1
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2024:1-21. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Mouat IC, Allanach JR, Fettig NM, Fan V, Girard AM, Shanina I, Osborne LC, Vorobeychik G, Horwitz MS. Gammaherpesvirus infection drives age-associated B cells toward pathogenicity in EAE and MS. SCIENCE ADVANCES 2022; 8:eade6844. [PMID: 36427301 PMCID: PMC9699667 DOI: 10.1126/sciadv.ade6844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
While age-associated B cells (ABCs) are known to expand and persist following viral infection and during autoimmunity, their interactions are yet to be studied together in these contexts. Here, we directly compared CD11c+T-bet+ ABCs using models of Epstein-Barr virus (EBV), gammaherpesvirus 68 (γHV68), multiple sclerosis (MS), and experimental autoimmune encephalomyelitis (EAE), and found that each drives the ABC population to opposing phenotypes. EBV infection has long been implicated in MS, and we have previously shown that latent γHV68 infection exacerbates EAE. Here, we demonstrate that ABCs are required for γHV68-enhanced disease. We then show that the circulating ABC population is expanded and phenotypically altered in people with relapsing MS. In this study, we show that viral infection and autoimmunity differentially affect the phenotype of ABCs in humans and mice, and we identify ABCs as functional mediators of viral-enhanced autoimmunity.
Collapse
Affiliation(s)
- Isobel C. Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica R. Allanach
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M. Fettig
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vina Fan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna M. Girard
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa C. Osborne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Galina Vorobeychik
- Fraser Health Multiple Sclerosis Clinic, Burnaby, British Columbia, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author.
| |
Collapse
|
3
|
Govindan AN, Fitzpatrick KS, Manoharan M, Tagge I, Kohama SG, Ferguson B, Peterson SM, Wong GS, Rooney WD, Park B, Axthelm MK, Bourdette DN, Sherman LS, Wong SW. Myelin-specific T cells in animals with Japanese macaque encephalomyelitis. Ann Clin Transl Neurol 2021; 8:456-470. [PMID: 33440071 PMCID: PMC7886046 DOI: 10.1002/acn3.51303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/24/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin‐specific T cells in their central nervous system (CNS) and periphery. Methods Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non‐JME conditions were analyzed for the presence of myelin‐specific T cells and changes in interleukin 17 (IL‐17) and interferon gamma (IFNγ) expression. Results Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T‐cell responses were absent in JME peripheral blood, and in age‐ and sex‐matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. Interpretations JME possesses an immune‐mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma‐herpesvirus infection.
Collapse
Affiliation(s)
- Aparna N Govindan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kristin S Fitzpatrick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Minsha Manoharan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Ian Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.,Montreal Neurological Institute, McGill University, Montreal, QC, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Grayson S Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Dennis N Bourdette
- Department of Neurology, Multiple Sclerosis Clinic, Oregon Health & Science University, Portland, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA.,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
4
|
Graf J, Mares J, Barnett M, Aktas O, Albrecht P, Zamvil SS, Hartung HP. Targeting B Cells to Modify MS, NMOSD, and MOGAD: Part 1. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e918. [PMID: 33406479 PMCID: PMC8063619 DOI: 10.1212/nxi.0000000000000918] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023]
Abstract
Ocrelizumab, rituximab, ofatumumab, ublituximab, inebilizumab, and evobrutinib are immunotherapies that target various B cell-related proteins. Most of these treatments have proven efficacy in relapsing and progressive forms of MS and neuromyelitis optica spectrum disease (NMOSD), or are in advanced stages of clinical development. Currently, ocrelizumab, ofatumumab, and inebilizumab are licensed for treatment of MS and NMOSD, respectively. This review focuses on the current state of knowledge about the role of B lymphocytes in immune-mediated pathophysiology and its implications for the mode of action. To understand the significance of this breakthrough in the context of the current MS therapeutic armamentarium, this review more closely examines the clinical development of CD20 depletion and the pioneering contribution of rituximab. Phase 3 and the recently published postmarketing studies will be highlighted to better understand the relevant efficacy data and safety aspects of long-term B-cell depletion.
