1
|
Boucher J, Gilbert C, Bose S, Tessier PA. S100A9: The Unusual Suspect Connecting Viral Infection and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1523-1529. [PMID: 38709994 PMCID: PMC11076006 DOI: 10.4049/jimmunol.2300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 05/08/2024]
Abstract
The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Philippe A. Tessier
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Möller A, Jauch-Speer SL, Gandhi S, Vogl T, Roth J, Fehler O. The roles of toll-like receptor 4, CD33, CD68, CD69, or CD147/EMMPRIN for monocyte activation by the DAMP S100A8/S100A9. Front Immunol 2023; 14:1110185. [PMID: 37056775 PMCID: PMC10086345 DOI: 10.3389/fimmu.2023.1110185] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The S100A8/A9 heterocomplex is an abundant damage-associated molecular pattern and mainly expressed by monocytes, inflammatory activated keratinocytes and neutrophilic granulocytes. The heterocomplex as well as the heterotetramer are involved in a variety of diseases and tumorous processes. However, their detailed mode of action and especially which receptors are involved hereby remains to be fully revealed. Several cell surface receptors are reported to interact with S100A8 and/or S100A9, the best studied being the pattern recognition receptor TLR4. RAGE, CD33, CD68, CD69, and CD147, all of them are involved as receptors in various inflammatory processes, are also among these putative binding partners for S100A8 and S100A9. Interactions between S100 proteins and these receptors described so far come from a wide variety of cell culture systems but their biological relevance in vivo for the inflammatory response of myeloid immune cells is not yet clear. In this study, we compared the effect of CRISPR/Cas9 mediated targeted deletion of CD33, CD68, CD69, and CD147 in ER-Hoxb8 monocytes on S100A8 or S100A9 induced cytokine release with TLR4 knockout monocytes. Whereas deletion of TLR4 abolished the S100-induced inflammatory response in monocyte stimulation experiments with both S100A8 and S100A9, knockouts of CD33, CD68, CD69, or CD147 revealed no effect on the cytokine response in monocytes. Thus, TLR4 is the dominant receptor for S100-triggered inflammatory activation of monocytes.
Collapse
|
3
|
Russo A, Schürmann H, Brandt M, Scholz K, Matos ALL, Grill D, Revenstorff J, Rembrink M, von Wulffen M, Fischer‐Riepe L, Hanley PJ, Häcker H, Prünster M, Sánchez‐Madrid F, Hermann S, Klotz L, Gerke V, Betz T, Vogl T, Roth J. Alarming and Calming: Opposing Roles of S100A8/S100A9 Dimers and Tetramers on Monocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201505. [PMID: 36310133 PMCID: PMC9798971 DOI: 10.1002/advs.202201505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/30/2022] [Indexed: 05/16/2023]
Abstract
Mechanisms keeping leukocytes distant of local inflammatory processes in a resting state despite systemic release of inflammatory triggers are a pivotal requirement for avoidance of overwhelming inflammation but are ill defined. Dimers of the alarmin S100A8/S100A9 activate Toll-like receptor-4 (TLR4) but extracellular calcium concentrations induce S100A8/S100A9-tetramers preventing TLR4-binding and limiting their inflammatory activity. So far, only antimicrobial functions of released S100A8/S100A9-tetramers (calprotectin) are described. It is demonstrated that extracellular S100A8/S100A9 tetramers significantly dampen monocyte dynamics as adhesion, migration, and traction force generation in vitro and immigration of monocytes in a cutaneous granuloma model and inflammatory activity in a model of irritant contact dermatitis in vivo. Interestingly, these effects are not mediated by the well-known binding of S100A8/S100A9-dimers to TLR-4 but specifically mediated by S100A8/S100A9-tetramer interaction with CD69. Thus, the quaternary structure of these S100-proteins determines distinct and even antagonistic effects mediated by different receptors. As S100A8/S100A9 are released primarily as dimers and subsequently associate to tetramers in the high extracellular calcium milieu, the same molecules promote inflammation locally (S100-dimer/TLR4) but simultaneously protect the wider environment from overwhelming inflammation (S100-tetramer/CD69).
