1
|
Lee H, Kim JM, Cho AY, Oh JH, Lee KY, Lee CS, Sun IO. Circulating microRNAs as markers for scrub typhus-associated acute kidney injury. Kidney Res Clin Pract 2024; 43:797-806. [PMID: 39622274 PMCID: PMC11615441 DOI: 10.23876/j.krcp.23.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 06/09/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Circulating microRNAs (miRNAs) are potential biomarkers for various kidney diseases. In this study, we aimed to identify a circulating miRNA signature for detecting acute kidney injury (AKI) in scrub typhus. METHODS We prospectively enrolled 40 patients with scrub typhus (20 with AKI, AKI group; 20 without AKI, non-AKI group) and 20 healthy volunteers (the HV group). Thereafter, we performed microarray analysis to assess the serum miRNA profiles of all the participants. Then, to identify miRNAs predictive of scrub typhus-associated AKI, we compared miRNA profiles among these three groups. RESULTS The proportions of miRNAs, small nucleolar RNAs, and small Cajal body-specific ribonucleoproteins were higher in patients with scrub typhus than in the HVs. Further, relative to the HVs, we identified 120 upregulated and 449 downregulated miRNAs in the non-AKI group and 101 upregulated and 468 downregulated miRNAs in the AKI group. We also identified 11 and 110 upregulated and downregulated miRNAs, respectively, in the AKI group relative to the non-AKI group, and among these miRNAs, we noted 14 miRNAs whose levels were significantly upregulated or downregulated in the AKI group relative to their levels in the HV and non-AKI groups. Biological pathway analysis of these 14 miRNAs indicated their potential involvement in various pathways associated with tumor necrosis factor alpha. CONCLUSION We identified miRNAs associated with AKI in patients with scrub typhus that have predictive potential for AKI. Thus, they can be used as surrogate markers for the detection of scrub typhus-associated AKI.
Collapse
Affiliation(s)
- Haeun Lee
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Jung Min Kim
- Nucleic Acids Research Center, TS NEXGEN Co., Ltd., Seoul, Republic of Korea
| | - A Young Cho
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Ju Hwan Oh
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Kwang Young Lee
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Chang-Seop Lee
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Ji S, Qi H, Yan L, Zhang D, Wang Y, MuDanLiFu H, He C, Xia W, Zhu Q, Liang Y, Zhang J. miR-4443 Contained Extracellular Vesicles: A Factor for Endometriosis Progression by PI3K/AKT/ACSS2 Cascade in-vitro. Int J Nanomedicine 2024; 19:6085-6098. [PMID: 38911502 PMCID: PMC11193987 DOI: 10.2147/ijn.s456594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Endometriosis (EM) is an estrogen-dependent benign gynecologic disease affecting approximately 10% of reproductive-age women with a high recurrence rate, but lacks reliable biomarkers. No previous studies have investigated the possible use of extracellular vesicle (EV)-associated micro RNAs (miRNAs) from menstrual blood (MB) as candidate diagnostic or prognostic markers of EM. Methods Specimens were obtained from endometriosis and non-endometriosis patients at the International Peace Maternity and Child Health Hospital in Shanghai. Microarray was used to screen differentially expressed miRNAs among peritoneal fluid (PF), fallopian tube fluid (FF), and MB. Dual-luciferase reporter gene assay was carried out to verify the relationship between miR-4443 and ACSS2. Cell proliferation and Transwell invasion assays were performed in vitro after intervention on miR-4443 and ACSS2 in hEM15A human endometrial stromal cells and primary human endometrial stromal cells (hESCs). Spearman correlation analysis, receiver operating characteristic (ROC) curve analysis, and survival analysis were applied to clinical data, including severity of symptoms and relapse of EM among EM patients. Results EV-associated miR-4443 was abundant in MB of endometriosis patients. ACSS2 knockdown and miR-4443 overexpression promoted cell proliferation and migration via the PI3K/AKT pathway. miR-4443 levels in MB-EVs were positively correlated with the degree of dyspareunia (r=0.64; P<0.0001) and dysmenorrhea (r=0.42; P<0.01) in the endometriosis group. ROC curve analyses showed an area under the curve (AUC) of 0.741 (95% CI 0.624-0.858; P<0.05) for miR-4443 and an AUC of 0.929 (95% CI 0.880-0.978; P<0.05) for the combination of miR-4443 and dysmenorrhea. Conclusion MB-derived EV-associated miR-4443 might participate in endometriosis development, thus providing a new candidate biomarker for the noninvasive prediction of endometriosis recurrence.