Collapse
Affiliation(s)
- Jonas Graf
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Jan Mares
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Michael Barnett
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Orhan Aktas
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Philipp Albrecht
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Scott S Zamvil
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Hans-Peter Hartung
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco.
| |
Collapse
|
5
|
Márquez AC, Shanina I, Horwitz MS. Multiple Sclerosis-Like Symptoms in Mice Are Driven by Latent γHerpesvirus-68 Infected B Cells. Front Immunol 2020; 11:584297. [PMID: 33329556 PMCID: PMC7711133 DOI: 10.3389/fimmu.2020.584297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is caused by a combination of genetic and environmental factors. It is believed that previous infection with Epstein Barr Virus (EBV) plays an important role in the development of MS. Previously, we developed a murine model where latent infection with gamma herpesvirus 68 (γHV-68), a murine homolog to EBV, enhanced the symptoms of experimental autoimmune encephalomyelitis (EAE), resulting in disease that more closely resembles MS in humans. Here, we explored the conditions that were necessary for EAE enhancement. We showed that latently infected CD19+IgD− B cells were capable of enhancing EAE symptoms when transferred from mice previously infected with γHV-68 into uninfected mice. We also observed a prevention of enhancement when B cells were depleted before infection. However, depletion after the establishment of latency only partially reduced EAE. This indicated the existence of a mechanism where B cells play an important role as antigen presenting cells (APCs) prior to EAE induction for the priming of Th1 cells. It is possible that these signals persist even after B cell depletion, strongly suggesting a paracrine signaling modulation of non-B cell APCs. These results strongly support the concept that EBV contributes to the development of autoimmunity and highlights the need for a vaccine against EBV that could limit or prevent multiple sclerosis development.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Abstract
Ocrelizumab ist ein monoklonaler Antikörper, der sich gegen das Differenzierungsantigen CD20 richtet und zu einer effektiven längerfristigen Depletion von Lymphozyten, insbesondere von B‑Zellen, führt. Unlängst publizierte Phase-3-Studien belegen, dass Ocrelizumab sowohl bei der Behandlung der schubförmigen als auch der primär progressiven Multiplen Sklerose (MS) wirksam ist. Darauf basierend wurde Ocrelizumab als erstes Medikament zur Behandlung der primär chronisch-progredienten MS zugelassen. Um diesen Durchbruch besser in den Kontext des heutigen MS-Therapiekanons einordnen zu können, lohnt sowohl ein Blick zurück auf die Entwicklung der antikörpervermittelten CD20-Depletion als auch auf die der Zulassung zugrunde liegenden Studien sowie deren Extensionsphasen. Diese Übersichtsarbeit diskutiert die verfügbaren Daten zur Wirksamkeit und Sicherheit der langfristigen B‑Zell-Depletion bei MS-Patienten und erörtert den aktuellen Kenntnisstand zur Rolle von B‑Lymphozyten in der Immunpathogenese der MS.
Collapse
|
7
|
Soldan SS, Lieberman PM. Epstein-Barr Virus Infection in the Development of Neurological Disorders. ACTA ACUST UNITED AC 2020; 32:35-52. [PMID: 33897799 DOI: 10.1016/j.ddmod.2020.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epstein-Barr Virus (EBV) is a ubiquitous human herpesvirus that contributes to the etiology of diverse human cancers and auto-immune diseases. EBV establishes a relatively benign, long-term latent infection in over 90 percent of the adult population. Yet, it also increases risk for certain cancers and auto-immune disorders depending on complex viral, host, and environmental factors that are only partly understood. EBV latent infection is found predominantly in memory B-cells, but the natural infection cycle and pathological aberrations enable EBV to infect numerous other cell types, including oral, nasopharyngeal, and gastric epithelia, B-, T-, and NK-lymphoid cells, myocytes, adipocytes, astrocytes, and neurons. EBV infected cells, free virus, and gene products can also be found in the CNS. In addition to the direct effects of EBV on infected cells and tissue, the effect of chronic EBV infection on the immune system is also thought to contribute to pathogenesis, especially auto-immune disease. Here, we review properties of EBV infection that may shed light on its potential pathogenic role in neurological disorders.
