1
|
Ding JQ, Zhang JQ, Zhao SJ, Jiang DB, Lu JR, Yang SY, Wang J, Sun YJ, Huang YN, Hu CC, Zhang XY, Zhang JX, Liu TY, Han CY, Qiao XP, Guo J, Zhao C, Yang K. Follicular CD8 + T cells promote immunoglobulin production and demyelination in multiple sclerosis and a murine model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167303. [PMID: 38878831 DOI: 10.1016/j.bbadis.2024.167303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Emerging evidence underscores the importance of CD8+ T cells in the pathogenesis of multiple sclerosis (MS), but the precise mechanisms remain ambiguous. This study intends to elucidate the involvement of a novel subset of follicular CD8+ T cells (CD8+CXCR5+ T) in MS and an experimental autoimmune encephalomyelitis (EAE) murine model. The expansion of CD8+CXCR5+ T cells was observed in both MS patients and EAE mice during the acute phase. In relapsing MS patients, higher frequencies of circulating CD8+CXCR5+ T cells were positively correlated with new gadolinium-enhancement lesions in the central nervous system (CNS). In EAE mice, frequencies of CD8+CXCR5+ T cells were also positively correlated with clinical scores. These cells were found to infiltrate into ectopic lymphoid-like structures in the spinal cords during the peak of the disease. Furthermore, CD8+CXCR5+ T cells, exhibiting high expression levels of ICOS, CD40L, IL-21, and IL-6, were shown to facilitate B cell activation and differentiation through a synergistic interaction between CD40L and IL-21. Transferring CD8+CXCR5+ T cells into naïve mice confirmed their ability to enhance the production of anti-MOG35-55 antibodies and contribute to the disease progression. Consequently, CD8+CXCR5+ T cells may play a role in CNS demyelination through heightening humoral immune responses.
Collapse
Affiliation(s)
- Jia-Qi Ding
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China; Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun-Qi Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Si-Jia Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Dong-Bo Jiang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Rui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Shu-Ya Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yuan-Jie Sun
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yi-Nan Huang
- Department of Emergency, the Second Affiliated Hospital (Xixian New District Central Hospital), Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Chen-Chen Hu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xi-Yang Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Xing Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Tian-Yue Liu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Chen-Ying Han
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xu-Peng Qiao
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| | - Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China.
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| |
Collapse
|
2
|
Vimali J, Yong YK, Murugesan A, Govindaraj S, Raju S, Balakrishnan P, Larsson M, Velu V, Shankar EM. Human Immunodeficiency Virus-Human Pegivirus Coinfected Individuals Display Functional Mucosal-Associated Invariant T Cells and Follicular T Cells Irrespective of PD-1 Expression. Viral Immunol 2024; 37:240-250. [PMID: 38808464 DOI: 10.1089/vim.2024.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Human pegivirus (HPgV) appears to alter the prognosis of HIV disease by modulating T cell homeostasis, chemokine/cytokine production, and T cell activation. In this study, we evaluated if HPgV had any 'favorable' impact on the quantity and quality of T cells in HIV-infected individuals. T cell subsets such as CD4lo, CD4hi, and CD8+ T cells, CD4+ MAIT cells, CD8+ MAIT cells, follicular helper T (TFH) cells, and follicular cytotoxic T (TFC) cells were characterized based on the expression of markers associated with immune activation (CD69, ICOS), proliferation (ki67), cytokine production (TNF-α, IFN-γ), and exhaustion (PD-1). HIV+HPgV+ individuals had lower transaminase SGOT (liver) and GGT (biliary) in the plasma than those who were HPgV-. HIV/HPgV coinfection was significantly associated with increased absolute CD4+ T cell counts. HIV+HPgV+ and HIV+HPgV- individuals had highly activated T cell subsets with high expression of CD69 and ICOS on bulk CD4+ and CD8+ T cells, CD4+ MAIT cells, CD8+ MAIT cells, and CXCR5+CD4+ T cells and CXCR5+CD8+ T cells compared with healthy controls. Irrespective of immune activation markers, these cells also displayed higher levels of PD-1 on CD4+ T and CD8+ T cells . Exploring effector functionality based on mitogen stimulation demonstrated increased cytokine production by CD4+ MAIT and CD8+ MAIT cells. Decrease in absolute CD4+ T cell counts correlated positively with intracellular IFN-γ levels by CD4lo T cells, whereas increase of the same correlated negatively with TNF-α in the CD4lo T cells of HIV+HPgV+ individuals. HIV/HPgV coinfected individuals display functional CD4+ and CD8+ MAIT, TFH, and TFC cells irrespective of PD-1 expression.
Collapse
Affiliation(s)
- Jaisheela Vimali
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| | - Yean K Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, India
| | - Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, India
| | - Pachamuthu Balakrishnan
- Centre for Infectious Diseases, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
3
|
Chen M, Venturi V, Munier CML. Dissecting the Protective Effect of CD8 + T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8 + T Cells. BIOLOGY 2023; 12:1035. [PMID: 37508464 PMCID: PMC10376827 DOI: 10.3390/biology12071035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
SARS-CoV-2 vaccines have played a crucial role in effectively reducing COVID-19 disease severity, with a new generation of vaccines that use messenger RNA (mRNA) technology being administered globally. Neutralizing antibodies have featured as the heroes of vaccine-induced immunity. However, vaccine-elicited CD8+ T cells may have a significant impact on the early protective effects of the mRNA vaccine, which are evident 12 days after initial vaccination. Vaccine-induced CD8+ T cells have been shown to respond to multiple epitopes of SARS-CoV-2 and exhibit polyfunctionality in the periphery at the early stage, even when neutralizing antibodies are scarce. Furthermore, SARS-CoV-2 mRNA vaccines induce diverse subsets of memory CD8+ T cells that persist for more than six months following vaccination. However, the protective role of CD8+ T cells in response to the SARS-CoV-2 mRNA vaccines remains a topic of debate. In addition, our understanding of CD8+ T cells in response to vaccination in the lymph nodes, where they first encounter antigen, is still limited. This review delves into the current knowledge regarding the protective role of polyfunctional CD8+ T cells in controlling the virus, the response to SARS-CoV-2 mRNA vaccines, and the contribution to supporting B cell activity and promoting immune protection in the lymph nodes.