Collapse
Affiliation(s)
- Sifan Ji
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Hang Qi
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Li Yan
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Duo Zhang
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Yang Wang
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - HaLiSai MuDanLiFu
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Chuqing He
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Wei Xia
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Yan Liang
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Chen Y, Li HY, Liu JS, Jiang DL, Zheng HN, Dong XS. Analysis of Human microRNA Expression Profiling During Diquat-Induced Renal Proximal Tubular Epithelial Cell Injury. J Inflamm Res 2023; 16:4953-4965. [PMID: 37927960 PMCID: PMC10625323 DOI: 10.2147/jir.s427004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Background We established a diquat-induced human kidney-2 cells (HK-2 cells) apoptosis model in this study to identify differentially expressed microRNAs (miRNAs) and signaling pathways involved in diquat poisoning via gene sequencing and bioinformatics analysis and explored the related therapeutic benefits. Methods The effects of diquat on the viability and apoptosis of HK-2 cells were explored using the CCK-8 and Annexin V-FITC/PI double staining methods. Total RNAs were extracted using the TRizol method and detected by Illumina HiSeq 2500. Bioinformatics analysis was performed to explore differentially expressed (DE) miRNAs, their enriched biological processes, pathways, and potential target genes. The RT-qPCR method was used to verify the reliability of the results. Results Diquat led to HK-2 cell injury and apoptosis played an important role, hence an HK-2 cell apoptosis model in diquat poisoning was established. Thirty-six DE miRNAs were screened in diquat-treated HK-2 cells. The enriched biological process terms were mainly cell growth, regulation of apoptotic signaling pathway, extrinsic apoptotic signaling pathway, and Ras protein signal transduction. The enriched cellular components were mainly cell-cell junction, cell-substrate junction, ubiquitin ligase complex, and protein kinase complex. The enriched molecular functions were mainly Ras GTPase binding, ubiquitin-like protein transferase activity, DNA-binding transcription factor binding, ubiquitin-protein transferase activity, nucleoside-triphosphatase regulator activity, transcription coactivator activity, and ubiquitin-like protein ligase binding. Signaling pathways such as MAPK, FoxO, Ras, PIK3-Akt, and Wnt were also enriched. Conclusion These findings aid in understanding the mechanisms of diquat poisoning and the related pathways, where DE miRNAs serve as targets for gene therapy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Hui-Yi Li
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jian-Shu Liu
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Dao-long Jiang
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Hao-nan Zheng
- No.105 Phase, The First Clinical College of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Xue-Song Dong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| |
Collapse
|
4
|
Martínez-Hernández R, Marazuela M. MicroRNAs in autoimmune thyroid diseases and their role as biomarkers. Best Pract Res Clin Endocrinol Metab 2023; 37:101741. [PMID: 36801129 DOI: 10.1016/j.beem.2023.101741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the posttranscriptional level. They are emerging as potential biomarkers and as therapeutic targets for several diseases including autoimmune thyroid diseases (AITD). They control a wide range of biological phenomena, including immune activation, apoptosis, differentiation and development, proliferation and metabolism. This function makes miRNAs attractive as disease biomarker candidates or even as therapeutic agents. Because of their stability and reproducibility circulating miRNAs have been an interesting area of research in many diseases, and studies describing their role in the immune response and in autoimmune diseases have progressively developed. The mechanisms underlying AITD remain elusive. AITD pathogenesis is characterized by a multifactorial interplay based on the synergy between susceptibility genes and environmental stimulation, together with epigenetic modulation. Understanding the regulatory role of miRNAs could lead to identify potential susceptibility pathways, diagnostic biomarkers and therapeutic targets for this disease. Herein we update our present knowledge on the role of microRNAs in AITD and discuss on their importance as possible diagnostic and prognostic biomarkers in the most prevalent AITDs: Hashimoto's thyroiditis (HT), Graves' disease (GD) and Graves' Ophthalmopathy (GO). This review provides an overview of the state of the art in the pathological roles of microRNAs as well as in possible novel miRNA-based therapeutic approaches in AITD.
Collapse
Affiliation(s)
- Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/ Diego de León 62, 28006 Madrid, Spain; Faculty of Medicine, Universidad San Pablo CEU, CEU Universities, Urbanizacion Monteprincipe, Alcorcon, Madrid, Spain.
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/ Diego de León 62, 28006 Madrid, Spain.
| |
Collapse
|
5
|
Shao MM, Pei XB, Chen QY, Wang F, Wang Z, Zhai K. Macrophage-derived exosome promotes regulatory T cell differentiation in malignant pleural effusion. Front Immunol 2023; 14:1161375. [PMID: 37143656 PMCID: PMC10151820 DOI: 10.3389/fimmu.2023.1161375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Tumor-associated macrophages are one of the key components of the tumor microenvironment. The immunomodulatory activity and function of macrophages in malignant pleural effusion (MPE), a special tumor metastasis microenvironment, have not been clearly defined. Methods MPE-based single-cell RNA sequencing data was used to characterize macrophages. Subsequently, the regulatory effect of macrophages and their secreted exosomes on T cells was verified by experiments. Next, miRNA microarray was used to analyze differentially expressed miRNAs in MPE and benign pleural effusion, and data from The Cancer Genome Atlas (TCGA) was used to evaluate the correlation between miRNAs and patient survival. Results Single-cell RNA sequencing data showed macrophages were mainly M2 polarized in MPE and had higher exosome secretion function compared with those in blood. We found that exosomes released from macrophages could promote the differentiation of naïve T cells into Treg cells in MPE. We detected differential expression miRNAs in macrophage-derived exosomes between MPE and benign pleural effusion by miRNA microarray and found that miR-4443 was significantly overexpressed in MPE exosomes. Gene functional enrichment analysis showed that the target genes of miR-4443 were involved in the regulation of protein kinase B signaling and lipid biosynthetic process. Conclusions Taken together, these results reveal that exosomes mediate the intercellular communication between macrophages and T cells, yielding an immunosuppressive environment for MPE. miR-4443 expressed by macrophages, but not total miR-4443, might serve as a prognostic marker in patients with metastatic lung cancer.