Collapse
|
8
|
Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, Croze E, Aftab BT, Giovannoni G, Joshi MA. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med 2019; 26:296-310. [PMID: 31862243 PMCID: PMC7106557 DOI: 10.1016/j.molmed.2019.11.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
New treatments for multiple sclerosis (MS) focused on B cells have created an atmosphere of excitement in the MS community. B cells are now known to play a major role in disease, demonstrated by the highly impactful effect of a B cell-depleting antibody on controlling MS. The idea that a virus may play a role in the development of MS has a long history and is supported mostly by studies demonstrating a link between B cell-tropic Epstein–Barr virus (EBV) and disease onset. Efforts to develop antiviral strategies for treating MS are underway. Although gaps remain in our understanding of the etiology of MS, the role, if any, of viruses in propagating pathogenic immune responses deserves attention.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Pender
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Tap Maniar
- Clinical Development, Torque Therapeutics, Boston, MA, USA
| | - Ed Croze
- IRIS-Bay, San Francisco, CA, USA.
| | - Blake T Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University London, Barts and the London School of Medicine, London, UK
| | - Manher A Joshi
- Medical Affairs, Atara Biotherapeutics, South San Francisco, CA, USA
| |
Collapse
|
9
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
10
|
Yoshida H, Imaizumi T, Matsumiya T, Seya K, Kawaguchi S, Tanaka H. Gnetin C suppresses double-stranded RNA-induced C-C motif chemokine ligand 2 (CCL2) and CCL5 production by inhibiting Toll-like receptor 3 signaling pathway. Biomed Res 2018; 39:231-240. [PMID: 30333430 DOI: 10.2220/biomedres.39.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The innate immune system is a prerequisite for biophylactic ability, but its dysregulation can cause inflammatory and autoimmune diseases. To determine a safe method of controlling inflammatory reactions in the brain, we examined the effects of gnetin C, a natural resveratrol dimer, on C-C motif chemokine ligand 2 (CCL2) and CCL5 (pro-inflammatory chemokines) production observed after treatment with polyinosinic-polycytidylic acid [poly IC; a synthetic analog of dsRNA as a Toll-like receptor 3 (TRL3) ligand, 30 μg/mL] in cultured human astrocytoma U373MG and neuroblastoma SH-SY5Y cells. The addition of gnetin C (10 μM) to the media moderately reduced the CCL2 production and markedly suppressed CCL5 production in both cells. In the TLR3-interferon (IFN)-β-phosphorylated-STAT1 (signal transducer and activator of transcription protein 1)RIG-I (retinoic acid-inducible gene-I) pathway that mediates CCL2 and CCL5 production, gnetin C first inhibits IFN-β expression in SH-SY5Y cells and primarily inhibits STAT1 phosphorylation in U373MG cells. In any case, gnetin C attenuated the dsRNA-activated TLR3 signaling resulting in CCL2 and CCL5 production, thus, may be useful for controlling TLR3-mediated inflammation in the brain.
