1
|
Lu X, Yu M, Yang Y, Zhang X, Chen T, Lei B. G-Protein Coupled Receptor 1 Is Involved in Tetrachlorobisphenol A-Induced Inflammatory Response in Jurkat Cells. TOXICS 2024; 12:485. [PMID: 39058137 PMCID: PMC11281156 DOI: 10.3390/toxics12070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Estrogens can affect the immune inflammatory response through estrogen receptor alpha (ERα), but the specific role of estrogen member receptor G-protein coupled receptor 1 (GPER1) in this process remains unclear. In this study, we evaluated the effects of tetrachlorobisphenol A (TCBPA), which has estrogen activity, on immune inflammatory-related indicators of Jurkat cells, as well as investigated the role of GPER1 in these effects. The results showed that TCBPA at lower concentrations significantly promoted the viability of Jurkat cells, whereas higher concentrations decreased cell viability. TCBPA at concentrations ranging from 1 to 25 μM increased the intracellular reactive oxygen species (ROS) levels. Additionally, treatment with 10 μM TCBPA increased the protein expression of ERα and GPER1, elevated the phosphorylation of protein kinase B (p-Akt), and upregulated the mRNA levels of GPER1, Akt, and phosphoinositide 3-kinase (PI3K) genes. Treatment with 10 μM TCBPA also upregulated the protein or gene expression of pro-inflammatory cytokines, such as interleukins (IL1β, IL2, IL6, IL8, IL12α) and tumor necrosis factor alpha (TNFα) in Jurkat cells. Furthermore, pretreatment with a GPER1 inhibitor G15 significantly reduced the mRNA levels of Akt induced by 10 μM TCBPA. Moreover, the upregulation of mRNA expression of RelA (p65), TNFα, IL6, IL8, and IL12α induced by 10 μM TCBPA was also significantly attenuated after G15 pretreatment. These findings suggest that TCBPA upregulates the expression of genes related to inflammatory responses by activating the GPER1-mediated PI3K/Akt signaling pathway. This study provides new insights into the mechanism of TCBPA-induced inflammatory response.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| |
Collapse
|
2
|
Wang X, Deng GM. Animal models of studying the pathogenesis of multi-organ tissue damage in lupus. Clin Immunol 2024; 263:110231. [PMID: 38692449 DOI: 10.1016/j.clim.2024.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Moderate-to-severe systemic lupus erythematosus (SLE) is characterized by extensive autoantibody deposition and persistent autoinflammation. As the existing animal models are limited in accurately reproducing the pathological characteristics of human SLE, we introduced a novel animal model simulating multi-organ autoinflammation through intra-organ injections. The model closely mimicked key features of SLE, including IgG deposition, inflammation, and tissue damage. The model could be used to assess the roles of IgG, immune cells, cytokines, and Fc gamma receptor (FcγR) in the pathogenesis of autoinflammation. The results obtained from this model could be confirmed by lupus MRL/lpr mice. The review suggested that the diagnostic criteria should be reconsidered to incorporate IgG deposition in tissues and highlighted the limitations of current T-cell and B-cell-focused treatments. To summarize, the IgG deposition model can be used to investigate the pathogenesis and treatment of multi-organ tissue damage associated with SLE.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Corker A, Learmonth M, Patrick DM, DeLeon-Pennell KY, Van Beusecum JP. Cardiac and vascular complications in lupus: Is there a role for sex? Front Immunol 2023; 14:1098383. [PMID: 37063843 PMCID: PMC10090292 DOI: 10.3389/fimmu.2023.1098383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disorder and is characterized by autoantibody formation and subsequent immune complex deposition into target organs. SLE affects nearly nine women to every one man worldwide. Patients with SLE are at an enhanced risk for cardiovascular disease (CVD) morbidity and mortality. CVD is the leading cause of death worldwide and includes heart and blood vessel disorders, cerebrovascular disease, and rheumatic heart disease. Specific mechanisms by which cardiac and vascular pathophysiology develops in patients with SLE are still not fully known. Not only do we not understand this correlation between SLE and CVD, but there is also a critical gap in scientific knowledge on the contribution of sex. In this review, we will discuss the cardiac and vascular pathological disease states that are present in some patients with SLE. More importantly, we will discuss the potential mechanisms for the role of sex and sex hormones in the development of CVD with SLE.
