1
|
Bastami Z, Sheikhpour R, Razzaghi P, Ramazani A, Gharaghani S. Proteochemometrics modeling for prediction of the interactions between caspase isoforms and their inhibitors. Mol Divers 2023; 27:249-261. [PMID: 35438428 DOI: 10.1007/s11030-022-10425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Caspases (cysteine-aspartic proteases) play critical roles in inflammation and the programming of cell death in the form of necroptosis, apoptosis, and pyroptosis. The name of these enzymes has been chosen in accordance with their cysteine protease activity. They act as cysteines in nucleophilically active sites to attack and cleave target proteins in the aspartic acid and amino acid C-terminal. Based on the substrate's structure and the specificity, the physiological activity of caspases is divided. However, in apoptosis, the division of caspases into initiating caspases (caspase 2, 8, 9, and 10) and executive caspases (caspase 3, 6, and 7) is essential. The present study aimed to perform Proteochemometrics Modeling to generalize the data on caspases, which could predict ligand and protein interactions. In this study, we employed protein and ligand descriptors. Moreover, protein descriptors were computed using the Protr R package, while PADEL-Descriptor was employed for the computation of ligand descriptors. In addition, NCA (Neighborhood Component Analyses) was used for descriptor selection, and SVR, decision tree, and ensemble methods were utilized for the proteochemometrics modeling. This study shows that the ensemble model demonstrates superior performance compared with other models in terms of R2, Q2, and RMSE criteria.
Collapse
Affiliation(s)
- Zahra Bastami
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, Iran.,Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Razieh Sheikhpour
- Department of Computer Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran
| | - Parvin Razzaghi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Chiaverini L, Marzo T, La Mendola D. AS101: An overview on a leading tellurium-based prodrug. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Strike a Balance: Between Metals and Non-Metals, Metalloids as a Source of Anti-Infective Agents. INORGANICS 2021. [DOI: 10.3390/inorganics9060046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most of the commercially available anti-infective agents are organic molecules. In fact, though, during the pioneering times of modern medicine, at the beginning of the 20th century, several inorganic compounds of transition metals were used for medicinal application, to date, only a small number of inorganic drugs are used in clinical practice. Beyond the transition metals, metalloids—or semimetals—offer a rich chemistry in between that of metallic and non-metallic elements, and accordingly, peculiar features for their exploitation in medicinal chemistry. A few important examples of metalloid-based drugs currently used for the treatment of various diseases do exist. However, the use of this group of elements could be further expanded on the basis of their current applications and the clinical trials they entered. Considering that metalloids offer the opportunity to expand the “chemical-space” for developing novel anti-infective drugs and protocols, in this paper, we briefly recapitulate and discuss the current applications of B-, Si-, As-, Sb- and Te-based anti-infective drugs.
Collapse
|
4
|
Halpert G, Halperin Sheinfeld M, Monteran L, Sharif K, Volkov A, Nadler R, Schlesinger A, Barshak I, Kalechman Y, Blank M, Shoenfeld Y, Amital H. The tellurium-based immunomodulator, AS101 ameliorates adjuvant-induced arthritis in rats. Clin Exp Immunol 2021; 203:375-384. [PMID: 33205391 PMCID: PMC7874835 DOI: 10.1111/cei.13553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
Despite undeniable improvement in the management of rheumatoid arthritis (RA), the discovery of more effective, less toxic and, ideally, less immune suppressive drugs are much needed. In the current study, we set to explore the potential anti-rheumatic activity of the non-toxic, tellurium-based immunomodulator, AS101 in an experimental animal model of RA. The effect of AS101 was assessed on adjuvant-induced arthritis (AIA) rats. Clinical signs of arthritis were assessed. Histopathological examination was used to assess inflammation, synovial changes and tissue lesions. Very late antigen-4 (VLA-4)+ cellular infiltration was detected using immunohistochemical staining. Enzyme-linked immunosorbent assay (ELISA) was used to measure circulating anti-cyclic citrullinated-peptide autoantibody (ACPA) and real-time polymerase chain reaction (PCR) was used to measure the in-vitro effect of AS101 on interleukin (IL)-6 and IL-1β expression in activated primary human fibroblasts. Prophylactic treatment with intraperitoneal AS101 reduced clinical arthritis scores in AIA rats (P < 0·01). AS101 abrogated the migration of active chronic inflammatory immune cells, particularly VLA-4+ cells, into joint cartilage and synovium, reduced the extent of joint damage and preserved joint architecture. Compared to phosphate-buffered saline (PBS)-treated AIA rats, histopathological inflammatory scores were significantly reduced (P < 0·05). Furthermore, AS101 resulted in a marked reduction of circulating ACPA in comparison to PBS-treated rats (P < 0·05). Importantly, AS101 significantly reduced mRNA levels of proinflammatory mediators such as IL-6 (P < 0·05) and IL-1β (P < 0·01) in activated primary human fibroblasts. Taken together, we report the first demonstration of the anti-rheumatic/inflammatory activity of AS101 in experimental RA model, thereby supporting an alternative early therapeutic intervention and identifying a promising agent for therapeutic intervention.