Collapse
Affiliation(s)
- Mengfei Chen
- The Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
4
|
Martínez LE, Ibarrondo J, Guo Y, Penichet ML, Epeldegui M. Follicular CD8+ T Cells Are Elevated in HIV Infection and Induce PD-L1 on B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:33-39. [PMID: 36445393 PMCID: PMC9840893 DOI: 10.4049/jimmunol.2200194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Follicular CD8+CXCR5+ T cells are a specialized CD8+ T cell subset with unique follicular-homing capabilities that have been reported to display effector functions in viral immunity, tumor immunity, and autoimmunity. CD8+CXCR5+ T cells exhibit B cell helper functions and express CD40L, ICOS, programmed cell death protein 1 (PD-1), and BCL-6, the transcriptional regulator of CD4+CXCR5+ T follicular helper cells and of germinal center B cells. HIV is known to be sequestered in lymphoid follicles, and CD8+CXCR5+ T cell frequency is a marker for disease severity, given that HIV-infected patients with lower numbers of circulating CD8+CXCR5+ T cells display lower CD4+ T cell counts. Likewise, several groups have reported a direct correlation between the quantity of CD8+CXCR5+ T cells and suppression of HIV viral load. In this study, we observed elevated absolute numbers of CD8+CXCR5+ and CD8+CXCR5+BCL-6+PD-1+ T cells in the blood of HIV-infected participants of the Multicenter AIDS Cohort Study. We further demonstrated in vitro that activated human CD8+CXCR5+ T cells isolated from peripheral blood and tonsil from healthy donors show increased CD40L expression and induce the production of PD ligand 1 (PD-L1)+IgG+ B cells. Moreover, absolute numbers of CD8+CXCR5+ T cells significantly and positively correlated with numbers of PD-L1+ B cells found in blood of HIV-infected individuals. Altogether, these results show that activated CD8+CXCR5+ T cells have the ability to activate B cells and increase the percentage of PD-L1+ and PD-L1+IgG+ B cells, which provides insights into the early events of B cell activation and differentiation and may play a role in disease progression and lymphomagenesis in HIV-infected individuals.
Collapse
Affiliation(s)
- Laura E. Martínez
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | - Yu Guo
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Manuel L. Penichet
- AIDS Institute, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA
- The Molecular Biology Institute, University of California, Los Angeles, CA
| | - Marta Epeldegui
- AIDS Institute, University of California, Los Angeles, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
| |
Collapse
|
5
|
Sayın Ekinci N, Darbaş Ş, Uçar F. CXCR5+CD8+ Follicular Cytotoxic T Cell Biology and Its Relationship with Diseases. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.04796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Potential Role of CXCL13/CXCR5 Signaling in Immune Checkpoint Inhibitor Treatment in Cancer. Cancers (Basel) 2022; 14:cancers14020294. [PMID: 35053457 PMCID: PMC8774093 DOI: 10.3390/cancers14020294] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy is currently the backbone of new drug treatments for many cancer patients. CXC chemokine ligand 13 (CXCL13) is an important factor involved in recruiting immune cells that express CXC chemokine receptor type 5 (CXCR5) in the tumor microenvironment and serves as a key molecular determinant of tertiary lymphoid structure (TLS) formation. An increasing number of studies have identified the influence of CXCL13 on prognosis in patients with cancer, regardless of the use of immunotherapy treatment. However, no comprehensive reviews of the role of CXCL13 in cancer immunotherapy have been published to date. This review aims to provide an overview of the CXCL13/CXCR5 signaling axis to summarize its mechanisms of action in cancer cells and lymphocytes, in addition to effects on immunity and cancer pathobiology, and its potential as a biomarker for the response to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.
Collapse
|
7
|
Zhao H, Han Q, Yang A, Wang Y, Wang G, Lin A, Wang X, Yin C, Zhang J. CpG-C ODN M362 as an immunoadjuvant for HBV therapeutic vaccine reverses the systemic tolerance against HBV. Int J Biol Sci 2022; 18:154-165. [PMID: 34975324 PMCID: PMC8692134 DOI: 10.7150/ijbs.62424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic Hepatitis B virus (CHB) infection is a global public health problem. Oligodeoxynucleotides (ODNs) containing class C unmethylated cytosine-guanine dinucleotide (CpG-C) motifs may provide potential adjuvants for the immunotherapeutic strategy against CHB, since CpG-C ODNs stimulate both B cell and dendritic cell (DC) activation. However, the efficacy of CpG-C ODN as an anti-HBV vaccine adjuvant remains unclear. In this study, we demonstrated that CpG M362 (CpG-C ODN) as an adjuvant in anti-HBV vaccine (cHBV-vaccine) successfully and safely eliminated the virus in HBV-carrier mice. The cHBV-vaccine enhanced DC maturation both in vivo and in vitro, overcame immune tolerance, and recovered exhausted T cells in HBV-carrier mice. Furthermore, the cHBV-vaccine elicited robust hepatic HBV-specific CD8+ and CD4+ T cell responses, with increased cellular proliferation and IFN-γ secretion. Additionally, the cHBV-vaccine invoked a long-lasting follicular CXCR5+ CD8+ T cell response following HBV re-challenge. Taken together, CpG M362 in combination with rHBVvac cleared persistent HBV and achieved long-term virological control, making it a promising candidate for treating CHB.