Collapse
Affiliation(s)
- Alexa Corker
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Maya Learmonth
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Research Service, Tennessee Valley Healthcare Veterans Affairs (VA) Medical Center, Nashville, TN, United States
| | - Kristine Y. DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Research Service, Ralph H. Johnson Veterans Affairs (VA) Healthcare System, Charleston, SC, United States
| | - Justin P. Van Beusecum
- Department of Research Service, Ralph H. Johnson Veterans Affairs (VA) Healthcare System, Charleston, SC, United States
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Ortega MA, García-Montero C, Fraile-Martinez O, Alvarez-Mon MA, Gómez-Lahoz AM, Lahera G, Monserrat J, Rodriguez-Jimenez R, Quintero J, Álvarez-Mon M. Immune-Mediated Diseases from the Point of View of Psychoneuroimmunoendocrinology. BIOLOGY 2022; 11:973. [PMID: 36101354 PMCID: PMC9312038 DOI: 10.3390/biology11070973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
Immune-mediated inflammatory diseases (IMIDs) represent a large group of diseases (Crohn's, ulcerative colitis, psoriasis, lupus, and rheumatoid arthritis) evidenced by systemic inflammation and multiorgan involvement. IMIDs result in a reduced quality of life and an economic burden for individuals, health care systems, and countries. In this brief descriptive review, we will focus on some of the common biological pathways of these diseases from the point of view of psychoneuroimmunoendocrinology (PNIE). PNIE consists of four medical disciplines (psychology, nervous system, immune system, and endocrine system), which are key drivers behind the health-disease concept that a human being functions as a unit. We examine these drivers and emphasize the need for integrative treatments that addresses the disease from a psychosomatic point of view.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
| | - Ana Maria Gómez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias (CIBERSAM), 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Roberto Rodriguez-Jimenez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
5
|
Jiang L, Han X, Qiu W, Yu T, Feng R, Wang X, Duan X, Deng GM. Amelioration of Lupus Serum-Induced Skin Inflammation in CD64-Deficient Mice. Front Immunol 2022; 13:824008. [PMID: 35273604 PMCID: PMC8901504 DOI: 10.3389/fimmu.2022.824008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder characterized by high autoantibodies levels and multiorgan tissue damage. The current study investigated the role of CD64 in SLE patients and animal models. According to a flow cytometry study, SLE patients showed an increase in CD64 expression in circulating monocytes. There was a correlation between CD64 and SLEDAI, blood urea nitrogen levels, and anti-Sm antibodies. In skin lesions of lupus MRL/lpr mice, there was high IgG deposition and CD64 expression. In vitro, cytokines IL-10 and IFN-γ upregulated CD64 expression in monocytes/macrophages that was inhibited by glucocorticoids. In CD64-deficient mice, skin inflammation induced by lupus serum was reduced. Furthermore, activation of spleen tyrosine kinase (Syk), Akt, and extracellular signal-regulated kinase (Erk) was inhibited in CD64-deficient monocytes. The results suggest that CD64 could be a biomarker for observing SLE progression, as well as a mechanistic checkpoint in lupus pathogenesis.
Collapse
Affiliation(s)
- Lijuan Jiang
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Han
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlin Qiu
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Yu
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Feng
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefei Wang
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Qiu W, Yu T, Deng GM. The role of organ-deposited IgG in the pathogenesis of multi-organ and tissue damage in systemic lupus erythematosus. Front Immunol 2022; 13:924766. [PMID: 36311714 PMCID: PMC9609414 DOI: 10.3389/fimmu.2022.924766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE), often known simply as lupus, is a severe chronic autoimmune disease that is characterized by multi-organ and tissue damage and high levels of autoantibodies in serum. We have recently investigated, using animal models, the role of organ-deposited IgG autoantibodies in the pathogenesis of organ and tissue damage in SLE. We found that intra-organ injection of serum from mice with lupus (i.e., lupus mice) into healthy mice triggered inflammation in tissue and organs but that serum from other healthy mice did not, and that the severity of inflammation was related to the dose of serum injected. Immunohistochemistry showed that a large number of IgG molecules are deposited at the site of organ and tissue damage in lupus mice, and that IgG is a major contributor to the development of tissue inflammation triggered by serum from lupus mice or patients. The development of tissue inflammation induced by IgG in serum from lupus mice requires the presence of monocytes/macrophages, but not of lymphocytes or neutrophils; tumor necrosis factor (TNF)/tumor necrosis factor receptor 1 (TNFR1) and interleukin 1 (IL-1) also play essential roles in the development of tissue inflammation triggered by IgG. In addition, it has been found that TNFR1 inhibitors can suppress skin injury in lupus mice and that spleen tyrosine kinase (Syk) inhibitors, which can block the signaling transduction of IgG/Fc gamma receptors (FcγRs), can prevent and treat skin injury and kidney damage in lupus mice. We have also observed that lupus IgG might protect against bone erosion. Based on these results, we conclude that IgG plays a crucial role in the development of organ and tissue damage in SLE and in protecting bone erosion and arthritis, and we suggest that the IgG/FcγR signaling pathway is an important therapeutic target in SLE.
