differences between proteins. These proteins also induced significant IL-12p70 levels in immature DCs but not in monocytes. The LipESP-induced IL-12p70 production was significantly enhanced by a co-treatment with IFN-γ in both cell populations. TNF-α and IL-10 were induced in DCs and monocytes with higher levels observed for LiP15 and LiAAA-ATPase. However, LPS-induced cytokine production during DC maturation or in monocyte cultures was significantly down regulated by LipESP co-treatment. Our findings suggest that LipESP strongly interfere with DCs differentiation suggesting a possible involvement in mechanisms established by the parasite for its survival. These proteins also induce DCs maturation by up-regulating several costimulatory molecules and by inducing the production of proinflammatory cytokines, which is a prerequisite for T cell activation. However, the reduced ability of LipESP-stimulated DCs and monocytes to respond to lipopolysaccharide (LPS) that can be observed during human leishmaniasis, suggests that under certain circumstances LipESP may play a role in disease progression.
Collapse
Affiliation(s)
- Wafa Markikou-Ouni
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sima Drini
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- Unité de Parasitologie moléculaire et Signalisation, Institut Pasteur, Paris, France
| | - Narges Bahi-Jaber
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- UPSP EGEAL Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Mehdi Chenik
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Amel Meddeb-Garnaoui
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- * E-mail:
| |
Collapse
|