Collapse
Affiliation(s)
- Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yucan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Guan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ang Lin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chunlai Yin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
8
|
Lu L, Sun J, Su H, Luo S, Chen J, Qiu S, Chi Y, Lin J, Xu X, Zheng D. Antitumor CD8 T cell responses in glioma patients are effectively suppressed by T follicular regulatory cells. Exp Cell Res 2021; 407:112808. [PMID: 34508744 DOI: 10.1016/j.yexcr.2021.112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Regulatory T (Treg) cells are thought to contribute to tumor pathogenesis by suppressing tumor immunosurveillance and antitumor immunity. T follicular regulatory (Tfr) cells are a recently characterized Treg subset that expresses both the Treg transcription factor (TF) Foxp3 and the T follicular helper (Tfh) TF Bcl-6. The role of Tfr cells in glioma patients remains unclear. In this study, we found that the level of Tfr cells, identified as Foxp3+Bcl-6+ CD4 T cells, was significantly elevated in tumor-infiltrating CD4 T cells from resected glioma tumors. Both Tfr cells and Treg cells significantly suppressed the proliferation and the cytotoxic capacity of CD8 T cells toward glioma tumor cells, and the suppression was positively associated with the proportion of Tfr cells and Treg cells, respectively. Tfr and Treg cells from glioma tumor samples demonstrated higher suppression potency than those from healthy blood samples and glioma blood samples. Interestingly, canonical CXCR5- Treg cells could suppress both CXCR5+ and CXCR5- CD8 T cells, albeit with stronger potency toward CXCR5- CD8 T cells. However, Tfr cells presented much higher suppression potency toward CXCR5+ CD8 T cells, whereas CXCR5+ CD8 T cells are a potent CD8 T cell subset previously described to have antiviral and antitumor roles. Overall, these data indicate that Tfr cells are enriched in glioma tumors and have suppressive capacity toward CD8 T cell-mediated effector functions.
Collapse
Affiliation(s)
- Lenian Lu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Jie Sun
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Hang Su
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Shi Luo
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Jianmin Chen
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Shengcong Qiu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Yajie Chi
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Jiye Lin
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Xiaobing Xu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China.
| | - Dahai Zheng
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China.
| |
Collapse
|
9
|
Katkeviciute E, Hering L, Montalban-Arques A, Busenhart P, Schwarzfischer M, Manzini R, Conde J, Atrott K, Lang S, Rogler G, Naschberger E, Schellerer VS, Stürzl M, Rickenbacher A, Turina M, Weber A, Leibl S, Leventhal GE, Levesque M, Boyman O, Scharl M, Spalinger MR. Protein tyrosine phosphatase nonreceptor type 2 controls colorectal cancer development. J Clin Invest 2021; 131:140281. [PMID: 33001862 DOI: 10.1172/jci140281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) recently emerged as a promising cancer immunotherapy target. We set out to investigate the functional role of PTPN2 in the pathogenesis of human colorectal carcinoma (CRC), as its role in immune-silent solid tumors is poorly understood. We demonstrate that in human CRC, increased PTPN2 expression and activity correlated with disease progression and decreased immune responses in tumor tissues. In particular, stage II and III tumors displayed enhanced PTPN2 protein expression in tumor-infiltrating T cells, and increased PTPN2 levels negatively correlated with expression of PD-1, CTLA4, STAT1, and granzyme A. In vivo, T cell- and DC-specific PTPN2 deletion reduced tumor burden in several CRC models by promoting CD44+ effector/memory T cells, as well as CD8+ T cell infiltration and cytotoxicity in the tumor. In direct relevance to CRC treatment, T cell-specific PTPN2 deletion potentiated anti-PD-1 efficacy and induced antitumor memory formation upon tumor rechallenge in vivo. Our data suggest a role for PTPN2 in suppressing antitumor immunity and promoting tumor development in patients with CRC. Our in vivo results identify PTPN2 as a key player in controlling the immunogenicity of CRC, with the strong potential to be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | | | - Philipp Busenhart
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | | | - Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Javier Conde
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Vera S Schellerer
- Department of Surgery, University Medical Center of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | - Achim Weber
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Leibl
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Gabriel E Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | | | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
10
|
Elzein SM, Zimmerer JM, Han JL, Ringwald BA, Bumgardner GL. CXCR5 +CD8 + T cells: A Review of their Antibody Regulatory Functions and Clinical Correlations. THE JOURNAL OF IMMUNOLOGY 2021; 206:2775-2783. [PMID: 34602651 DOI: 10.4049/jimmunol.2100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD8+ T cells have conventionally been studied in relationship to pathogen or tumor clearance. Recent reports have identified novel functions of CXCR5+CD8+ T cells that can home to lymphoid follicles, a key site of antibody production. In this review we provide an in-depth analysis of conflicting reports regarding the impact of CXCR5+CD8+ T cells on antibody production and examine the data supporting a role for antibody-enhancement (B cell "helper") and antibody-downregulation (antibody-suppressor) by CXCR5+CD8+ T cell subsets. CXCR5+CD8+ T cell molecular phenotypes are associated with CD8-mediated effector functions including distinct subsets that regulate antibody responses. Co-inhibitory molecule PD-1, among others, distinguish CXCR5+CD8+ T cell subsets. We also provide the first in-depth review of human CXCR5+CD8+ T cells in the context of clinical outcomes and discuss the potential utility of monitoring the quantity of peripheral blood or tissue infiltrating CXCR5+CD8+ T cells as a prognostic tool in multiple disease states.
