1
|
Schneider S, Kallab M, Murauer O, Reisinger AS, Strohmaier S, Huang AS, Bolz M, Strohmaier CA. Bleb vessel density as a predictive factor for surgical revisions after Preserflo Microshunt implantation. Acta Ophthalmol 2024; 102:e797-e804. [PMID: 38306110 DOI: 10.1111/aos.16642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Bleb failure is a common complication after glaucoma filtration surgery. Different bleb classification schemes incorporating filtration bleb vascularization have been proposed, but the reported correlation with intraocular pressure (IOP) has been variable, possibly because of subjective vascularization grading. The purpose of the present study was to evaluate bleb vascularization after Preserflo Microshunt (PM) implantation using anterior segment OCT-angiography (AS-OCTA) as a biomarker for bleb failure. METHODS Twenty-three eyes of twenty-three patients underwent PM implantation. Up to 12 months after surgery PM scleral passage-centred AS-OCTA measurements (PLEX Elite 9000) for bleb-vessel density (BVD) determination were performed and IOP as well as necessity for surgical revisions (needling and open revision) were documented. After multi-step image analysis (region of interest definition, artefact removal, binarization, BVD calculation), the predictive value of early postoperative BVD for surgical revisions was assessed using logistic regression modelling. RESULTS Baseline IOP (23.57 ± 7.75 mmHg) decreased significantly to 8.30 ± 2.12, 9.17 ± 2.33 and 11.70 ± 4.40 mmHg after 1, 2 and 4 week(s), and 13.48 ± 5.83, 11.87 ± 4.49, 12.30 ± 6.65, 11.87 ± 3.11 and 13.05 ± 4.12 mmHg after 2, 3, 6, 9 and 12 month(s), respectively (p < 0.001). Nine patients (39%) needed surgical revisions after a median time of 2 months. Bleb vessel densities at 2 and 4 weeks were significantly associated with future surgical revisions upon logistic regression analysis (2 W/4 W likelihood-ratio test p-value: 0.0244/0.0098; 2 W/4 W area under the receiver operating characteristics curve: 0.796/0.909). CONCLUSION Filtration bleb vessel density can be determined using AS-OCTA in the early postoperative period and is predictive for bleb failure after PM implantation.
Collapse
Affiliation(s)
- Sophie Schneider
- Department of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Martin Kallab
- Department of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Olivia Murauer
- Department of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Anna-Sophie Reisinger
- Department of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Susanne Strohmaier
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Alex S Huang
- Hamilton Glaucoma Center, The Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, California, USA
| | - Matthias Bolz
- Department of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Clemens A Strohmaier
- Department of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| |
Collapse
|
2
|
Liu Q, Yan X, Yuan Y, Li R, Zhao Y, Fu J, Wang J, Su J. HTRA2/OMI-Mediated Mitochondrial Quality Control Alters Macrophage Polarization Affecting Systemic Chronic Inflammation. Int J Mol Sci 2024; 25:1577. [PMID: 38338855 PMCID: PMC10855076 DOI: 10.3390/ijms25031577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic chronic inflammation (SCI) due to intrinsic immune over-activation is an important factor in the development of many noninfectious chronic diseases, such as neurodegenerative diseases and diabetes mellitus. Among these immune responses, macrophages are extensively involved in the regulation of inflammatory responses by virtue of their polarization plasticity; thus, dysregulation of macrophage polarization direction is one of the potential causes of the generation and maintenance of SCI. High-temperature demand protein A2 (HtrA2/Omi) is an important regulator of mitochondrial quality control, not only participating in the degradation of mis-accumulated proteins in the mitochondrial unfolded protein response (UPRmt) to maintain normal mitochondrial function through its enzymatic activity, but also participating in the regulation of mitochondrial dynamics-related protein interactions to maintain mitochondrial morphology. Recent studies have also reported the involvement of HtrA2/Omi as a novel inflammatory mediator in the regulation of the inflammatory response. HtrA2/Omi regulates the inflammatory response in BMDM by controlling TRAF2 stabilization in a collagen-induced arthritis mouse model; the lack of HtrA2 ameliorates pro-inflammatory cytokine expression in macrophages. In this review, we summarize the mechanisms by which HtrA2/Omi proteins are involved in macrophage polarization remodeling by influencing macrophage energy metabolism reprogramming through the regulation of inflammatory signaling pathways and mitochondrial quality control, elucidating the roles played by HtrA2/Omi proteins in inflammatory responses. In conclusion, interfering with HtrA2/Omi may become an important entry point for regulating macrophage polarization, providing new research space for developing HtrA2/Omi-based therapies for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China