Collapse
|
6
|
Chen C, Gao J, Chen D, Liu J, He B, Chen Y, Zhang H, Yang X, Cheng W. miR-4443/MMP2 suppresses the migration and invasion of trophoblasts through the HB-EGF/EGFR pathway in preeclampsia. Cell Cycle 2022; 21:2517-2532. [PMID: 35899982 PMCID: PMC9677976 DOI: 10.1080/15384101.2022.2103897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy-associated disease that may cause maternal and fetal morbidity and mortality. The dysregulation of microRNAs (miRNAs) and their potential functions has been an important direction for elucidating the mechanism of preeclampsia in recent years. The present study investigated whether miR-4443 was significantly increased in the placentas of severe preeclamptic patients, and the upregulation of miR-4443 inhibited the migration and invasion of HTR-8/SVneo cells according to transwell assays. Matrix metallopeptidase 2 (MMP2), which is involved in the degradation of extracellular matrix (ECM) components and harbors a miR-4443-binding site within its 3'-UTR as confirmed by a luciferase reporter assay, was identified to be directly inhibited by miR-4443. Moreover, siRNA targeting MMP2 imitated the effects of overexpressed miR-4443 on HTR-8/SVneo cell invasion and migration, whereas rescue experiments showed that MMP2 reversed this inhibitory function of miR-4443. Heparin-binding EGF-like growth factor (HB-EGF), as the downstream gene of MMP2, plays an important role in trophoblast invasion, and we confirmed that the expression of HB-EGF/EGFR pathway-related biomolecules was consistent with MMP2 influenced by upregulating and downregulating miR-4443 and that activated EGFR further transmitted intracellular downstream signaling via the MAPK pathway according to western blot assay. In conclusion, we demonstrated that miR-4443 suppresses the migration and invasion of trophoblasts, and its inhibitory effects are at least partially mediated by the suppression of MMP2. This inhibition might further affect the progression of preeclampsia through the HB-EGF/EGFR pathway, thus providing a new clue on the role of miR-4443 in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Chao Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jing Gao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyu Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Biwei He
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huijuan Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyu Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China,CONTACT Xingyu Yang
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Weiwei Cheng International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
MiR-29a-3p negatively regulates circulating Tfh memory cells in patients with Graves’ disease by targeting ICOS. Immunol Res 2022; 71:173-184. [PMID: 36322282 DOI: 10.1007/s12026-022-09333-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous noncoding RNAs that regulate genome expression posttranscriptionally and are involved in autoimmune diseases. Previous studies have indicated that follicular helper T (Tfh) cells play a critical role in the pathogenesis of Graves' disease (GD). However, the molecular mechanisms that contribute to circulating Tfh memory cell response in GD patients remain incompletely understood. This study aimed to investigate the role of miRNAs on circulating Tfh memory cells in GD patients. Herein, our data showed that the proportion of circulating Tfh memory cells, the transcript levels of IL-21, and the plasma concentrations of IL-21 were increased in the peripheral blood from GD patients. We also found that inducible co-stimulator (ICOS) expression, an important molecule expressed on Tfh cells, were significantly augmented in the peripheral blood mononuclear cells (PBMCs) from GD patients and positively correlated with the percentage of circulating Tfh memory cells and the transcript levels of IL-21 in GD. Intriguingly, miRNA sequencing screened miR-29a-3p expression was downregulated and inversely correlated with ICOS expression and the frequency of circulating Tfh memory cells in patients with GD. Luciferase assay demonstrated that ICOS was the direct target gene of miR-29a-3p, and miR-29a-3p could inhibit ICOS at both transcriptional and translational levels. Overexpression of miR-29a-3p reduced the proportion of circulating Tfh memory cells. Moreover, miR-29a-3p expression negatively correlated with serum concentrations of TSH receptor antibody (TRAb) in GD patients. Collectively, our results demonstrate that miR-29a-3p emerges as a post-transcriptional brake to limit circulating Tfh memory cell response in GD patients and may be involved in the pathogenesis of GD.