Collapse
Affiliation(s)
- Steven M Elzein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Jing L Han
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Bryce A Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Ginny L Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Rutishauser RL, Deguit CDT, Hiatt J, Blaeschke F, Roth TL, Wang L, Raymond KA, Starke CE, Mudd JC, Chen W, Smullin C, Matus-Nicodemos R, Hoh R, Krone M, Hecht FM, Pilcher CD, Martin JN, Koup RA, Douek DC, Brenchley JM, Sékaly RP, Pillai SK, Marson A, Deeks SG, McCune JM, Hunt PW. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight 2021; 6:136648. [PMID: 33351785 PMCID: PMC7934879 DOI: 10.1172/jci.insight.136648] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Although many HIV cure strategies seek to expand HIV-specific CD8+ T cells to control the virus, all are likely to fail if cellular exhaustion is not prevented. A loss in stem-like memory properties (i.e., the ability to proliferate and generate secondary effector cells) is a key feature of exhaustion; little is known, however, about how these properties are regulated in human virus-specific CD8+ T cells. We found that virus-specific CD8+ T cells from humans and nonhuman primates naturally controlling HIV/SIV infection express more of the transcription factor TCF-1 than noncontrollers. HIV-specific CD8+ T cell TCF-1 expression correlated with memory marker expression and expansion capacity and declined with antigenic stimulation. CRISPR-Cas9 editing of TCF-1 in human primary T cells demonstrated a direct role in regulating expansion capacity. Collectively, these data suggest that TCF-1 contributes to the regulation of the stem-like memory property of secondary expansion capacity of HIV-specific CD8+ T cells, and they provide a rationale for exploring the enhancement of this pathway in T cell-based therapeutic strategies for HIV.
Collapse
Affiliation(s)
| | - Christian Deo T. Deguit
- Department of Medicine, UCSF, San Francisco, California, USA
- Institute of Human Genetics, University of the Philippines-National Institutes of Health, Manila, Philippines
| | - Joseph Hiatt
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Franziska Blaeschke
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Theodore L. Roth
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Lynn Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kyle A. Raymond
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | | | - Joseph C. Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases and
| | - Wenxuan Chen
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Carolyn Smullin
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Rodrigo Matus-Nicodemos
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases , NIH, Bethesda, Maryland, USA
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | - Alexander Marson
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- UCSF Hellen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Peter W. Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
12
|
Lückel C, Picard FSR, Huber M. Tc17 biology and function: Novel concepts. Eur J Immunol 2020; 50:1257-1267. [DOI: 10.1002/eji.202048627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Christina Lückel
- Institute for ImmunologyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Mainz Germany
| | - Felix. S. R. Picard
- Institute for Medical Microbiology and Hospital HygieneUniversity of Marburg Marburg Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital HygieneUniversity of Marburg Marburg Germany
| |
Collapse
|
13
|
Fousteri G, Kuka M. The elusive identity of CXCR5 + CD8 T cells in viral infection and autoimmunity: Cytotoxic, regulatory, or helper cells? Mol Immunol 2020; 119:101-105. [PMID: 32007752 DOI: 10.1016/j.molimm.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
Abstract
Our knowledge on the development and functions of CXCR5+ CD8 T cells is rudimentary when confronted to other extensively studied CD8 T cell subsets. A decade ago, it became apparent that CD8 T cells possess two additional and rather unexpected functional properties other than cytotoxicity, one involving what is known as B cell helper activity and the other involving suppression of self-reactive responses generally known as T cell regulation. Although these adaptive responses are well-known functions of CD4 T cells, they remain poorly understood in CD8 T cells. Thus far, three subsets of CXCR5+ CD8 T cells have been identified. The first subset of CXCR5+ CD8 T cells is present in chronic viral infections and is referred to as progenitors of exhausted T cells showing heightened proliferative and cytotoxic properties as compared to CXCR5- CD8 T cells. The second subset of CXCR5+ CD8 T cells functions as regulatory T cells that inhibit CD4 T follicular helper (Tfh) humoral responses and the development of autoantibodies. The third subset of CXCR5+ CD8 T cells was identified in mice with mutations in immunoregulatory genes (i.e. FOXP3 and IL-2-deficient mice) and involves CD8 T cells with Tfh-like properties that promote humoral autoimmunity through interaction with B cells. This review summarizes the phenotype, function, and differentiation of CXCR5+ CD8 T cells.