| |
Collapse
|
3
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
4
|
Toor D, Jain A, Kalhan S, Manocha H, Sharma VK, Jain P, Tripathi V, Prakash H. Tempering Macrophage Plasticity for Controlling SARS-CoV-2 Infection for Managing COVID-19 Disease. Front Pharmacol 2020; 11:570698. [PMID: 33178021 PMCID: PMC7596271 DOI: 10.3389/fphar.2020.570698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Shivani Kalhan
- Department of Pathology, Government Institute of Medical Sciences, Greater Noida, India
| | - Harmesh Manocha
- Department of Microbiology, Government Institute of Medical Sciences, Greater Noida, India
| | - Vivek Kumar Sharma
- Department of Physiology, Government Institute of Medical Sciences, Greater Noida, India
| | - Payal Jain
- Department of Medicine, Government Institute of Medical Sciences, Greater Noida, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
5
|
Thiriot JD, Martinez-Martinez YB, Endsley JJ, Torres AG. Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog Dis 2020; 78:5739920. [PMID: 32068828 DOI: 10.1093/femspd/ftaa009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages play an integral role in host defenses against intracellular bacterial pathogens. A remarkable plasticity allows for adaptation to the needs of the host to orchestrate versatile innate immune responses to a variety of microbial threats. Several bacterial pathogens have adapted to macrophage plasticity and modulate the classical (M1) or alternative (M2) activation bias towards a polarization state that increases fitness for intracellular survival. Here, we summarize the current understanding of the host macrophage and intracellular bacterial interface; highlighting the roles of M1/M2 polarization in host defense and the mechanisms employed by several important intracellular pathogens to modulate macrophage polarization to favor persistence or proliferation. Understanding macrophage polarization in the context of disease caused by different bacterial pathogens is important for the identification of targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D Thiriot
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Yazmin B Martinez-Martinez
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Janice J Endsley
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA.,Department of Pathology, University of Texas Medical Branch , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| |
Collapse
|
6
|
Nadella V, Garg M, Kapoor S, Barwal TS, Jain A, Prakash H. Emerging neo adjuvants for harnessing therapeutic potential of M1 tumor associated macrophages (TAM) against solid tumors: Enusage of plasticity. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1029. [PMID: 32953829 PMCID: PMC7475467 DOI: 10.21037/atm-20-695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophages are a major component of the tumor microenvironment (TME) of most tumors. They are characterized by a high degree of functional plasticity which enable these cells to both promote and eliminate established tumors. Under the influence of immunosuppressive TME, tumor infiltrating iNOS+ and CD11b+ M-1 effector macrophages get polarized towards tumor associated macrophages (TAM) which are tropic to variety of tumors. Increased infiltration and density of TAM is associated with tumor progression and poor prognosis in the plethora of tumors due to their angiogenetic and tissue re-modelling nature. Importantly, TAMs are also responsible for developing endothelium anergy, a major physical barrier for majority of cancer directed immune/chemotherapies. Therefore, functional retuning/re-educating TAM to M-1 phenotypic macrophages is paramount for effective immunotherapy against established tumors. In this review, we discuss and provide comprehensive update on TAM-targeted approaches for enhancing immunity against various solid tumors.