Collapse
|
8
|
Wang Y, Jin Z, Sun J, Chen X, Xie P, Zhou Y, Wang S. The role of activated monocyte IFN/SIGLEC1 signalling in Graves' disease. J Endocrinol 2022; 255:1-9. [PMID: 35695299 DOI: 10.1530/joe-21-0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Graves' disease (GD) is characterized by dysregulation of the immune system with aberrant immune cell function. However, there have been few previous studies on the role of monocytes in the pathology of GD. The object of this study was to investigate whether and how monocytes participate in GD pathology. CD14+ monocytes were isolated from untreated initial GD patients and healthy controls. Then, RNA-seq was performed to investigate changes in global mRNA expression in monocytes and found that type I interferon (IFN) signalling was among the top upregulated signalling pathways in GD monocytes. Type I IFN-induced sialic acid-binding immunoglobulin-like lectin1 (SIGLEC1) expression was significantly upregulated in untreated GD patients and correlated with thyroid parameters. Patient serum SIGLEC1 concentrations were reduced after anti-thyroid drug treatment. Inhibiting SIGLEC1 expression could inhibit proinflammatory cytokine (IL-1β, IL-6, IL-8, IL-10 and M-CSF) expression in monocytes. In conclusion, our study suggested that type I IFN-mediated monocyte activation could have a deleterious effect on the pathogenesis of GD. These observations indicated that the inhibition of type I IFN-activated monocytes/macrophages could have a therapeutic effect on GD remission.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Jin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Chen
- Department of Endocrine and Metabolic Diseases, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Shanghai, China
| | - Pu Xie
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Mao Y, Shen J, Wu Y, Wenjing R, Zhu F, Duan S. Aberrant expression of microRNA-4443 (miR-4443) in human diseases. Bioengineered 2022; 13:14770-14779. [PMID: 36250718 PMCID: PMC9578485 DOI: 10.1080/21655979.2022.2109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
miRNA is a small endogenous RNA and an important regulator of gene expression. miR-4443 is abnormally expressed in 12 diseases including cancer. The expression of miR-4443 is regulated by 3 upstream factors. miR-4443 has 12 downstream target genes. miR-4443 inhibits the expression of its target genes, thereby affecting the migration, proliferation, and invasion of pathological cells. miR-4443 participates in 4 signaling pathways and plays a role in the occurrence and development of several diseases. In addition, miR-4443 can also promote resistance to multiple drugs. Here, this article summarizes the aberrant expression of miR-4443 and its pathogenic molecular mechanisms in human diseases, which provides clues and directions for the follow-up research of miR-4443.
Collapse
Affiliation(s)
- Yunan Mao
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, the First School of Medicine, Wenzhou Medical University, Wenzhou325035, China
| | - Ruan Wenjing
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou310016, China
| | - Feng Zhu
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China,Feng Zhu Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China,CONTACT Shiwei Duan
| |
Collapse
|
10
|
Ruan X, Zhang R, Li R, Zhu H, Wang Z, Wang C, Cheng Z, Peng H. The Research Progress in Physiological and Pathological Functions of TRAF4. Front Oncol 2022; 12:842072. [PMID: 35242717 PMCID: PMC8885719 DOI: 10.3389/fonc.2022.842072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Tumour necrosis factor receptor-associated factor 4 (TRAF4) is a member of the TRAF protein family, a cytoplasmic bridging molecule closely associated with various immune functions. The physiological processes of TRAF4 are mainly involved in embryonic development, cell polarity, cell proliferation, apoptosis, regulation of reactive oxygen species production. TRAF4 is overexpressed in a variety of tumors and regulates the formation and development of a variety of tumors. In this review, we summarize the physiological and pathological regulatory functions of TRAF4 and focus on understanding the biological processes involved in this gene, to provide a reference for further studies on the role of this gene in tumorigenesis and development.
Collapse
Affiliation(s)
- Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Lu Y, Long M, Gao Z, Liu C, Dong K, Zhang H. Long non-coding RNA ENST00000469812 promotes Enterovirus type 71 replication via targeting the miR-4443/NUPR1 axis in rhabdomyosarcoma cells. Arch Virol 2022; 167:2601-2611. [PMID: 36269411 PMCID: PMC9589540 DOI: 10.1007/s00705-022-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by Enterovirus type 71 (EV71) is a serious threat to children's health. However, the pathogenic mechanism of EV71 is still unclear. Long non-coding RNAs (lncRNAs), some of which bind to miRNA as competitive endogenous RNAs (ceRNA) and weaken the silencing effect on the mRNA of downstream target genes, play a key role in regulating the viral infection process. In this study, through experimental verification, we found miR-4443 to be downregulated in cells infected with EV71. Next, by predicting lncRNAs that potentially regulate miR-4443, we found that EV71 infection induced upregulation of lncRNA ENST00000469812 and then further downregulated miR-4443 expression by direct interaction. We also demonstrated that nuclear protein 1 (NUPR1) is one of the target genes of miR-4443 and is involved in the ENST00000469812/miR-4443/NUPR1 regulatory axis. Finally, the ENST00000469812/miR-4443/NUPR1 regulatory axis exhibited a positive effect on EV71 replication. Here, we lay a foundation for exploring the pathogenic mechanism of EV71 and identify potential targets for HFMD treatment.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China ,Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Min Long
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhaowei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
12
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in autoimmune thyroid disease. Exp Mol Pathol 2020; 117:104527. [PMID: 32916160 DOI: 10.1016/j.yexmp.2020.104527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022]
Abstract