Collapse
Affiliation(s)
- Georgia Fousteri
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
14
|
Perdomo-Celis F, Medina-Moreno S, Davis H, Bryant J, Taborda NA, Rugeles MT, Kottilil S, Zapata JC. Characterization of CXCR5 + CD8 + T-cells in humanized NSG mice. Immunobiology 2019; 225:151885. [PMID: 31836302 DOI: 10.1016/j.imbio.2019.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 11/26/2019] [Indexed: 11/28/2022]
Abstract
Humanized NOD/SCID/IL-2 receptor γ-chainnull (huNSG) mice recapitulate some features of human T-cell populations that can be exploited in basic and pre-clinical research. CXCR5+ T CD8+ T-cells play an important role in the control of viral infections and tumors. Indeed, they have been associated with low-level HIV replication, making them a possible novel correlate of protection, and potentially useful in the eradication of HIV reservoirs. Here, by flow cytometry, we evaluated the reconstitution of CXCR5+ CD8+ T-cells in huNSG mice engrafted with CD34+ hematopoietic stem cells. This population was readily generated in huNSG mice, and where particularly confined to spleen and lymph nodes. These cells exhibited a follicular-like phenotype, with expression of Programmed Death (PD)-1, Inducible T-cell costimulatory (ICOS), and absence of CCR7. Moreover, CXCR5+ CD8+ T-cells had a higher expression of interleukin (IL)-21 and a higher cytotoxic potential compared with CXCR5- cells. HIV infection did not affect the frequencies of CXCR5+ CD8+ T-cells in secondary lymphoid organs. Finally, taking advantage of the high proportion of naïve T-cells in huNSG mice, we evaluated the in vitro response of splenic T-cells to the follicular profile-polarizing cytokines Transforming Growth Factor (TGF)-β1 and IL-23. After in vitro treatment, there was an increase in CXCR5+ CD8+ T-cells, which exhibited high levels of PD-1, CD40 L and low expression of CCR7. Thus, there is a reconstitution of CXCR5+ CD8+ T-cells in huNSG mice, supporting the use of this model for exploring the biology and role of this cell population in healthy and diseased conditions.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Natalia A Taborda
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Chu F, Li HS, Liu X, Cao J, Ma W, Ma Y, Weng J, Zhu Z, Cheng X, Wang Z, Liu J, Jiang ZY, Luong AU, Peng W, Wang J, Balakrishnan K, Yee C, Dong C, Davis RE, Watowich SS, Neelapu SS. CXCR5 +CD8 + T cells are a distinct functional subset with an antitumor activity. Leukemia 2019; 33:2640-2653. [PMID: 31028278 PMCID: PMC6814517 DOI: 10.1038/s41375-019-0464-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 01/09/2023]
Abstract
CXCR5 mediates homing of both B and follicular helper T (TFH) cells into follicles of secondary lymphoid organs. We found that CXCR5+CD8+ T cells are present in human tonsils and follicular lymphoma, inhibit TFH-mediated B cell differentiation, and exhibit strong cytotoxic activity. Consistent with these findings, adoptive transfer of CXCR5+CD8+ T cells into an animal model of lymphoma resulted in significantly greater antitumor activity than CXCR5-CD8+ T cells. Furthermore, RNA-Seq-based transcriptional profiling revealed 77 differentially expressed genes unique to CXCR5+CD8+ T cells. Among these, a signature comprised of 33 upregulated genes correlated with improved survival in follicular lymphoma patients. We also showed that CXCR5+CD8+ T cells could be induced and expanded ex vivo using IL-23 plus TGF-β, suggesting a possible strategy to generate these cells for clinical application. In summary, our study identified CXCR5+CD8+ T cells as a distinct T cell subset with ability to suppress TFH-mediated B cell differentiation, exert strong antitumor activity, and confer favorable prognosis in follicular lymphoma patients.
Collapse
Affiliation(s)
- Fuliang Chu
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Xindong Liu
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Jingjing Cao
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Wencai Ma
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Zheng Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Xiaoyun Cheng
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jingwei Liu
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Zi Yang Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Texas Health Science Center of Houston, Houston, TX, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Texas Health Science Center of Houston, Houston, TX, USA
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Jing Wang
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kumudha Balakrishnan
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Chen Dong
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Tsinghua University Institute for Immunology and School of Medicine, 100084, Beijing, China
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Ye L, Li Y, Tang H, Liu W, Chen Y, Dai T, Liang R, Shi M, Yi S, Chen G, Yang Y. CD8+CXCR5+T cells infiltrating hepatocellular carcinomas are activated and predictive of a better prognosis. Aging (Albany NY) 2019; 11:8879-8891. [PMID: 31663864 PMCID: PMC6834425 DOI: 10.18632/aging.102308] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/21/2019] [Indexed: 01/11/2023]
Abstract
CD8+ T cells are thought to be the primary cytotoxic lymphocytes exerting antitumor effects. However, few studies have focused on the antitumor effects of CD8+ T cell-mediated humoral immunity or on interactions between CD8+ T cells and B cells in hepatocellular carcinoma (HCC). We found that the frequency of IL-21-producing CD8+CXCR5+ T cells was higher in HCC tumor tissue than in peritumoral tissue or peripheral blood from the same patients or in blood from healthy donors. Moreover, CD8+CXCR5+ T cells migrated in response to supernatants from primary HCC (HCC-SN) cells, and HCC-SN cells also powerfully induced CXCR5 expression in CD8+ T cells and IL-21 expression in CD8+CXCR5+ T cells. CD8+CXCR5+ T cells from HCC patients, but not those from healthy individuals, stimulated CD19+ B cells to differentiate into IgG-producing plasmablasts. These findings reveal that CD8+CXCR5+ T cells strongly infiltrate HCC tumors, and their infiltration is predictive of a better prognosis. Surprisingly, moreover, CD8+CXCR5+ T cells produced IL-21, which induced B cells to differentiate into IgG-producing plasmablasts and to play a key role in humoral immunity in HCC.