Collapse
|
7
|
Evaluation of serum G protein-coupled estrogen receptor 1 (GPER-1) levels in patients with androgenetic alopecia. Arch Dermatol Res 2021; 314:681-685. [PMID: 34297198 DOI: 10.1007/s00403-021-02269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
The effect of oestrogens in androgenetic alopecia (AGA) pathophysiology has not been clearly understood. However, they are considered to have a place in the AGA pathogenesis as the androgens do. The effects of estrogen occur via the estrogen receptors alpha and beta, and the recently discovered G protein-coupled estrogen receptor 1 (GPER-1). Aim of this study is to examine serum GPER-1 levels of AGA patients and to evaluate the place of them in AGA pathogenesis for the first time through the literature. 40 AGA patients with clinical AGA stage 2-3-4 diagnoses according to the Hamilton-Norwood classification for males, and AGA stage 2 according to Ludwig system for females and with normal serum dihydroepiandrosterone sulfate, estradiol, total testosterone, progesterone, follicle stimulating hormone and luteinizing hormone were included in the study in addition to 40 healthy controls with similar characteristics by means of age and gender. We received the medical history and performed the physical examinations. We measured serum GPER-1 levels. Serum GPER-1 levels of AGA patients and the control group were 30.43 ± 3.83 ng/mL and 14.18 ± 3.61 ng/mL (mean ± SD), respectively. The levels were detected as significantly increased in AGA group compared with the control group (p = 0.007). No serum GPER-1 level differences were found among female and male patients (p = 0.101). Significantly high levels of serum GPER-1 levels in AGA patients without any relationship between gender and GPER-1 Levels compared with healthy controls reminded us that GPER-1 might have a role in AGA pathogenesis independent from the gender.
Collapse
|
8
|
Tang Z, Li Q, Cheng Q, Mei M, Song Y, Du Z, He W, Hu J, Yang S, Wang Z. G Protein-Coupled Estrogen Receptor 1 (GPER1) Mediates Aldosterone-Induced Endothelial Inflammation in a Mineralocorticoid Receptor-Independent Manner. Int J Endocrinol 2021; 2021:5575927. [PMID: 34239558 PMCID: PMC8235990 DOI: 10.1155/2021/5575927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE It has been increasingly appreciated that G protein-coupled estrogen receptor 1 (GPER1) mediates both proinflammatory and anti-inflammatory response of estrogen. It is also involved in some rapid vascular effects of aldosterone in a mineralocorticoid receptor (MR) independent manner. However, whether GPER1 mediates aldosterone-induced inflammation response in endothelial cells and its relationship with MR are yet undetermined and therefore require further explanation. METHOD Based on the hypothesis that GPER1 plays a role in the aldosterone-related vascular inflammation, the present study utilized a model of human umbilical vein endothelial cells transfected with MR siRNA and induced for inflammatory response with increasing concentration of aldosterone. RESULTS It was discovered that induction of aldosterone had no effect on the expression of GPER1 but promoted the expression of MR. Suppression of MR did not influence GPER1 expression, and GPER1 was capable of mediating part of aldosterone-induced endothelial inflammatory response. This effect may involve phosphoinositide 3-kinases (PI3K) pathway signaling. CONCLUSION These findings not only demonstrated the role of GPER1 in aldosterone-induced vascular inflammation but also suggested an alternative for pharmaceutical treatment of hyperaldosteronism considering the unsatisfying effect on cardiovascular risks with MR antagonists.
Collapse
Affiliation(s)
- Ziwei Tang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Qingfeng Cheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Mei Mei
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Ying Song
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Zhipeng Du
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Wenwen He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| | - Zhihong Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400044, China
| |
Collapse
|