Autoimmune thyroid disease (AITD) is a complex disorder with both genetic and environmental risk factors. A number of genetic factors such as HLA and CTLA-4 loci have been associated with risk of this disorder. In addition to these factors, recent studies have shown contribution of non-coding RNAs in the pathogenesis of this condition. Several microRNAs (miRNAs) and a number of long noncoding RNAs (lncRNAs) such as IFNG-AS1, Heg, NR_038461, NR_038462, T204821 and NR_104125 have been dysregulated in peripheral blood of patients with AITD. These transcripts are mostly enriched in pathways that modulate humoral and cellular immune responses such as those associated with antigen presentation and differentiation of Th1, Th2 and Th17 cells. Functional studies verified the role of a number of lncRNAs and miRNAs in regulation of critical immune-related pathways in AITD. Thus, they participate in the pathophysiology of AITD. In the current review, we summarize the results of studies that assessed participation of non-coding RNAs in the pathophysiology of AITD.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Department of Medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Soudeh Ghafouri-Fard
- Department of Medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Li S, Lu G, Wang D, He JL, Zuo L, Wang H, Gu ZT, Zhou JS, Yan FL, Deng QW. MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur J Neurol 2020; 27:1625-1637. [PMID: 32337817 DOI: 10.1111/ene.14282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the early stage of acute ischaemic stroke (AIS). The purpose of this study was to investigate the expression patterns of miRNAs in peripheral blood mononuclear cells (PBMCs) from AIS patients and further explore related molecular mechanisms in stroke-induced immunodeficiency syndrome (SIDS). METHODS The miRNA expression patterns of PBMCs were detected by miRNA microarray and validated by quantitative real-time polymerase chain reaction (qRT-PCR) in AIS patients and healthy controls. Bioinformatics methods and luciferase reporter assays were used to detect the downstream target genes. Following stimulation with lipopolysaccharide and interleukin-4, the expression of miR-4443, tumor necrosis factor receptor associated factor 4 (TRAF4) and the nuclear factor kappa B (NF-κB) pathway were evaluated. Furthermore, transfection with miR-4443 mimic or inhibitor in the monocytes was carried out to gain insight into the mechanisms in SIDS. RESULTS Interleukin-10 in AIS patients was significantly higher than that of healthy controls. The miRNA microarray analysis and qRTPCR validation showed that only miR-4443 was upregulated expressed in PBMCs from AIS patients, especially in monocytes. miR-4443 was shown to directly interact with the 3' untranslated regions of TRAF4, resulting in suppression of TRAF4 protein expression. Furthermore, the expression of miR-4443 and TRAF4 was regulated by stimulation with lipopolysaccharide or interleukin-4. Additionally, overexpression of miR-4443 suppressed the TRAF4/Iκα/NF-κB signaling pathway to activate the expression of anti-inflammatory cytokines in monocytes. CONCLUSIONS The increased expression of miR-4443 induced monocyte dysfunction by targeting TRAF4, which may function as a crucial mediator in SIDS.
Collapse
Affiliation(s)
- S Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - G Lu
- Department of Neurology, Dezhou People's Hospital, Dezhou, China
| | - D Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - J L He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - L Zuo
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - H Wang
- Department of Respiratory, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Z T Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - J S Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - F L Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Q W Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Yin L, Zeng C, Yao J, Shen J. Emerging Roles for Noncoding RNAs in Autoimmune Thyroid Disease. Endocrinology 2020; 161:5818080. [PMID: 32270194 DOI: 10.1210/endocr/bqaa053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune thyroid disease (AITD) is one of the most frequent autoimmune disorders. However, the pathogenesis of AITD has not been fully elucidated. Recently, accumulating evidence has demonstrated that abnormal expression of noncoding RNAs (ncRNAs) is closely related to the etiopathogenesis of AITD. microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are 3 major groups of ncRNAs that are attracting increasing attention. Herein, we summarized our present knowledge on the role of miRNAs, lncRNAs, and circRNAs in AITD. This review focused on the importance of ncRNAs in development of the most prevalent AITD, such as Hashimoto disease and Graves' diseases. Altogether, the main purpose of this review is to provide new insights in the pathogenesis of AITD and the possibility of developing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
15
|
TRAF4 knockdown triggers synergistic lethality with simultaneous PARP1 inhibition in endometrial cancer. Hum Cell 2020; 33:801-809. [PMID: 32388810 DOI: 10.1007/s13577-020-00363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Endometrial cancer (EC) is one of the most common cancers among females worldwide. Advanced stage patients of EC have poor prognosis. Inevitable side effects and treatment tolerance of chemotherapy for EC remain to be addressed. Our results in this study showed that EC cells with higher tumor necrosis factor receptor-associated factor 4 (TRAF4) expression have lower sensitivity to poly ADP-ribose polymerase 1 (PARP1) inhibitors. Upon TRAF4 knockdown, the colony numbers of EC cells were markedly down-regulated, and the markers of DNA double-strand breakage were significantly up-regulated after the treatment of olaparib, a PARP1 inhibitor. TRAF4 knockdown reduced the phosphorylation of protein kinase B (Akt), promoted DNA double-strand breakage, and decreased levels of DNA repair related proteins, including phosphorylated-DNA-dependent protein kinase (p-DNA-PK) and RAD51 recombinase (RAD51). In addition, TRAF4's effect on the sensitivity of EC cells to olaparib was further found to be mainly mediated by Akt phosphorylation. Moreover, in vivo results showed that TRAF4 knockdown enhanced the sensitivity of EC to PARP1 inhibitors using a mouse xenograft model. Collectively, our data suggest that combined application of TRAF4 knockdown and PARP1 inhibition can be used as a promising strategy for synthetic lethality in EC treatment.