Collapse
Affiliation(s)
- Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yang Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Hui Tang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yunhao Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianxing Dai
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Rongpu Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Mengchen Shi
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
17
|
Wee EG, Moyo NA, Saunders KO, LaBranche C, Donati F, Capucci S, Parks R, Borthwick N, Hannoun Z, Montefiori DC, Haynes BF, Hanke T. Parallel Induction of CH505 B Cell Ontogeny-Guided Neutralizing Antibodies and tHIVconsvX Conserved Mosaic-Specific T Cells against HIV-1. Mol Ther Methods Clin Dev 2019; 14:148-160. [PMID: 31367651 PMCID: PMC6657236 DOI: 10.1016/j.omtm.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/18/2019] [Indexed: 12/04/2022]
Abstract
The aim of this work was to start collecting information on rational combination of antibody (Ab) and T cell vaccines into single regimens. Two promising candidate HIV-1 vaccine strategies, sequential isolates of CH505 virus Envs developed for initiation of broadly neutralizing antibody lineages and conserved-mosaic tHIVconsvX immunogens aiming to induce effective cross-clade T cell responses, were combined to assess vaccine interactions. These immunogens were delivered in heterologous vector/modality regimens consisting of non-replicating simian (chimpanzee) adenovirus ChAdOx1 (C), non-replicating poxvirus MVA (M), and adjuvanted protein (P). Outbred CD1-SWISS mice were vaccinated intramuscularly using either parallel CM8M (tHIVconsvX)/CPPP (CH505) or sequential CM16M (tHIVconsvX)/CPPP (CH505) protocols, the latter of which delivered T cell CM prior to the CH505 Env. CM8M (tHIVconsvX) and CPPP or CMMP (CH505) vaccinations alone were included as comparators. The vaccine-elicited HIV-1-specific trimer-binding and neutralizing Abs and CD8+/CD4+ T cell responses induced by the combined and comparator regimens were not statistically separable among regimens. The Ab-lineage immunogen strategy was particularly suited for combined regimens for its likely less potent induction of Env-specific T cell responses relative to homologous epitope-based vaccine strategies. These results inform design of the first rationally combined Ab and T cell vaccine regimens in human volunteers.
Collapse
Affiliation(s)
- Edmund G. Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Nathifa A. Moyo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Kevin O. Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Celia LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Filippo Donati
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Silvia Capucci
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicola Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Zara Hannoun
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
18
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
19
|
Perdomo-Celis F, Feria MG, Taborda NA, Rugeles MT. Induction of Follicular-Like CXCR5 + CD8 + T Cells by TGF- β1/IL-23 Is Limited During HIV Infection. Viral Immunol 2019; 32:278-288. [PMID: 31274389 DOI: 10.1089/vim.2019.0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Follicular CD4+ T cells are the main HIV reservoirs due to, among other factors, the low frequency of CD8+ T cells in lymphoid follicles. Follicular CXCR5+ CD8+ T cells are associated with HIV control, but their differentiation conditions are yet undefined. In this study, we explored the in vitro effect of transforming growth factor (TGF)-β1, interleukin (IL)-12, and IL-23 on the induction of CXCR5, the follicle homing receptor, in human circulating CD8+ T cells from seronegative, and treated HIV-infected individuals. The combination of TGF-β1 plus IL-23 induced the highest expression of CXCR5 in purified CD8+ T cells. These CXCR5+ CD8+ T cells also expressed a transcriptional and phenotypic profile similar to that of follicular CD4+ T cells, such as the upregulation of BCL6, inducible costimulator and CD40L, and downregulation of PRDM1. These cells responded in vitro to CXCL13 and had low expression of CCR7. In addition, after polyclonal stimulation, they produced IL-21, interferon-γ, and de novo perforin. However, in comparison with seronegative individuals, CD8+ T cells from HIV-infected patients had a lower response to TGF-β1/IL-23, a defect that was restored with the blockade of the programmed cell death 1 inhibitory receptor. Thus, TGF-β1 plus IL-23 induce follicular-like CXCR5+ CD8+ T cells in seronegative individuals, but in HIV-infected patients there is a limited response which could impair the generation of this cell population.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Manuel G Feria
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
20
|
Abstract
CD8 T cells are infrequently considered part of germinal center reactions. Yet, a distinct CXCR5+ CD8 T cell subset identified within the B cell follicle and germinal center in situations of chronic antigen has recently been defined. CXCR5+ CD8 T cells maintain transcriptional and phenotypic features consistent with the CD8 T cell nomenclature of a non-exhausted, effector memory population. CD8 T cell localization to the B cell follicle suggests a functional profile similar to CD4 T follicular helper cells that are licensed to promote B cell responses. The functional mechanisms defined under different immune settings, while largely similar, differentially control disease pathogenesis. CXCR5+ CD8 T cells control viral load during infection, and also promote antibody-mediated autoimmune disease progression. The existence of this novel CXCR5+ CD8 T cell subset in human and murine models of disease may provide a paradigm shift in our understanding of germinal center reactions.