Collapse
Affiliation(s)
- Vinod Nadella
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Sonia Kapoor
- Amity Institute of Molecular Medicine and Stem cell Research, Amity University Uttar Pradesh, Sector 125, Noida, India
| | | | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bhatinda, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| |
Collapse
|
7
|
Jensen S, Seidelin JB, LaCasse EC, Nielsen OH. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal 2020; 13:13/619/eaax8295. [PMID: 32071170 DOI: 10.1126/scisignal.aax8295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic inflammatory diseases such as inflammatory bowel disease, rheumatoid arthritis, and psoriasis are needed because current treatments are often suboptimal in terms of both efficacy and the risks of serious adverse events. Inhibitor of apoptosis proteins (IAPs) are E3 ubiquitin ligases that inhibit cell death pathways and are themselves inhibited by second mitochondria-derived activator of caspases (SMAC). SMAC mimetics (SMs), small-molecule antagonists of IAPs, are being evaluated as cancer therapies in clinical trials. IAPs are also crucial regulators of inflammatory pathways because they influence both the activation of inflammatory genes and the induction of cell death through the receptor-interacting serine-threonine protein kinases (RIPKs), nuclear factor κB (NF-κB)-inducing kinase, and mitogen-activated protein kinases (MAPKs). Furthermore, there is an increasing interest in specifically targeting the substrates of IAP-mediated ubiquitylation, especially RIPK1, RIPK2, and RIPK3, as druggable nodes in inflammation control. Several studies have revealed an anti-inflammatory potential of RIPK inhibitors that either block inflammatory signaling or block the form of inflammatory cell death known as necroptosis. Expanding research on innate immune signaling through pattern recognition receptors that stimulate proinflammatory NF-κB and MAPK signaling may further contribute to uncovering the complex molecular roles used by IAPs and downstream RIPKs in inflammatory signaling. This may benefit and guide the development of SMs or selective RIPK inhibitors as anti-inflammatory therapeutics for various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Simone Jensen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark.
| | - Eric Charles LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| |
Collapse
|
8
|
Yamala AK, Nadella V, Mastai Y, Prakash H, Paik P. P‐LME polymer nanocapsules stimulate naïve macrophages and protect them from oxidative damage during controlled drug release. J Appl Polym Sci 2019. [DOI: 10.1002/app.48363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anil K. Yamala
- School of Engineering Science and TechnologyUniversity of Hyderabad, Prof. CR Rao Road 500046 Hyderabad Telangana India
| | - Vinod Nadella
- Laboratory of Translational Medicine, School of Life SciencesUniversity of Hyderabad, Prof. C. R. Rao Road 500046 Hyderabad Telangana India
| | - Yitzhak Mastai
- Department of Chemistry, Institute of NanotechnologyBar‐Ilan University Ramat‐Gan 52900 Israel
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life SciencesUniversity of Hyderabad, Prof. C. R. Rao Road 500046 Hyderabad Telangana India
- Institute of Virology and ImmunologyAmity University Uttar Pradesh 201313 India
| | - Pradip Paik
- School of Engineering Science and TechnologyUniversity of Hyderabad, Prof. CR Rao Road 500046 Hyderabad Telangana India
- School of Biomedical EngineeringIndian Institute of Technology, BHU Varanasi 221005 India
| |
Collapse
|
9
|
Toor D, Wsson MK, Kumar P, Karthikeyan G, Kaushik NK, Goel C, Singh S, Kumar A, Prakash H. Dysbiosis Disrupts Gut Immune Homeostasis and Promotes Gastric Diseases. Int J Mol Sci 2019; 20:E2432. [PMID: 31100929 PMCID: PMC6567003 DOI: 10.3390/ijms20102432] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/30/2023] Open
Abstract
Perturbation in the microbial population/colony index has harmful consequences on human health. Both biological and social factors influence the composition of the gut microbiota and also promote gastric diseases. Changes in the gut microbiota manifest in disease progression owing to epigenetic modification in the host, which in turn influences differentiation and function of immune cells adversely. Uncontrolled use of antibiotics, chemotherapeutic drugs, and any change in the diet pattern usually contribute to the changes in the colony index of sensitive strains known to release microbial content in the tissue micromilieu. Ligands released from dying microbes induce Toll-like receptor (TLR) mimicry, skew hypoxia, and cause sterile inflammation, which further contributes to the severity of inflammatory, autoimmune, and tumorous diseases. The major aim and scope of this review is both to discuss various modalities/interventions across the globe and to utilize microbiota-based therapeutic approaches for mitigating the disease burden.