Collapse
Affiliation(s)
- G. Halpert
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
| | - M. Halperin Sheinfeld
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - L. Monteran
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
- Present address:
Department of Pathology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - K. Sharif
- Internal Medicine B and Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - A. Volkov
- Institute of PathologySheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - R. Nadler
- The Academic Center of Law and ScienceHod HasharonIsrael
| | - A. Schlesinger
- Department of GeriatricsRabin Medical Center (Beilinson Campus)Petah TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - I. Barshak
- Institute of PathologySheba Medical Center, Tel Hashomer; Sackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Y. Kalechman
- The Safdié Institute for Cancer, AIDS and Immunology Research; Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - M. Blank
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
| | - Y. Shoenfeld
- Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine,Tel Aviv UniversityTel AvivIsrael
- Laboratory of the Mosaics of AutoimmunitySaint Petersburg UniversitySaint PetersburgRussian Federation
| | - H. Amital
- Internal Medicine B and Zabludowicz Center for Autoimmune DiseasesSheba Medical Center, Tel Hashomer; Affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
5
|
Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther 2020; 5:293. [PMID: 33361764 PMCID: PMC7758411 DOI: 10.1038/s41392-020-00454-7] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
On 12 March 2020, the outbreak of coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization. As of 4 August 2020, more than 18 million confirmed infections had been reported globally. Most patients have mild symptoms, but some patients develop respiratory failure which is the leading cause of death among COVID-19 patients. Endothelial cells with high levels of angiotensin-converting enzyme 2 expression are major participants and regulators of inflammatory reactions and coagulation. Accumulating evidence suggests that endothelial activation and dysfunction participate in COVID-19 pathogenesis by altering the integrity of vessel barrier, promoting pro-coagulative state, inducing endothelial inflammation, and even mediating leukocyte infiltration. This review describes the proposed cellular and molecular mechanisms of endothelial activation and dysfunction during COVID-19 emphasizing the principal mediators and therapeutic implications.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
6
|
Zigman-Hoffman E, Sredni B, Meilik B, Naparstek E, Tartakovsky B. Tellurium compound provides pro-apoptotic signaling in drug resistant multiple myeloma. Leuk Lymphoma 2020; 62:1146-1156. [PMID: 33334225 DOI: 10.1080/10428194.2020.1858292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Multiple Myeloma, effectively treated by chemotherapeutic drugs, relapses due to drug resistance. We tested here the capacity of mesenchymal stromal cells, from the bone marrow of patients or from adipose tissue of healthy individuals, to induce drug resistance in Myeloma cell lines. We show that drug resistance can be achieved by factors secreted by the various MSC's. Mass spectrometry analysis of MSC's conditioned media revealed that fibronectin, was particularly instrumental in providing anti-apoptotic signals to MM cells. Moreover, we demonstrate that SAS ([octa-O-bis-(R,R)tartarate ditellurane]), an immunomodulator Tellurium compound, is not only able of blocking the physical interaction between MM cells and fibronectin but is also capable of re-sensitizing the cells to the chemotherapeutic drugs. Finally, we show that this re-sensitization is coupled with the blocking of pAKT induction, in MM cells, by the MSC's. These results indicate that SAS may be useful in the treatment of drug resistant MM.