Collapse
Affiliation(s)
- Kristen M. Valentine
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Katrina K. Hoyer
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
21
|
CXCR5 and ICOS expression identifies a CD8 T-cell subset with T FH features in Hodgkin lymphomas. Blood Adv 2019; 2:1889-1900. [PMID: 30087107 DOI: 10.1182/bloodadvances.2018017244] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/15/2018] [Indexed: 12/25/2022] Open
Abstract
A better characterization of T-cell subsets in the microenvironment of classical Hodgkin lymphoma (cHL) would help to develop immunotherapies. Using multicolor flow cytometry, we identified in 6 of 43 cHL tissue samples a previously unrecognized subset of CD8 T cells coexpressing CXCR5 and inducible T-cell costimulator (ICOS) molecules (CD8CXCR5+ICOS+). These cells shared phenotypic features with follicular helper T (TFH) cells including low CCR7 expression together with high expression of B-cell lymphoma-6, programmed cell death 1, B and T lymphocyte attenuator, CD200, and OX40. They had deficient cytotoxicity, low interferon-γ secretion, and common functional properties with intratumoral CD4+ TFH cells, such as production of interleukin-4 (IL-4), IL-21, CXCL13, and capacity to sustain B cells. Gene profiling analysis showed a significant similarity between the signatures of CD8CXCR5+ICOS+ T cells and CD4+ TFH cells. Benign lymphadenitis tissues (n = 8) were devoid of CD8CXCR5+ICOS+ cells. Among the 35 B-cell lymphoma tissues analyzed, including follicular lymphomas (n = 13), diffuse large cell lymphomas (n = 12), marginal zone lymphomas (MZLs; n = 3), mantle cell lymphomas (n = 3), and chronic lymphocytic leukemias (n = 4), only 1 MZL sample contained CD8CXCR5+ICOS+ cells. Lymphoma tumors with CD8CXCR5+ICOS+ cells shared common histopathological features including residual germinal centers, and contained high amounts of activated CD8CXCR5-ICOS+ cells. These data demonstrate a CD8 T-cell differentiation pathway leading to the acquisition of some TFH similarities. They suggest a particular immunoediting process with global CD8 activation acting mainly, but not exclusively, in HL tumors.
Collapse
|
22
|
Rudolph ME, McArthur MA, Magder LS, Barnes RS, Chen WH, Sztein MB. Age-Associated Heterogeneity of Ty21a-Induced T Cell Responses to HLA-E Restricted Salmonella Typhi Antigen Presentation. Front Immunol 2019; 10:257. [PMID: 30886613 PMCID: PMC6409365 DOI: 10.3389/fimmu.2019.00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023] Open
Abstract
Human-restricted Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever—a life-threatening disease of great global health significance, particularly in the developing world. Ty21a is an oral live-attenuated vaccine that protects against the development of typhoid disease in part by inducing robust T cell responses, among which multifunctional CD8+ cytotoxic T lymphocytes (CTL) play an important role. Following Ty21a vaccination, a significant component of adult CTL have shown to be targeted to S. Typhi antigen presented by the conserved major histocompatibility complex (MHC) class Ib molecule, human leukocyte antigen-E (HLA-E). S. Typhi challenge studies have shown that baseline, multifunctional HLA-E responsive T cells are associated with protection from, and delayed onset of, typhoid disease. However, despite the overwhelming burden of typhoid fever in school-aged children, and due to limited availability of pediatric samples, incomplete information is available regarding these important HLA-E-restricted responses in children, even though studies have shown that younger children may be less likely to develop protective cell mediated immune (CMI) responses than adults following vaccination. To address this gap, we have studied this phenomenon in depth by using mass cytometry to analyze pediatric and adult T cell responses to HLA-E-restricted S. Typhi antigen presentation, before and after Ty21a vaccination. Herein, we show variable responses in all age strata following vaccination among T effector memory (TEM) and T effector memory CD45RA+ (TEMRA) cells based on conventional gating analysis. However, by utilizing the dimensionality reduction tool tSNE (t-distributed Stochastic Neighbor Embedding), we are able to identify diverse, highly multifunctional gut-homing- TEM and TEMRA clusters of cells which are more abundant in adult and older pediatric participants than in younger children. These findings highlight a potential age-associated maturation of otherwise conserved HLA-E restricted T cell responses. Such insights, coupled with the marked importance of multifunctional T cell responses to combat infection, may better inform future pediatric vaccination strategies against S. Typhi and other infectious diseases.
Collapse
Affiliation(s)
- Mark E Rudolph
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laurence S Magder
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Beck SE, Veenhuis RT, Blankson JN. Does B Cell Follicle Exclusion of CD8+ T Cells Make Lymph Nodes Sanctuaries of HIV Replication? Front Immunol 2019; 10:2362. [PMID: 31649673 PMCID: PMC6794453 DOI: 10.3389/fimmu.2019.02362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
As we learn more about the HIV latent reservoir, we continue to discover that the viral reservoir is more complicated than just a pool of infected resting memory CD4+ T cells in peripheral blood. Evidence increasingly points to both certain tissues and certain types of cells as potential viral reservoirs. T follicular helper cells (TFH) are prime targets of HIV infection-this creates a sanctuary for infected cells because CD8+ T cells generally do not enter lymph node follicles unless they express CXCR5, and are not as effective at killing infected CD4+ T cells as peripheral CD8+ T cells. In this review, we summarize the current state of research on TFH cell infection in peripheral lymphoid tissues and focus on the question of whether CD8+ T cell exclusion from B cell follicles is responsible, at least in part, for establishing secondary lymphoid tissue B cell follicles as an anatomic site of HIV transcription and replication.