Collapse
Affiliation(s)
- Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine
| | - Kazuhiko Seya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine
| | - Shogo Kawaguchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine.,Department of School Health Science, Faculty of Education
| |
Collapse
|
11
|
Harley JB, Chen X, Pujato M, Miller D, Maddox A, Forney C, Magnusen AF, Lynch A, Chetal K, Yukawa M, Barski A, Salomonis N, Kaufman KM, Kottyan LC, Weirauch MT. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet 2018; 50:699-707. [PMID: 29662164 PMCID: PMC6022759 DOI: 10.1038/s41588-018-0102-3] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/31/2018] [Indexed: 01/10/2023]
Abstract
Explaining the genetics of many diseases is challenging because most associations localize to incompletely characterized regulatory regions. We show that transcription factors (TFs) occupy multiple loci of individual complex genetic disorders using novel computational methods. Application to 213 phenotypes and 1,544 TF binding datasets identifies 2,264 relationships between hundreds of TFs and 94 phenotypes, including AR in prostate cancer and GATA3 in breast cancer. Strikingly, nearly half of the systemic lupus erythematosus risk loci are occupied by the Epstein-Barr virus EBNA2 protein and many co-clustering human TFs, revealing gene-environment interaction. Similar EBNA2-anchored associations exist in multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, juvenile idiopathic arthritis, and celiac disease. Instances of allele-dependent DNA binding and downstream effects on gene expression at plausibly causal variants support genetic mechanisms dependent upon EBNA2. Our results nominate mechanisms that operate across risk loci within disease phenotypes, suggesting new paradigms for disease origins.
Collapse
Affiliation(s)
- John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA.
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario Pujato
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery Maddox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Albert F Magnusen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arthur Lynch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Masashi Yukawa
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Blomberg J, Gottfries CG, Elfaitouri A, Rizwan M, Rosén A. Infection Elicited Autoimmunity and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: An Explanatory Model. Front Immunol 2018; 9:229. [PMID: 29497420 PMCID: PMC5818468 DOI: 10.3389/fimmu.2018.00229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis (ME) often also called chronic fatigue syndrome (ME/CFS) is a common, debilitating, disease of unknown origin. Although a subject of controversy and a considerable scientific literature, we think that a solid understanding of ME/CFS pathogenesis is emerging. In this study, we compiled recent findings and placed them in the context of the clinical picture and natural history of the disease. A pattern emerged, giving rise to an explanatory model. ME/CFS often starts after or during an infection. A logical explanation is that the infection initiates an autoreactive process, which affects several functions, including brain and energy metabolism. According to our model for ME/CFS pathogenesis, patients with a genetic predisposition and dysbiosis experience a gradual development of B cell clones prone to autoreactivity. Under normal circumstances these B cell offsprings would have led to tolerance. Subsequent exogenous microbial exposition (triggering) can lead to comorbidities such as fibromyalgia, thyroid disorder, and orthostatic hypotension. A decisive infectious trigger may then lead to immunization against autoantigens involved in aerobic energy production and/or hormone receptors and ion channel proteins, producing postexertional malaise and ME/CFS, affecting both muscle and brain. In principle, cloning and sequencing of immunoglobulin variable domains could reveal the evolution of pathogenic clones. Although evidence consistent with the model accumulated in recent years, there are several missing links in it. Hopefully, the hypothesis generates testable propositions that can augment the understanding of the pathogenesis of ME/CFS.
Collapse
Affiliation(s)
- Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Clinical Microbiology, Academic Hospital, Uppsala, Sweden
| | | | - Amal Elfaitouri
- Department of Infectious Disease and Tropical Medicine, Faculty of Public Health, Benghazi University, Benghazi, Libya
| | - Muhammad Rizwan
- Department of Medical Sciences, Uppsala University, Clinical Microbiology, Academic Hospital, Uppsala, Sweden
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Lasaviciute G, Björkander S, Carvalho-Queiroz C, Hed Myrberg I, Nussbaum B, Nilsson C, Bemark M, Nilsson A, Sverremark-Ekström E, Saghafian-Hedengren S. Epstein-Barr Virus, but Not Cytomegalovirus, Latency Accelerates the Decay of Childhood Measles and Rubella Vaccine Responses-A 10-Year Follow-up of a Swedish Birth Cohort. Front Immunol 2017; 8:1865. [PMID: 29312344 PMCID: PMC5742589 DOI: 10.3389/fimmu.2017.01865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) and cytomegalovirus (CMV) are ubiquitous and persistent herpesviruses commonly acquired during childhood. Both viruses have a significant impact on the immune system, especially through mediating the establishment of cellular immunity, which keeps these viruses under control for life. Far less is known about how these viruses influence B-cell responses. OBJECTIVES To evaluate the impact of latent EBV and CMV infection on rubella- and measles-specific antibody responses as well as on the B-cell compartment in a prospective birth cohort followed during the first 10 years of life. METHODS IgG titers against rubella and measles vaccines were measured in plasma obtained from the same donors at 2, 5, and 10 years of age. Peripheral B-cell subsets were evaluated ex vivo at 2 and 5 years of age. Factors related to optimal B-cell responses including IL-21 and CXCL13 levels in plasma were measured at all-time points. RESULTS EBV carriage in the absence of CMV associated with an accelerated decline of rubella and measles-specific IgG levels (p = 0.003 and p = 0.019, respectively, linear mixed model analysis), while CMV carriage in the absence of EBV associated with delayed IgG decay over time for rubella (p = 0.034). At 5 years of age, EBV but not CMV latency associated with a lower percentage of plasmablasts, but higher IL-21 levels in the circulation. CONCLUSION Our findings suggest that EBV carriage in the absence of CMV influences the B-cell compartment and the dynamics of antibody responses over time during steady state in the otherwise healthy host.