Collapse
|
16
|
Cheema AK, Sarria L, Bekheit M, Collado F, Almenar‐Pérez E, Martín‐Martínez E, Alegre J, Castro‐Marrero J, Fletcher MA, Klimas NG, Oltra E, Nathanson L. Unravelling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Gender-specific changes in the microRNA expression profiling in ME/CFS. J Cell Mol Med 2020; 24:5865-5877. [PMID: 32291908 PMCID: PMC7214164 DOI: 10.1111/jcmm.15260] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by medically unexplained debilitating fatigue with suggested altered immunological state. Our study aimed to explore peripheral blood mononuclear cells (PBMCs) for microRNAs (miRNAs) expression in ME/CFS subjects under an exercise challenge. The findings highlight the immune response and inflammation links to differential miRNA expression in ME/CFS. The present study is particularly important in being the first to uncover the differences that exist in miRNA expression patterns in males and females with ME/CFS in response to exercise. This provides new evidence for the understanding of differential miRNA expression patterns and post-exertional malaise in ME/CFS. We also report miRNA expression pattern differences associating with the nutritional status in individuals with ME/CFS, highlighting the effect of subjects' metabolic state on molecular changes to be considered in clinical research within the NINDS/CDC ME/CFS Common Data Elements. The identification of gender-based miRNAs importantly provides new insights into gender-specific ME/CFS susceptibility and demands exploration of sex-suited ME/CFS therapeutics.
Collapse
Affiliation(s)
- Amanpreet K. Cheema
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Leonor Sarria
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Mina Bekheit
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| | - Fanny Collado
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Eloy Almenar‐Pérez
- Escuela de DoctoradoUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | | | - Jose Alegre
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Jesus Castro‐Marrero
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Mary A. Fletcher
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Nancy G. Klimas
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Elisa Oltra
- School of MedicineUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | - Lubov Nathanson
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| |
Collapse
|
17
|
Meerson A. Leptin-Responsive MiR-4443 Is a Small Regulatory RNA Independent of the Canonic MicroRNA Biogenesis Pathway. Biomolecules 2020; 10:biom10020293. [PMID: 32069948 PMCID: PMC7072149 DOI: 10.3390/biom10020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
The human small RNA miR-4443 is functionally involved in several types of cancer and in the biology of the immune system, downstream of insulin and leptin signaling. Next generation sequencing evidence and structural prediction suggest that miR-4443 is not produced via the canonical Drosha–Exportin 5–Dicer pathway of microRNA biogenesis. We tested this hypothesis by using qRT-PCR to measure miR-4443 and other microRNA levels in HCT-116 cells with Drosha, Exportin 5, and Dicer knockouts, as well as in the parental cell line. Neither of the knockouts decreased miR-4443 levels, while the levels of canonical microRNAs (miR-21 and let-7f-5p) were dramatically reduced. Previously published Ago2-RIP-Seq data suggest a limited incorporation of miR-4443 into RISC, in agreement with the functional studies. The miR-4443 locus shows conservation in primates but not in other mammals, while its seed region appears in additional microRNAs. Our results suggest that miR-4443 is a Drosha, Exportin 5, and Dicer-independent, non-canonical small RNA produced by a yet unknown biogenesis pathway.
Collapse
Affiliation(s)
- Ari Meerson
- MIGAL—Galilee Research Institute, POB 831, Kiryat Shmona 1101602, Israel; ; Tel.: +972-4-695-5022
- Faculty of Sciences, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| |
Collapse
|
18
|
Setti G, Pezzi ME, Viani MV, Pertinhez TA, Cassi D, Magnoni C, Bellini P, Musolino A, Vescovi P, Meleti M. Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int J Mol Sci 2020; 21:E907. [PMID: 32019170 PMCID: PMC7037322 DOI: 10.3390/ijms21030907] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
: Background: The aberrant expression of microRNAs (miRNAs) has been associated with several diseases, including cancer, inflammatory, and autoimmune conditions. Interest in salivary miRNAs as non-invasive tools for the diagnosis of malignancies and systemic diseases is rapidly increasing. The present systematic review was developed for answering the question: "Are salivary microRNAs reliable biomarkers for diagnosis of cancer and systemic diseases?" METHODS The application of inclusion and exclusion criteria led to the selection of 11 papers. Critical appraisals and quality assessments of the selected studies were performed through the National Institute of Health "Study Quality Assessment Tool" and the classification of the Oxford Center for Evidence-Based Medicine. RESULTS Seven studies reported statistically significant correlations between one or more salivary miRNAs and the investigated disease. The critical analysis allowed us to classify only two studies (18.2%) as having "good" quality, the rest being scored as "intermediate" (8; 73%) and "poor" (1; 9%). Evidence exists that salivary miR-940 and miR-3679-5p are reliable markers for pancreatic cancer and that miR140-5p and miR301a are promising molecules for the salivary diagnosis of gastric cancer. CONCLUSIONS Further studies, possibly avoiding the risk of bias highlighted here, are necessary to consolidate these findings and to identify new reliable salivary biomarkers.