Collapse
Affiliation(s)
- Devinder Toor
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| | - Mishi Kaushal Wsson
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| | - G Karthikeyan
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| | - Chhavi Goel
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| | - Sandhya Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telengana, India.
| | - Anil Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| |
Collapse
|
10
|
Abstract
The inhibitor of apoptosis proteins (IAPs) are a family of proteins that were chiefly known for their ability to inhibit apoptosis by blocking caspase activation or activity. Recent research has shown that cellular IAP1 (cIAP1), cIAP2, and X-linked IAP (XIAP) also regulate signaling by receptors of the innate immune system by ubiquitylating their substrates. These IAPs thereby act at the intersection of pathways leading to cell death and inflammation. Mutation of IAP genes can impair tissue homeostasis and is linked to several human diseases. Small-molecule IAP antagonists have been developed to treat certain malignant, infectious, and inflammatory diseases. Here, we will discuss recent advances in our understanding of the functions of cIAP1, cIAP2, and XIAP; the consequences of their mutation or dysregulation; and the therapeutic potential of IAP antagonist drugs.
Collapse
Affiliation(s)
- Najoua Lalaoui
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3050, Australia
| | - David Lawrence Vaux
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3050, Australia
| |
Collapse
|
11
|
Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G. The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Front Microbiol 2018; 9:2603. [PMID: 30425706 PMCID: PMC6218626 DOI: 10.3389/fmicb.2018.02603] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022] Open
Abstract
Impaired lung function is common in people with a history of tuberculosis. Host-directed therapy added to tuberculosis treatment may reduce lung damage and result in improved lung function. An understanding of the pathogenesis of pulmonary damage in TB is fundamental to successfully predicting which interventions could be beneficial. In this review, we describe the different features of TB immunopathology that lead to impaired lung function, namely cavities, bronchiectasis, and fibrosis. We discuss the immunological processes that cause lung damage, focusing on studies performed in humans, and using chest radiograph abnormalities as a marker for pulmonary damage. We highlight the roles of matrix metalloproteinases, neutrophils, eicosanoids and cytokines, like tumor necrosis factor-α and interleukin 1β, as well as the role of HIV co-infection. Finally, we focus on various existing drugs that affect one or more of the immunological mediators of lung damage and could therefore play a role as host-directed therapy.
Collapse
Affiliation(s)
- Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| | - Lutgarde Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Yin X, Cai Q, Song R, He X, Lu P. Relationship between filtering bleb vascularization and surgical outcomes after trabeculectomy: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 2018; 256:2399-2405. [PMID: 30209568 DOI: 10.1007/s00417-018-4136-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/13/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To explore the relationship between the bleb vasculature and surgical outcome after trabeculectomy (TRAB) using optical coherence tomography angiography (OCT-A). METHODS A prospective study was conducted, which included 26 eyes of 26 primary glaucoma patients in the final analysis. Thereinto, six patients underwent TRAB combined 5-FU and 12 patients received subconjunctival 5-FU injection postoperation. The bleb vessel was evaluated using OCT-A 1 week, 2 weeks, 1 month, 3 months, and 6 months after TRAB. Intraocular pressure (IOP), filtering bleb height, and bleb wall thickness were recorded at the same time. Pearson's correlation analysis and linear regression analysis were performed to determine the correlation of the vessel area data with other parameters. RESULTS Compared with vessel area 1 week after surgery, there was significant increase of the vessel area (△vessel area) 2 weeks (11.13 ± 11.91%, p < 0.05) and 1 month (16.91 ± 14.85%, p < 0.0001) after surgery in all patients. The △vessel area was significantly greater in acute angle closure (AAC) and primary angle closure glaucoma (PACG) 1-month post-TRAB as compared with that 1 week (p < 0.05). The results indicated that the △vessel area 1-month post-TRAB was positive correlated with IOP 6-month post-TRAB (β = 3.88, p = 0.042). CONCLUSIONS Filtering bleb vascularization evaluation using OCT-A could potentially predict IOP 6-month post-TRAB. Surgery effect predicted by filtering bleb vascularization detection is conducive to the select specific postoperative intervention to improve the success rate of TRAB.
Collapse
Affiliation(s)
- Xue Yin
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 21006, Jiangsu Province, China
| | - Qinhua Cai
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 21006, Jiangsu Province, China
| | - Run Song
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 21006, Jiangsu Province, China
| | - Xuefei He
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 21006, Jiangsu Province, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 21006, Jiangsu Province, China.
| |
Collapse
|