Collapse
Affiliation(s)
- Gintare Lasaviciute
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Claudia Carvalho-Queiroz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ida Hed Myrberg
- Department of Women’s and Children’s Health, Childhood Cancer Research Unit, Astrid Lindgren Children’s Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bianca Nussbaum
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Caroline Nilsson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet and Sachs’ Children and Youth Hospital, Stockholm, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Nilsson
- Department of Women’s and Children’s Health, Childhood Cancer Research Unit, Astrid Lindgren Children’s Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Shanie Saghafian-Hedengren
- Department of Women’s and Children’s Health, Childhood Cancer Research Unit, Astrid Lindgren Children’s Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Burnard S, Lechner-Scott J, Scott RJ. EBV and MS: Major cause, minor contribution or red-herring? Mult Scler Relat Disord 2017; 16:24-30. [DOI: 10.1016/j.msard.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
15
|
Morandi E, Jagessar SA, 't Hart BA, Gran B. EBV Infection Empowers Human B Cells for Autoimmunity: Role of Autophagy and Relevance to Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 199:435-448. [PMID: 28592428 DOI: 10.4049/jimmunol.1700178] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
Abstract
The efficacy of B cell depletion therapy in multiple sclerosis indicates their central pathogenic role in disease pathogenesis. The B lymphotropic EBV is a major risk factor in multiple sclerosis, via as yet unclear mechanisms. We reported in a nonhuman primate experimental autoimmune encephalomyelitis model that an EBV-related lymphocryptovirus enables B cells to protect a proteolysis-sensitive immunodominant myelin oligodendrocyte glycoprotein (MOG) epitope (residues 40-48) against destructive processing. This facilitates its cross-presentation to autoaggressive cytotoxic MHC-E-restricted CD8+CD56+ T cells. The present study extends these observations to intact human B cells and identifies a key role of autophagy. EBV infection upregulated APC-related markers on B cells and activated the cross-presentation machinery. Although human MOG protein was degraded less in EBV-infected than in uninfected B cells, induction of cathepsin G activity by EBV led to total degradation of the immunodominant peptides MOG35-55 and MOG1-20 Inhibition of cathepsin G or citrullination of the arginine residue within an LC3-interacting region motif of immunodominant MOG peptides abrogated their degradation. Internalized MOG colocalized with autophagosomes, which can protect from destructive processing. In conclusion, EBV infection switches MOG processing in B cells from destructive to productive and facilitates cross-presentation of disease-relevant epitopes to CD8+ T cells.