Collapse
Affiliation(s)
- Eti Zigman-Hoffman
- Bar Ilan University Mina and Everard Goodman Faculty of Life Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| | - Benjamin Sredni
- Bar Ilan University Mina and Everard Goodman Faculty of Life Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Benjamin Meilik
- Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ella Naparstek
- Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| | - Boris Tartakovsky
- Tel Aviv Sourasky Medical Center, Institute of Hematology, BMT Unit, Tel Aviv, Israel
| |
Collapse
|
7
|
Yossipof TE, Bazak ZR, Kenigsbuch-Sredni D, Caspi RR, Kalechman Y, Sredni B. Tellurium Compounds Prevent and Reverse Type-1 Diabetes in NOD Mice by Modulating α4β7 Integrin Activity, IL-1β, and T Regulatory Cells. Front Immunol 2019; 10:979. [PMID: 31191514 PMCID: PMC6549385 DOI: 10.3389/fimmu.2019.00979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/16/2019] [Indexed: 12/25/2022] Open
Abstract
The study shows that treatment of NOD mice with either of two tellurium-based small molecules, AS101 [ammonium trichloro(dioxoethylene-o,o')tellurate] or SAS [octa-O-bis-(R,R)-tartarate ditellurane] could preserve β cells function and mass. These beneficial effects were reflected in decreased incidence of diabetes, improved glucose clearance, preservation of body weight, and increased survival. The normal glucose levels were associated with increased insulin levels, preservation of β cell mass and increased islet size. Importantly, this protective activity could be demonstrated when the compounds were administered either at the early pre-diabetic phase with no or initial insulitis, at the pre-diabetic stage with advanced insulitis, or even at the advanced, overtly diabetic stage. We further demonstrate that both tellurium compounds prevent migration of autoimmune lymphocytes to the pancreas, via inhibition of the α4β7 integrin activity. Indeed, the decreased migration resulted in diminished pancreatic islets damage both with respect to their size, β cell function, and caspase-3 activity, the hallmark of apoptosis. Most importantly, AS101 and SAS significantly elevated the number of T regulatory cells in the pancreas, thus potentially controlling the autoimmune process. We show that the compounds inhibit pancreatic caspase-1 activity followed by decreased levels of the inflammatory cytokines IL-1β and IL-17 in the pancreas. These properties enable the compounds to increase the proportion of Tregs in the pancreatic lymph nodes. AS101 and SAS have been previously shown to regulate specific integrins through a unique redox mechanism. Our current results suggest that amelioration of disease in NOD mice by this unique mechanism is due to decreased infiltration of pancreatic islets combined with increased immune regulation, leading to decreased inflammation within the islets. As these tellurium compounds show remarkable lack of toxicity in clinical trials (AS101) and pre-clinical studies (SAS), they may be suitable for the treatment of type-1 diabetes.
Collapse
Affiliation(s)
- Tom Eitan Yossipof
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Ramat Gan, Israel
| | - Ziva Roy Bazak
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Ramat Gan, Israel
| | | | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yona Kalechman
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Ramat Gan, Israel
| | - Benjamin Sredni
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Ramat Gan, Israel
| |
Collapse
|
8
|
Griffin S, Sarfraz M, Hartmann SF, Pinnapireddy SR, Nasim MJ, Bakowsky U, Keck CM, Jacob C. Resuspendable Powders of Lyophilized Chalcogen Particles with Activity against Microorganisms. Antioxidants (Basel) 2018; 7:E23. [PMID: 29382037 PMCID: PMC5836013 DOI: 10.3390/antiox7020023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Many organic sulfur, selenium and tellurium compounds show considerable activity against microorganisms, including bacteria and fungi. This pronounced activity is often due to the specific, oxidizing redox behavior of the chalcogen-chalcogen bond present in such molecules. Interestingly, similar chalcogen-chalcogen motifs are also found in the elemental forms of these elements, and while those materials are insoluble in aqueous media, it has recently been possible to unlock their biological activities using naturally produced or homogenized suspensions of respective chalcogen nanoparticles. Those suspensions can be employed readily and often effectively against common pathogenic microorganisms, still their practical uses are limited as such suspensions are difficult to transport, store and apply. Using mannitol as stabilizer, it is now possible to lyophilize such suspensions to produce solid forms of the nanoparticles, which upon resuspension in water essentially retain their initial size and exhibit considerable biological activity. The sequence of Nanosizing, Lyophilization and Resuspension (NaLyRe) eventually provides access to a range of lyophilized materials which may be considered as easy-to-handle, ready-to-use and at the same time as bioavailable, active forms of otherwise insoluble or sparingly substances. In the case of elemental sulfur, selenium and tellurium, this approach promises wider practical applications, for instance in the medical or agricultural arena.
Collapse
Affiliation(s)
- Sharoon Griffin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | - Muhammad Sarfraz
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Steffen F Hartmann
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | | | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|