Collapse
Affiliation(s)
- Giacomo Setti
- Molecular Medicine Ph.D. School, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
- Dentistry and Oral and Maxillofacial Surgery—Department of Surgical, Medical, Dental and Morphological Science with interest in Transplant Oncological and Regenerative Medicine—University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy;
| | - Margherita E. Pezzi
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| | - Maria Vittoria Viani
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| | - Thelma A. Pertinhez
- Department of Medicine and Surgery—Via Volturno 39, 43125 Parma, Italy;
- Transfusion Medicine Unit, Azienda USL—IRCCS di Reggio Emilia—Viale Umberto I, 50, 42123 Reggio Emilia, Italy
| | - Diana Cassi
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| | - Cristina Magnoni
- Dermatology—Department of Surgical, Medical, Dental and Morphological Science with interest in Transplant Oncological and Regenerative Medicine—University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy;
| | - Pierantonio Bellini
- Dentistry and Oral and Maxillofacial Surgery—Department of Surgical, Medical, Dental and Morphological Science with interest in Transplant Oncological and Regenerative Medicine—University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy;
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma – Via Gramsci 14, 43125 Parma, Italy;
| | - Paolo Vescovi
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| | - Marco Meleti
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| |
Collapse
|
19
|
Han W, Li N, Liu J, Sun Y, Yang X, Wang Y. MicroRNA-26b-5p enhances T cell responses by targeting PIM-2 in hepatocellular carcinoma. Cell Signal 2019; 59:182-190. [DOI: 10.1016/j.cellsig.2018.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
|
20
|
Ragan C, Goodall GJ, Shirokikh NE, Preiss T. Insights into the biogenesis and potential functions of exonic circular RNA. Sci Rep 2019; 9:2048. [PMID: 30765711 PMCID: PMC6376117 DOI: 10.1038/s41598-018-37037-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023] Open
Abstract
Circular RNAs (circRNAs) exhibit unique properties due to their covalently closed nature. Models of circRNAs synthesis and function are emerging but much remains undefined about this surprisingly prevalent class of RNA. Here, we identified exonic circRNAs from human and mouse RNA-sequencing datasets, documenting multiple new examples. Addressing function, we found that many circRNAs co-sediment with ribosomes, indicative of their translation potential. By contrast, circRNAs with potential to act as microRNA sponges were scarce, with some support for a collective sponge function by groups of circRNAs. Addressing circRNA biogenesis, we delineated several features commonly associated with circRNA occurrence. CircRNA-producing genes tend to be longer and to contain more exons than average. Back-splice acceptor exons are strongly enriched at ordinal position 2 within genes, and circRNAs typically have a short exon span with two exons being the most prevalent. The flanking introns either side of circRNA loci are exceptionally long. Of note also, single-exon circRNAs derive from unusually long exons while multi-exon circRNAs are mostly generated from exons of regular length. These findings independently validate and extend similar observations made in a number of prior studies. Furthermore, we analysed high-resolution RNA polymerase II occupancy data from two separate human cell lines to reveal distinctive transcription dynamics at circRNA-producing genes. Specifically, RNA polymerase II traverses the introns of these genes at above average speed concomitant with an accentuated slow-down at exons. Collectively, these features indicate how a perturbed balance between transcription and linear splicing creates important preconditions for circRNA production. We speculate that these preconditions need to be in place so that looping interactions between flanking introns can promote back-splicing to raise circRNA production to appreciable levels.
Collapse
Affiliation(s)
- Chikako Ragan
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
- Discipline of Medicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
21
|
Longo CM, Higgins PJ. Molecular biomarkers of Graves' ophthalmopathy. Exp Mol Pathol 2018; 106:1-6. [PMID: 30414981 DOI: 10.1016/j.yexmp.2018.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/15/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
Abstract
Graves' ophthalmopathy (GO), a complication of Graves' disease (GD), is typified by orbital inflammation, ocular tissue expansion and remodeling and, ultimately, fibrosis. Orbital fibroblasts are key effectors of GO pathogenesis exhibiting exaggerated inflammatory and fibroproliferative responses to cytokines released by infiltrating immune cells. Activated orbital fibroblasts also produce inflammatory mediators that contribute to disease progression, facilitate the orbital trafficking of monocytes and macrophages, promote differentiation of matrix-producing myofibroblasts and stimulate accumulation of a hyaluronan-rich stroma, which leads to orbital tissue edema and fibrosis. Proteomic and transcriptome profiling of the genomic response of ocular and non-ocular fibroblasts to INF-γ and TGF-β1 focused on identification of translationally-relevant therapeutic candidates. Induction of plasminogen activator inhibitor-1 (PAI-1, SERPINE1), a clade E member of the serine protease inhibitor (SERPIN) gene family and a prominent regulator of the pericellular proteolytic microenvironment, was one of the most highly up-regulated proteins in INF-γ- or TGF-β1-stimulated GO fibroblasts as well as in severe active GD compared to patients without thyroid disease. PAI-1 has multifunctional roles in inflammatory and fibrotic processes that impact tissue remodeling, immune cell trafficking and survival as well as signaling through several receptor systems. This review focuses on the pathophysiology of the GO fibroblast and possible targets for effective drug therapy.