Collapse
Affiliation(s)
- Antonella Russo
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
| | - Hendrik Schürmann
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Matthias Brandt
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Katja Scholz
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
| | - Anna Livia L. Matos
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - David Grill
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | | | | | | | | | - Peter J. Hanley
- Faculty of MedicineHMU Health and Medical University Potsdam14471PotsdamGermany
| | - Hans Häcker
- Department of PathologyDivision of Microbiology and ImmunologyUniversity of UtahSalt Lake CityUT84112USA
| | - Monika Prünster
- BioMedical CenterWalter‐Brendel‐Centre for Experimental MedicineLudwig‐Maximilians‐UniversityPlanegg‐Martinsried82152MunichGermany
| | - Francisco Sánchez‐Madrid
- Immunology ServiceHospital de la PrincesaUniversidad Autónoma de MadridInstituto Investigación Sanitaria PrincesaMadrid28006Spain
- Department of Vascular Biology and InflammationCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI)University of Münster48149MünsterGermany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Muenster48149MuensterGermany
| | - Volker Gerke
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Timo Betz
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
- Third Institute of Physics– BiophysicsGeorg August University Göttingen37077GöttingenGermany
| | - Thomas Vogl
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
| | - Johannes Roth
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
| |
Collapse
|
4
|
Ishizuka K, Fujii W, Azuma N, Mizobuchi H, Morimoto A, Sanjoba C, Matsumoto Y, Goto Y. Pathological roles of MRP14 in anemia and splenomegaly during experimental visceral leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008020. [PMID: 31961866 PMCID: PMC6994150 DOI: 10.1371/journal.pntd.0008020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/31/2020] [Accepted: 01/01/2020] [Indexed: 01/03/2023] Open
Abstract
Myeloid-related protein 14 (MRP14) belongs to the S100 calcium-binding protein family and is expressed in neutrophils and inflammatory macrophages. Increase in the number of MRP14+ cells or serum level of MRP14 is associated with various diseases such as autoimmune diseases and infectious diseases, suggesting the involvement of the molecule in pathogenesis of those diseases. In this study, to examine the pathological involvement of MRP14 during cutaneous and visceral leishmaniasis, wild-type (WT) and MRP14 knockout (MRP14KO) mice were infected with Leishmania major and L. donovani. Increase in the number of MRP14+ cells at the infection sites in wild-type mice was commonly found in the skin during L. major infection as well as the spleen and liver during L. donovani infection. In contrast, the influence of MRP14 to the pathology seemed different between the two infections. MRP14 depletion exacerbated the lesion development and ulcer formation in L. major infection. On the other hand, the depletion improved anemia and splenomegaly but not hepatomegaly at 24 weeks of L. donovani infection. These results suggest that, distinct from its protective role in CL, MRP14 is involved in exacerbation of some symptoms during VL.
Collapse
Affiliation(s)
- Kanna Ishizuka
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsuho Azuma
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruka Mizobuchi
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayako Morimoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
5
|
Rothe K, Raulien N, Köhler G, Pierer M, Quandt D, Wagner U. Autoimmune arthritis induces paired immunoglobulin-like receptor B expression on CD4 + T cells from SKG mice. Eur J Immunol 2017; 47:1457-1467. [PMID: 28664612 DOI: 10.1002/eji.201646747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 01/17/2023]
Abstract
The chronic, destructive autoimmune arthritis in SKG mice, which closely resembles human rheumatoid arthritis, is the result of self-reactive T cells escaping thymic deletion. Since the inhibitory receptor LIR-1 is up-regulated on auto-reactive T cells in human rheumatoid arthritis, the role of its murine ortholog PIR-B was investigated. Peripheral CD4+ T cells from SKG mice were found to frequently express PIR-B, and this population produces more frequently IL-17 upon in vitro stimulation compared to PIR-B- cells. A much larger fraction of PIR-B+ T cells, however, was found to secret no IL-17, but IFN-γ. With regards to the clinical course of the disease, high frequencies of PIR-B+ CD4+ T cells were found to be associated with a milder course of arthritis, suggesting that the net effect of PIR-B expression is suppression of autoreactive T cells. Our results indicate that overexpression of PIR-B on IL-17-producing SKG CD4+ T cells might represent an effective counter-regulatory mechanism against the destructive potential of those cells. More importantly, a major population of PIR-B+ T cells in SKG mice appears to play an inhibitory role by way of their IFN-γ production, since high frequencies of those cells ameliorate the disease.
Collapse
Affiliation(s)
- Kathrin Rothe
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| | - Nora Raulien
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| | | | - Matthias Pierer
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| | - Dagmar Quandt
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| | - Ulf Wagner
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Leipzig, Germany
| |
Collapse
|