Collapse
Affiliation(s)
- Sarah E. Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel N. Blankson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Joel N. Blankson
| |
Collapse
|
24
|
Shen J, Luo X, Wu Q, Huang J, Xiao G, Wang L, Yang B, Li H, Wu C. A Subset of CXCR5 +CD8 + T Cells in the Germinal Centers From Human Tonsils and Lymph Nodes Help B Cells Produce Immunoglobulins. Front Immunol 2018; 9:2287. [PMID: 30344522 PMCID: PMC6183281 DOI: 10.3389/fimmu.2018.02287] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 01/14/2023] Open
Abstract
Recent studies indicated that CXCR5+CD8+ T cells in lymph nodes could eradicate virus-infected target cells. However, in the current study we found that a subset of CXCR5+CD8+ T cells in the germinal centers from human tonsils or lymph nodes are predominately memory cells that express CD45RO and CD27. The involvement of CXCR5+CD8+ T cells in humoral immune responses is suggested by their localization in B cell follicles and by the concomitant expression of costimulatory molecules, including CD40L and ICOS after activation. In addition, CXCR5+CD8+ memory T cells produced significantly higher levels of IL-21, IFN-γ, and IL-4 at mRNA and protein levels compared to CXCR5−CD8+ memory T cells, but IL-21-expressing CXCR5+CD8+ T cells did not express Granzyme B and perforin. When cocultured with sorted B cells, sorted CXCR5+CD8+ T cells promoted the production of antibodies compared to sorted CXCR5−CD8+ T cells. However, fixed CD8+ T cells failed to help B cells and the neutralyzing antibodies against IL-21 or CD40L inhibited the promoting effects of sorted CXCR5+CD8+ T cells on B cells for the production of antibodies. Finally, we found that in the germinal centers of lymph nodes from HIV-infected patients contained more CXCR5+CD8+ T cells compared to normal lymph nodes. Due to their versatile functional capacities, CXCR5+CD8+ T cells are promising candidate cells for immune therapies, particularly when CD4+ T cell help are limited.
Collapse
Affiliation(s)
- Juan Shen
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-sen University, Guangzhou, China
| | - Xi Luo
- Affiliated Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiongli Wu
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Guanying Xiao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Binyan Yang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-sen University, Guangzhou, China
| | - Huabin Li
- Eye and Ent Hospital of Fudan Hospital, Shanghai, China
| | - Changyou Wu
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, Nurieva R. Insights Into the Molecular Mechanisms of T Follicular Helper-Mediated Immunity and Pathology. Front Immunol 2018; 9:1884. [PMID: 30158933 PMCID: PMC6104131 DOI: 10.3389/fimmu.2018.01884] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells play key role in providing help to B cells during germinal center (GC) reactions. Generation of protective antibodies against various infections is an important aspect of Tfh-mediated immune responses and the dysregulation of Tfh cell responses has been implicated in various autoimmune disorders, inflammation, and malignancy. Thus, their differentiation and maintenance must be closely regulated to ensure appropriate help to B cells. The generation and function of Tfh cells is regulated by multiple checkpoints including their early priming stage in T zones and throughout the effector stage of differentiation in GCs. Signaling pathways activated downstream of cytokine and costimulatory receptors as well as consequent activation of subset-specific transcriptional factors are essential steps for Tfh cell generation. Thus, understanding the mechanisms underlying Tfh cell-mediated immunity and pathology will bring into spotlight potential targets for novel therapies. In this review, we discuss the recent findings related to the molecular mechanisms of Tfh cell differentiation and their role in normal immune responses and antibody-mediated diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tayab C Waseem
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anupama Sahoo
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shayahati Bieerkehazhi
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Roza Nurieva
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
26
|
Circulating CXCR5-Expressing CD8+ T-Cells Are Major Producers of IL-21 and Associate With Limited HIV Replication. J Acquir Immune Defic Syndr 2018; 78:473-482. [DOI: 10.1097/qai.0000000000001700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
28
|
E J, Yan F, Kang Z, Zhu L, Xing J, Yu E. CD8 +CXCR5 + T cells in tumor-draining lymph nodes are highly activated and predict better prognosis in colorectal cancer. Hum Immunol 2018; 79:446-452. [PMID: 29544815 DOI: 10.1016/j.humimm.2018.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/14/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
Tumor-draining lymph nodes (TDLNs) are the primary sites of tumor antigen presentation, as well as the origin of metastasis in most cases. Hence, the type and function of immune cells in TDLNs are critical to the microenvironment and potentially affect the clinical outcome of the malignancy. CD8+CXCR5+ T cells are recently described to present high effector functions in infectious diseases, but their role in colorectal cancer (CRC) remains unclear. In forty-four Stage III CRC patients, we examined the CD8+CXCR5+ T cells in blood, tumor, and TDLN. CD8+CXCR5+ T cells represented lass than 2% of CD3+ T cells in blood, but a much larger population in tumor. In TDLN, the CD8+CXCR5+ T cells represented the vast majority of CD8+ T cells and between 9.3% and 32.9% of CD3+ T cells. The prevalence of CD8+CXCR5+ T cells in tumor was not associated with their frequency in peripheral blood, but was positively correlated with their frequency in TDLN. The transcription of effector genes, including IFNG, TNF, IL2, PRF1, and GZMB, and exhaustion markers, including PD1, TIM3, 2B4, and LAG3, were examined in CD8+CXCR5+ T cells and CD8+CXCR5- T cells. With a few exceptions, CD8+CXCR5+ T cell presented significantly higher effector gene expression, and significantly lower exhaustion marker expression than their CXCR5- counterparts. In addition, the prognosis of CRC patients was positively associated with the frequency of TDLN CD8+CXCR5+ T cells, and with the expression of IFNG, PRF1, and GZMB expression by tumor and TDLN CD8+CXCR5+ T cells. Together, these results demonstrated that CD8+CXCR5+ T cells were significant participants of CRC-associated immunity and could potentially serve as therapeutic options.
Collapse
Affiliation(s)
- Jifu E
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feihu Yan
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhengchun Kang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Liangliang Zhu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Enda Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|