Collapse
Affiliation(s)
- Elena Morandi
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham NG7 2UH, United Kingdom
| | - S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk 2288, the Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk 2288, the Netherlands.,Department of Neuroscience, University Medical Center, University of Groningen, Groningen 9700, the Netherlands; and
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham NG7 2UH, United Kingdom; .,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
16
|
Gosselin A, Wiche Salinas TR, Planas D, Wacleche VS, Zhang Y, Fromentin R, Chomont N, Cohen ÉA, Shacklett B, Mehraj V, Ghali MP, Routy JP, Ancuta P. HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. AIDS 2017; 31:35-48. [PMID: 27835617 PMCID: PMC5131694 DOI: 10.1097/qad.0000000000001309] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/07/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The objective of this article is to investigate the contribution of colon and blood CD4 T-cell subsets expressing the chemokine receptor CCR6 to HIV persistence during antiretroviral therapy. DESIGN Matched sigmoid biopsies and blood samples (n = 13) as well as leukapheresis (n = 20) were collected from chronically HIV-infected individuals receiving antiretroviral therapy. Subsets of CD4 T cells with distinct differentiation/polarization profiles were identified using surface markers as follows: memory (TM, CD45RA), central memory (TCM; CD45RACCR7), effector (TEM/TM; CD45RACCR7), Th17 (CCR6CCR4), Th1Th17 (CCR6CXCR3), Th1 (CCR6CXCR3), and Th2 (CCR6CCR4). METHODS We used polychromatic flow cytometry for cell sorting, nested real-time PCR for HIV DNA quantification, ELISA and flow cytometry for HIV p24 quantification. HIV reactivation was induced by TCR triggering in the presence/absence of all-trans retinoic acid. RESULTS Compared with blood, the frequency of CCR6 TM was higher in the colon. In both colon and blood compartments, CCR6 TM were significantly enriched in HIV DNA when compared with their CCR6 counterparts (n = 13). In blood, integrated HIV DNA levels were significantly enriched in CCR6 versus CCR6 TCM of four of five individuals and CCR6 versus CCR6 TEM of three of five individuals. Among blood TCM, Th17 and Th1Th17 contributed the most to the pool of cells harboring integrated HIV DNA despite their reduced frequency compared with Th2, which were infected the least. HIV reactivation was induced by TCR triggering and/or retinoic acid exposure at higher levels in CCR6 versus CCR6 TM, TCM, and TEM. CONCLUSION CCR6 is a marker for colon and blood CD4 T cells enriched for replication-competent HIV DNA. Novel eradication strategies should target HIV persistence in CCR6CD4 T cells from various anatomic sites.
Collapse
Affiliation(s)
| | - Tomas Raul Wiche Salinas
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | - Delphine Planas
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | - Vanessa S. Wacleche
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | - Yuwei Zhang
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | | | - Nicolas Chomont
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| | - Éric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
- Institut de Recherche Clinique de Montréal, Montréal, Québec, Canada
| | | | - Vikram Mehraj
- Chronic Viral Illness Service and Research Institute
| | | | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute
- Division of Hematology, McGill University Health Centre, Montreal, Québec, Canada
| | - Petronela Ancuta
- CHUM-Research Centre
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal
| |
Collapse
|
17
|
Jons D, Kneider M, Fogelstrand L, Jeppsson A, Jacobsson S, Andersen O. Early hematopoiesis in multiple sclerosis patients. J Neuroimmunol 2016; 299:158-163. [PMID: 27725115 DOI: 10.1016/j.jneuroim.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 02/01/2023]
Abstract
Contemporary evidence supports that MS immunopathology starts in the peripheral lymphatic system. However, the site and character of crucial initiating events are unknown. We examined subsets of the first stages of blood cells in the bone marrow of 9 MS patients and 11 neurologically healthy controls using FACS analysis. The proportion of natural killer T cells was lower (P=0.045) in the bone marrow of MS patients, but proportions of hematogenous stem cells, myeloblasts, and B cell precursor subsets in the bone marrow did not differ between MS patients and controls. In this pilot study with a limited number of samples we found no deviation of the early B cell lineage in bone marrow from MS patients.
Collapse
Affiliation(s)
- Daniel Jons
- Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Maria Kneider
- Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Sweden; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Stefan Jacobsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Sweden
| | - Oluf Andersen
- Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|