Collapse
Affiliation(s)
- Christine M Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York 12208, United States
| | - Paul J Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York 12208, United States.
| |
Collapse
|
22
|
Thiel J, Alter C, Luppus S, Eckstein A, Tan S, Führer D, Pastille E, Westendorf AM, Buer J, Hansen W. MicroRNA-183 and microRNA-96 are associated with autoimmune responses by regulating T cell activation. J Autoimmun 2018; 96:94-103. [PMID: 30201436 DOI: 10.1016/j.jaut.2018.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
MircoRNAs (miRs) are small molecules that regulate gene expression at the posttranscriptional level. They have been proposed to be involved in the regulation of several immune responses including autoimmunity. Here, we identified miR-183 and miR-96 to be highly expressed in CD4+ T cells from peripheral blood of Graves' orbitopathy (GO) patients as well as in human and murine T cells upon activation in vitro. By using Luciferase-based binding assays, we identified EGR-1 as target for miR-183 and miR-96. Overexpression of miR-183 and miR-96 in murine CD4+ T cells by retroviral gene transfer resulted in decreased EGR-1 and PTEN expression, elevated Akt phosphorylation and enhanced proliferation. In contrast, treatment of murine CD4+ T cells with specific antagomiRs increased EGR-1 and PTEN expression and interfered with the proliferative activity upon stimulation in vitro. Strikingly, adoptive transfer of miR-183 and miR-96 overexpressing antigen-specific T cells into INS-HA/Rag2KO mice accelerated the development of autoimmune diabetes, whereas transfer of antagomiR-treated cells delayed the disease onset. These results indicate that miR-183 and miR-96 have the ability to regulate the strength of T cell activation and thereby the development and severity of T cell-dependent autoimmune diseases.
Collapse
Affiliation(s)
- Jacqueline Thiel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Christina Alter
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Sina Luppus
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Susanne Tan
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany.
| |
Collapse
|
23
|
Chen X, Huang F, Qi Y, Zhou M, Yin Q, Peng Y, Zhou Y, Ning G, Wang S. Serum and thyroid tissue level of let-7b and their correlation with TRAb in Graves' disease. J Transl Med 2018; 16:188. [PMID: 29976201 PMCID: PMC6034229 DOI: 10.1186/s12967-018-1565-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Abnormal microRNAs (miRNAs) were reported to be involved in the mechanism of Graves' disease (GD). Dysregulated miRNAs may be overlapping in different cells and can be secreted to circulation. We chose miRNAs which were previously reported to be differentially expressed in peripheral blood mononuclear cells (PBMCs) in patients with GD with different disease stage, detected the expression of those miRNAs in serum, corroborated the findings in thyroid tissue, and validated the target gene in vitro to investigate the possible role of circulating miRNAs in GD. METHODS A total of 54 individuals with untreated GD, 12 individuals with GD in remission and 14 disease-free controls were enrolled. The expression of miR-142-3p, miR-154-3p, miR-431-3p, miR-590-5p, and let-7b was detected in the serum. Ten thyroid tissue samples from patients with GD and six disease-free thyroid samples were used for further validation. The potential target genes were identified and validated in vitro. RESULTS miR-142-3p, miR-154-3p, miR-431-3p, miR-590-5p, and let-7b were present in serum and two of them (miR-142-3p and let-7b) were significantly increased in serum of patients with untreated GD (for serum miR-142-3p, P = 0.033, for serum let-7b, P = 0.026) and gradually decreased to normal levels in patients with GD in remission. Correlation analysis showed that let-7b level was strongly correlated with TRAb level (r = 0.305, P = 0.001). let-7b directly inhibited promyelocytic leukemia zinc finger (PLZF) expression and increased the expression of TSHR in thyroid cells in vitro. Furthermore, let-7b levels in GD thyroid tissue were found to be inversely correlated with PLZF levels (r = - 0.849, P = 0.033). Decreased PLZF and increased TSHR was validated in thyroid tissue in patients with GD. CONCLUSIONS The present study confirmed that a portion of miRNAs in PBMCs were also presented and differentially expressed in serum and thyroid tissue. Upregulated in all these three compartments, let-7b may be used as a disease biomarker and therapeutic targets in patients with GD. Circulating let-7b had a strong correlation with disease severity and let-7b may participate in the production of TRAb via targeting PLZF in patients with GD.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Fengjiao Huang
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Yicheng Qi
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Mengxi Zhou
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Qinglei Yin
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Ying Peng
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Yulin Zhou
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Guang Ning
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Shu Wang
- Department of Endocrinology, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University Medical School, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|